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This paper considers the problem of attitude sensor fault diagnosis in a quadrotor helicopter. The proposed approach is
composed of two stages. The first one is the modelling of the system attitude dynamics taking into account the induced
communication constraints. Then a robust fault detection and evaluation scheme is proposed using a post-filter designed
under a particular design objective. This approach is compared with previous results based on the standard Kalman filter
and gives better results for sensor fault diagnosis.
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1. Introduction

Unmanned aerial vehicles (UAVs) have received a great
deal of attention during the last few years due to
their high performance in several applications such
as search and critical missions, surveillance tasks,
geographic studies and various military and security
applications. As an example of UAV systems, the
quadrotor helicopter is a relatively simple, affordable
and easy-to-fly system, and thus it has been widely
used to develop, implement and test-fly methods in
control, fault diagnosis, fault tolerant control as well
as multi-agent based technologies in formation flight.
Navigation and guidance algorithms may be embedded
on the on-board flight microcomputer/micro-controller, or
with the remote interference of ground wirelesses/wired
controllers. In our setting the quadrotor is controlled over
a real time communication network with time-varying
delays and therefore is considered a networked control
system (NCS). In general, the NCS is composed of a
large number of interconnected devices (system nodes)
that exchange data through a communication network.

Recent research on NCSs has received considerable
attention in the automatic control community (Niculescu,
2001; Tipsuwan and Chow, 2003; Mirkin and Palmor,
2005; Hespanha et al., 2007; Richard, 2003; Fang et al.,
2007). The major focus of the research activities are
on system performance analysis regarding the technical

properties of the network and on controller design
schemes for NCSs (Xia et al., 2011; Bemporad et al.,
2010).

However, the introduction of communication
networks in the control loops makes the analysis
and synthesis of NCSs a highly complex task
(Morawski and Zajączkowski, 2010). There are several
network-induced effects that arise when dealing with
the NCS, such as time-delays (Niculescu, 2001; Nilsson
et al., 1998; Pan et al., 2006; Schöllig et al., 2007; Yi
et al., 2007; Zhang et al., 2005), packet losses
(Xiong and Lam, 2007; Sahebsara et al., 2007; Yu
et al., 2004; Georges et al., 2011) and quantization
problems (Goodwin et al., 2004; Montestruque and
Antsaklis, 2007; Fang et al., 2007). Because of the
inherent complexity of such systems, the control issues
of NCSs have attracted attention of many researchers,
particularly taking into account network-induced effects.
A typical application of these systems ranges over various
fields, such as automotive engineering, mobile robotics,
or advanced aircraft.

Fault diagnosis is one of the most important research
fields in modern control theory (Frank and Ding, 1997;
Gertler, 1998; Isermann, 2005; Stoustrup and Zhou, 2008;
Basseville and Nikiforov, 1993). However, the study of
fault detection (FD) of the NCS is a new research topic
that has been receiving more attention in the last few years
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(Simon et al., 2013). For instance, the results of Sauter and
Boukhobza (2006), Llanos et al. (2007) and Chabir et al.
(2008; 2009; 2010) focus on networked-induced delays.
The problem studied by Zhang et al. (2004) and Wang
et al. (2009) is the analysis and design of FD systems
in case of missing measurements. Fault detectability and
isolability in NCSs have been discussed by Sauter et al.
(2009), Chabir et al. (2009) or Sid et al. (2012). The fault
tolerant structure is studied by Patton et al. (2007), Jain
et al. (2012) and Jamouli et al. (2012). A method based on
the reference governor can be found in the work of Weber
et al. (2012).

Delays are known to drastically degrade the
performance of control systems. For this reason, many
works aim at reducing the effects of induced network
delays on NCSs (Tipsuwan and Chow, 2003; Yu et al.,
2004; Li et al., 2006). In the majority of the studies
concerning NCSs, the delay is classified according to its
nature either as deterministic or stochastic delay. It can
also be classified as long or short delay, according to
its duration. The delay is said to be short if its duration
is less than one sampling period and long otherwise
(Hu and Zhu, 2003; Lincoln and Bernhardsson, 2000).
Generally, the dynamics of the delay corresponding to the
characterization of the network are not taken into account.
Thus, one interesting approach is to estimate the delay,
in order to generate an optimal control, as well as robust
algorithms of faults detection that take into account the
network characteristics.

For dealing with the short delay effect, many works
have been proposed in the literature. For instance, Sauter
et al. (2009) formulate the delay effect as an unknown
input with a variable distribution matrix by using Taylor
approximation. The same approximated model is used by
Ye and Ding (2004) for the generation of a time varying
parity space based fault indicator. Stochastic delay can
be modelled by a Markov chain (Yi et al., 2007; Zhang
et al., 2005). Sauter et al. (2009) use a fault isolation filter
for monitoring a system under Markovian short delays.
The proposed filter parameters are designed using linear
matrix inequalities (LMIs) (Boyd et al., 1994). Zheng
et al. (2003) propose a reduced order fault detection filter
for improving the robustness to constant long delay and
reduce the complexity of the design problem.

Wang et al. (2006) set forth a method for fault
detection in NCSs under stochastic and probably long
duration delay. The model given by Ray and Halevi (1988)
as well as Hu and Zhu (2003) is adopted for the design.
However, this model can be seen as an extension of the
unidimensional Taylor approximation given by Ye and
Ding (2004) for the multidimensional case. Wang et al.
(2008) consider mixed delay composed of a constant part
and random part. The delay effect is approximated by
polytopic uncertainties and uses the “reference model"
fault detection technique (Ding, 2008) for the design

of observer based fault detection. A majority of fault
detection approaches of NCSs that exist in the literature
are model based (Sauter et al., 2013). However, artificial
intelligence methods are considered less suitable for real
time implementation (Rahmani et al., 2008).

The objective in this study is the diagnosis
of quadrotor attitude sensors fault under variable
transmission delay. First, an attitude dynamic model
taking into account variable transmission delay is
presented. Then we propose a robust residual generation
and evaluation scheme using a post-filter that verifies a
particular design objective. This approach is compared
with previous results based on the standard Kalman filter
and gives better results for sensors fault diagnosis.

The rest of the paper is organized as follows. In
Section 2, the quadrotor helicopter attitude dynamics
modelled and then controlled using the LQR approach.
Section 3 presents the first main result of this paper,
which is related to the modelling of networked control
systems. Finally, Section 4 we present our second main
result concerned with residual generation and evaluation
using an adaptive threshold. Simulation results are given
in Section 5 and the paper is concluded in Section 6.

2. Description of the quadrotor helicopter
dynamics

The mini-helicopter under study has four fixed-pitch
rotors mounted at the four ends of a simple cross frame,
cf. Fig. 1. The attitude is modelled with the Euler-angle
representation, which provides an easier expression for
the linearised model. Moreover, this representation is
more intuitive. The inertial measurement unit model is
given with the quaternion representation of the attitude.
This choice is governed by the implementation of the
attitude observer, which will be easier with the quaternion
parametrization of the attitude.

Fig. 1. Quadrotor mini-helicopter.
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2.1. Quadrotor model. The quadrotor is a small aerial
vehicle controlled by the rotational speed of four blades,
driven by four electric motors. A quadrotor is considered
to be a VTOL (vertical take off and landing) vehicle
able to hover. Two frames are considered to describe the
dynamic equations: the inertial frame N(exn , eyn , ezn)
and the body frame B(exb

, eyb
, ezb

) attached to the UAV
with its origin at the centre of mass of the vehicle.

The quadrotor orientation can be parametrized by
three rotation angles with respect to frame N : yaw (Ψ),
pitch (Θ) and roll (Φ). ω ∈ R

3 is the angular velocity of
the quadrotor relative to N expressed in B. The quadrotor
is controlled by independently varying the rotational
speed ωmi, i = 1, . . . , 4, of each electric motor. The force
fi and the relative torque Qi produced by motor i are
proportional to ωmi,

fi = bω2
mi, (1)

Qi = kω2
mi, (2)

where k > 0, b > 0 are two parameters depending on the
density of air, the radius, the shape, the pitch angle of the
blade and other factors. The three torques that constitute
the control vector for the quadrotor are expressed in frame
B as

τφa = d(f2 − f4), (3)

τθa = d(f1 − f3), (4)

τψa = Q1 +Q3 −Q2 −Q4, (5)

where d represents the distance from one rotor to the
centre of mass of the quadrotor. From the Newton–Euler
approach, the kinematic and dynamic equations of the
quadrotor are given by

(φ̇, θ̇, ψ̇) = Mω, (6)

Fig. 2. Quadrator mini-helicopter configuration: the iner-
tial frame N(exn , eyn , ezn) and the body frame
B(exb , eyb , ezb).

If ω̇ = −ω × Ifω + τa +Ga, (7)

where If ∈ R
3×3 represents the constant inertial matrix

expressed in B (i.e. If = diag(Ifx, Ify, Ifz)) and × in
(7) denotes the cross product. The matrix M is given by

M =

⎡
⎣
1 tg θ sinφ tg θ cosφ
0 cosφ − sinφ
0 sinφ

cos θ
cosφ
cos θ

⎤
⎦
⎡
⎣
ωx
ωy
ωz

⎤
⎦ , (8)

where ωx, ωy, ωz are the three measurements from tri-axe
rate gyros. Due to the rotation combination of the
quadrotor four rotors, the gyroscopic torquesGa are given
as follows:

Ga =
4∑
i=1

Ir(ω × ezb
)(−1)i+1ωmi, (9)

where Ir is the inertia of the so-called rotor (composed of
the motor rotor itself, the shape and the gears). A linear
control law that stabilizes the system described by the
non-linear model ((6) and (7)) around the hover conditions
is designed.

Note that non-linearities are second order. Therefore,
it is reasonable to consider a linear approximation. From
(6) and (7) and under the hover condition (φ ≈ θ ≈ ψ ≈
0), we can write

(φ̇, θ̇, ψ̇)T = (ω1, ω2, ω3)T . (10)

Then the dynamical model is obtained in terms of Euler
angles,

φ̈ = θ̇ψ̇
Ify − Ifz
Ifx

+
τφa
Ifx

, (11)

θ̈ = φ̇ψ̇
Ifz − Ifx
Ify

+
τθa
Ify

, (12)

ψ̈ = φ̇θ̇
Ifx − Ify

Ifz
+
τψa
Ifz

. (13)

The gyroscopic torques Ga are not considered for the
design of the control law. However, they are taken into
account in simulations in order to analyse the robustness
features.

2.2. Attitude control. In this section, the linearised
model of (6) and (7) is first derived. Then a control law is
briefly summarized. Note that this paper is not dedicated
to the design of a particular control law (Tayebi and
McGilvray, 2006; Castellanos et al., 2005). Therefore, we
use a simple LQ controller for stabilizing the quadrotor
system. For the state feedback we use an estimated state
provided by an extended Kalman filter that estimates both
the system state and the network-induced delay.

The linear dynamics of the system described before
are given by the following state space model:

xT = (φ, φ̇, θ, θ̇, ψ, ψ̇). (14)
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The system (12) around the hover conditions is given by

ẋt = Axt +But, (15)

where

A =

⎡
⎣
A0 0 0
0 A0 0
0 0 A0

⎤
⎦ , B =

⎡
⎣
Bx 0 0
0 By 0
0 0 Bz

⎤
⎦ ,

A0 =
[
0 1
0 0

]
, Bi =

[
0
1
Ifi

]
.

The attitude stabilization problem consists in driving
the quadrotor attitude from any initial condition to a
desired constant orientation and maintaining it thereafter.
As a consequence, the angular velocity vector is also
brought to zero and remains null once the desired attitude
is reached, x �→ 0, t �→ ∞. The discrete linear controller
is given by

ukh = −Lxkh. (16)

The control is designed to minimize to following objective
function:

J =
N−1∑
k=0

[xTkQdxk + uTkRduk] + xTNQ0xN , (17)

where

Φ = eAh, Γ =

(k+1)h∫

kh

eAsB ds

Qd =

(k+1)h∫

kh

ΦT (s)QΦ(s) ds

and

Rd =

(k+1)h∫

kh

(ΓT (s)QΓ(s) +R) ds

where matrices Q, R are symmetric and positive definite.
Furthermore, the following assumptions are taken

into account.

Assumption 1. The full state vector is available (angles
and angular velocities). In practice, these state variables
are obtained from the measurements of rate gyros,
accelerometers and magnetometers by using a dedicated
attitude observer (Castellanos et al., 2005).

Assumption 2. A periodic sampling is used.

Assumption 3. The control signals remain constant
between two updates.

Proposition 1. Consider the quadrotor rotational dyna-
mics described by (12). Then, the discrete control is given
by

ukh =
[
τφa,kh τθa,kh τψa,kh

]
= −Lxkh. (18)

2.3. Control simulation. The weighting matrices Q
and R are chosen in order to obtain a suitable transient
response, and only feasible control signals are applied to
the actuators. Then for a sampling time h = 0.01 s the
matrix gain which minimizes (17) and locally stabilizes
the quadrotor at x = 0 is given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0352 0 0
0.0284 0 0

0 0.0352 0
0 0.0284 0
0 0 0.0352
0 0 0.0284

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Here we simply present some results of the drone attitude
simulation with a variable step response (Fig. 3) and the
LQ controller signal (Fig. 4).

3. Model for NCSs under the fault effect
and communication delay

Induced time delays in networked controlled systems can
become a source of instability and degradation of control
performance (Yi et al., 2007; Zhang et al., 2004; Xiong
and Lam, 2007; Sahebsara et al., 2007). When the system
is controlled over a network, we have to take into account
the sensor to controller delays and controller to actuator
delays. Note that delays, in general, cannot be considered
constant and known. Network-induced delays may vary,
depending on the network traffic, medium access protocol
and the hardware.

Assumption 4. For data acquisition it is supposed that
the sensor is time-driven and the sampling period is
denoted by h. Both the controller and the actuator are
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Fig. 3. Quadrotor attitude (ϕ, θ, ψ) and reference.



Fault diagnosis in a networked control system under communication constraints. . . 813

event-driven. This signifies that calculation of the new
control or actuator signal is started as soon as the new
control or actuator information arrives, as illustrated in
Fig. 5

Assumption 5. Unknown time-varying network-induced
delay at time step k is denoted by τk, and τk =
τsck + τcak is smaller than one sampling period τk ≤
h, τsck and τcak are the sensor-to-controller delay and
the controller-to-actuator delay, respectively. There is
no packet dropout in the networks. Thus, the control
input (zero-order hold assumed) over a sampling interval
[kh, (k + 1)h] is

ut =

{
uk−1, t ∈ [kh, kh+ τk],
uk, t ∈ [kh+ τk, (k + 1)h].

(19)

Let us first assume that the residual generation and
evaluation algorithms are executed instantaneously at
every sampling period k. Based on this assumption, if the
control input is kept constant over each sampling interval
h and if we consider that fault inputs have slow dynamics,
the discrete time system can be described by

{
xk+1 = Φxk + Γ0,τk

uk + Γ1,τk
uk−1,

yk = Cxk + vk.
(20)

From

Γ0,τk
=

h−τk∫

0

eAsB ds,

Γ1,τk
=

h∫

h−τk

eAsB ds
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Fig. 4. Control signal.

it follows that

Γ =

h∫

0

eAsB ds = Γ0,τk
+ Γ1,τk

and hence Γ0,τk
= Γ − Γ1,τk

.
In accordance with the properties of the definite

integral, if we introduce the control increment Δuk, the
plant (20) with an unknown disturbance vector and a fault
vector, which must be detected, is described by

⎧
⎨
⎩

xk+1 = Φxk + Γuk + Γ1,τk
Δuk

+ Ξxdk + Ψxfk,
yk = Cxk + Ξydk + Ψyfk,

(21)

where fk ∈ R
q is the fault vector and dk ∈ R

p is the noise
vector.

Remark 1. Adding the sensor fault effect in both process
and observation equations (21) is for the generalisation of
the study. In our application which considers only sensor
faults we take Ψx = 0.

The matrix A is called diagonalizable if there exists
an invertible matrix P such that

A = PΛP−1 = Pdiag(λ1, λ2, . . . , λn)P−1, (22)

where λ1, λ2, . . . , λn are the eigenvalues of the matrix A.
Then we can write

eAt = I +At+ · · · + 1
n
Antn (23)

= PP−1 + PΛP−1t+ · · · + 1
n

(PΛP−1)ntn (24)

= P (I + Λt+ · · · + 1
n

Λntn)P−1 (25)

= PeΛtP−1. (26)

Fig. 5. Timing diagram for data communication.
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From Eqn. (21), we can write

Γ1,τk
Δuk

=

h∫

h−τk

P eΛ sP−1B ds Δuk (27)

= P

h∫

h−τk

eΛs dsP−1BΔuk (28)

= P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h∫
h−τk

eλ1s ds 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
h∫

h−τk

eλns ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× P−1B Δuk (29)

= P

⎡
⎢⎢⎢⎢⎣

1
λ1
eλ1 h 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

λn
eλn h

⎤
⎥⎥⎥⎥⎦
P−1B Δuk

− P

⎡
⎢⎢⎢⎢⎣

1
λ1
eλ1 (h−τk) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

λn
eλn (h−τk)

⎤
⎥⎥⎥⎥⎦

(30)

× P−1B Δuk (31)

= ΓΔ Δuk − P diag
[

1
λ1
, . . . ,

1
λn

]
diag(βk)

×

⎡
⎢⎢⎢⎣

eλ1(h−τk)

eλ2(h−τk)

...
eλn(h−τk)

⎤
⎥⎥⎥⎦ (32)

= ΓΔ Δuk − ΓΔ,k

⎡
⎢⎢⎢⎣

eλ1(h−τk)

eλ2(h−τk)

...
eλn(h−τk)

⎤
⎥⎥⎥⎦

= ΓΔ Δuk − ΓΔ,k dτk
(33)

with

βk = [β1
k β

2
k . . . β

n
k ]T = P−1BΔuk ∈ R

n,1,

diag(βk) =

⎡
⎢⎢⎢⎢⎣

β1
k 0 · · · 0

0 β2
k

. . .
...

...
. . .

. . . 0
0 · · · 0 βnk

⎤
⎥⎥⎥⎥⎦
,

ΓΔ = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
λ1
eλ1h 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0
1
λn
eλnh

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

ΓΔ,k = P diag
[

1
λ1

1
λ2

· · · 1
λn

]
diag(βk).

According to (32), the model of (21) can also be rewritten
as ⎧⎨

⎩
xk+1 = Φxk + Γuk + ΓΔ Δuk − ΓΔkdτk

+ Ξxdk + Ψxfk,
yk = Cxk + Ξydk + Ψyfk

(34)
by defining

Γak =
[

Γ
ΓΔ

]
, uak =

[
uk

Δuk

]
, Ξax,k =

[
Ξx

−ΓΔk

]
,

Ξay =
[
Ξy
0

]
, dak =

[
dk
dτ,k

]
,

which results in{
xk+1 = Φxk + Γaku

a
k + Ξax,kd

a
k + Ψxfk,

yk = Cxk + Ξaydak + Ψyfk.
(35)

In a practical situation, ensuring the residual
generator robustness against unknown input disturbances
is considered the main issue of FDI algorithm design.
In the case of structured types of uncertainties, the
existing literature provides a wide variety of solutions for
achieving robustness (see, for instance, Chen and Patton,
1999; Ding, 2008). In the next section, FDI is revisited,
considering network-induced effects. Model based fault
detection relies on the generation of a residual signal
which is sensitive to failures and able to decouple faults
from other unknown disturbance inputs. The design must
ensure that residuals are closed to zero in a failure-free
case while clearly deviating from zero in the presence of
faults. In a first attempt, the idea is to consider a residual
generator based on the following state observer:

{
x̂k+1 = Φx̂k + Γaku

a
k + L(yk − ŷk),

yk = Cx̂k.
(36)

The residual generator is given by

rk = T (yk − ŷk), (37)

where L and T are matrices designed to fulfil fault
detection and isolation requirements. From (36) and (37),
it results that the estimation error εk = xk−x̂k propagates
as follows:

εk+1 = (Φ − LC)εk + (Ξax,k − LΞay)d
a
k

+ (Ψx − LΨy)fk. (38)
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The observer gain L is designed to stabilize the matrix
(Φ − LC).

After the application of the Z-transformation, we
obtain the following transfer function model:

zk = T (C(zI − Φ + LC)−1(Ξax,k − LΞay) + Ξay)d
a
k

+ T (C(zI − Φ + LC)−1(Ψx − LΨy) + Ψy)fk.
(39)

The matrix parameters T and L are determined to verify
the following requirements:

• asymptotic stability under fault free conditions, i.e.,
fk = 0,

• minimization of disturbance effects,

• maximization of fault effects.

Perfect fault detection means the total decoupling of
the residual signal from unknown inputs. This can be
described by

T (C(zI − Φ + LC)−1(Ξax,k − LΞay) + Ξay)d
a
k = 0,

T (C(zI − Φ + LC)−1(Ψx − LΨy) + Ψy)fk �= 0.
(40)

Actually, there are various approaches (Gertler,
1998; Chen and Patton, 1999; Frank and Ding, 1997;
Ding, 2008) to the design for the gain matrices L and
T . Therefore, developing a new technique does not make
the main objective of this paper. In the remainder of the
paper, we suppose that the system is controlled over a
communication network. Thus, we take in consideration
the sensor to controller delay and the controller to
actuator delay in our design. For the illustration of FDI
performance degradation under a delay constraint, we
perform a simulation using the system described by (15)
as a plant model. It is supposed that the FD system based
on standard Kalman filtering is connected to the plant via
a network.

For this simulation, the network delay is supposed
to be a Gaussian variable, the fault associated to the first
attitude sensor (φ: Roll) occurs at time instant k = 1000
and the fault associated to the second attitude sensor (ψ:
Yaw) occurs at time instant k = 1500. The result shown
in Fig. 7 does not allow us to distinguish between the fault
and the network variable delay effects. Hence, it appears
that the robustness of the fault diagnosis system against
network-induced delays depends on the amplitude of the
unknown term ΓΔ,k , dτ,k.

It is clear that any robust design has to decouple
or at least minimize the effect of delay on the residual.
This problem is equivalent to fault detection under the
effect of Gaussian noise and unknown inputs at the
same time (Darouach et al., 2003). The delay effect can

be considered an unknown input with a time-varying
distribution matrix ΓΔ,k. In the sequel, we use a robust
filter for detection of faults that may occur in the quadrotor
system.

4. Robust residual generation and
evaluation

The objective of fault diagnosis is to perform two main
decision tasks (Frank and Ding, 1997): fault detection,
consisting in deciding whether or not a fault has occurred,
and fault isolation, consisting in deciding which element
of the system has failed. The general procedure comprises
the following two steps:

• Residual generation: the process of associating,
with the pair model–observation, features that allow
evaluating the difference with respect to normal
operating conditions.

• Residual evaluation: the process of comparing
residuals with some predefined thresholds according
to a test and at a stage where symptoms are produced.

This implies designing residuals that are close to zero
in fault-free situations while clearly deviating from zero
in the presence of faults, and possess the ability to
discriminate between all possible modes of faults, which
explains the use of the term isolation. Therefore, the
objective here is to design a residual generator similar to
the one given by Eqn. (37) with the additional propriety
of robustness against network delay effects. Several
approaches have been proposed in the literature (Wang
et al., 2009; Sauter et al., 2009; Chabir et al., 2008).
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Fig. 6. Residuals generation by the standard Kalman filter (Cha-
bir et al., 2010).
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4.1. Residual generation. A solution of the above
mentioned problem towards the design of an observer
based residual generator will be derived. First, let us
define the vector

zk =
[
xk
ek

]
. (41)

The overall system dynamics, which include the plant and
the residual generator, can be expressed as

{
zk+1 = Āzk + B̄uak + Ξ̄k,xdak + Ψ̄xfk
rk = T C̄zk + TΞayd

a
k + TΨyfk,

(42)

where

Ā =
[
Φ 0
0 Φ −KkC

]
,

C̄ =
[
0 C

]
, C̄ =

[
Γak
0

]
,

Ξ̄k,x =
[

Ξak,x
Ξak,x − LΞay

]
, Ψ̄x =

[
Ψx

Ψx − LΨy

]
.

It is assumed that the plant is mean square stable,
since the observer gain matrix L has no influence
on the system in (42). The overall system dynamics
(plant + residual generator) is mean square stable. The
post-filter T and the observer gain matrix L are the design
parameters for the residual generator. The main objective
of the design of the residual generator is to improve
the sensitivity of the FD system to faults while keeping
robustness against disturbances. Thus, the selection of
the design parameters L and T can be formulated as the
following optimization problem:

supJ = sup
L,T

∥∥Grfz
∥∥
−

‖Grdz ‖∞
, (43)

where

Grdz = T C̄
(
zI − Ā+ LC̄

)−1 Ξ̄k,x + TΞay, (44)

Grfz = T C̄
(
zI − Ā+ LC̄

)−1 Ψ̄x + TΨy. (45)

4.2. Residual evaluation. The second step of the
fault detection procedure is to evaluate the residual.
Residual evaluation is an important step of model based
FD approach (see, for instance, Ding, 2008). This step
includes the calculation of the residual evaluation function
and determination of the detection threshold. The decision
for successful fault detection is based on the comparison
between the results obtained from the residual evaluation
function and the determined threshold. The following
residual evaluation function is proposed:

Jek = ‖rk‖2,N

=

√√√√
(

1
N

N∑
i=1

rk−i

)T (
1
N

N∑
i=1

rk−i

)
,

(46)

where N is the length of the evaluation window. The
variance of the residual signal can be expressed as

σrk = E
(
(rk − r̄k)

T (rk − r̄k)
)
. (47)

Under the assumption that the unknown input and control
input are L2 bounded, the following theorem can be given.

Theorem 1. Given the system (15) and the constants γ1 >
0, γ2 > 0, the following equation holds true:

σrk = E
(
(rk − r̄k)

T (rk − r̄k)
)

< γ1

k∑
j=0

(
vTj vj + ΔuTj Δuj

)
(48)

+ γ2

(
vTk vk + ΔuTkΔuk

)

if there exist P > 0 such that

⎡
⎢⎢⎣

−P PĀ PB̄ Ξ̆k,x
() −P 0 0
() () −I 0
() () () −I

⎤
⎥⎥⎦ < 0, (49)

[ −P C̄
() −γ1I

]
< 0, (50)

[ −I Ψy

() −γ2I

]
< 0, (51)

where the symbols () denote the symmetric terms

Ξ̆k,x =
[

Ξ̄ax,k
Ξ̄ax,k − LΞay

]
, Ξ̄ax,k = [Ξx,−Γ̄Δ,k],

and Γ̄Δ,k is calculated for Δu = max(Δu).

Proof. Define the following Lyapunov function candidate:

Vk = zTk Pzk

with P > 0 and V0 = 0. This equation satisfies

E{Vk+1} − E{Vk} <
k−1∑
j=0

(daTj daj ).

It follows that

E{Vk} = E{zTk P zk}
= z̃Tk P z̃k + E

{
(zk − z̃k)T (zk − z̃k)

}

= z̃Tk P z̃k + trace(Pσz),

where σz = E {(zk − z̃k)} .
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By evaluating E{vk+1}, we get

E{Vk+1} = E{zTk+1 P zk+1}
= E{(Āzk + B̄ūak + Ξ̄k,xdak

)T
× P

(
Āzk + B̄ūak + Ξ̄k,xdak

)}
= E

[
z̃k ūak dak

]
M1,0

[
z̃k ūak dak

]T
+
[
z̃k ūak dak

]
M1,1

[
z̃k ūak dak

]

+ trace(σzMA),

where

M1,0 =
[
ĀT0 B̄T0 Ξ̄T0

]T
P
[
Ā0 B̄0 Ξ̄0

]
,

M1,1 =
l∑
i=1

(
σ2
i

⎡
⎣

0
B̄Ti
0

⎤
⎦P [

0 B̄i 0
] )
,

MA = ĀTp PĀp,

such that

Āp =
[

Φ 0
0 Φ − ρ1LC

]
, B̄p =

[
Γap
ρ2Γap

]

C̄p =
[

0 ρ1C
]
,

where p ∈ {0, 1} and M1 = M1,0 +M1,1.
Suppose that

M1 <

⎡
⎣
P 0 0
0 I 0
0 0 I

⎤
⎦ . (52)

Then
⎡
⎣

ĀT0
(B̄0 + σ1B̄1)T

Ξ̄Tx,0

⎤
⎦ (P−1)−1

[
Ā0 (B̄0 + σ1B̄1) Ξ̄x,0

]

−
⎡
⎣
P 0 0
0 I 0
0 0 I

⎤
⎦ < 0 (53)

and hence

MA < P. (54)

By using the Schur complement, we get
⎡
⎢⎢⎣

−P−1 Ā0 (B̄0 + σ1B̄1) Ξ̄x,0
() −P 0 0
() () −I 0
() () () −I

⎤
⎥⎥⎦ < 0.

Equivalently,
⎡
⎢⎢⎣

−P PĀ0 P (B̄0 + σ1B̄1) P Ξ̄x,0
() −P 0 0
() () −I 0
() () () −I

⎤
⎥⎥⎦ < 0.

Note that the LMI given in (53) implies (54). From
(53), (54), it is evident that

E{Vk+1} < E{Vk} + (da Tk dak + ūa Tk ūak). (55)

This leads to

z̃Tk P z̃k + trace(P σz) <
{ k−1∑
j=0

(daTj daj + ūa Tj ūaj )
}
.

Now, from (48), we get

σrk = E
{
(rk+1 − r̄k+1)T (rk+1 − r̄k+1)

}

=
[
z̃k ūak dak

]
M1

⎡
⎣
z̃k
ūak
dak

⎤
⎦+ trace(σzMc),

where Mc = (ρ1C)T (ρ1C) = ρ2
1C

TC.
If

σrk < Vk ⇔ trace(σzMc) < z̃Tk P z̃k + trace(P σz),

then it is evident that

σrk < γ1E
{ k−1∑
j=0

(daTj daj + ūa Tj ūaj

}

+ γ2E{daTk dak} + γ2E
{
ūa Tk ūak

}

Using the Schur complement, we get

Mc < γ1P ⇔ 1
γ1
ρ2
1C

TC − P < 0,

M1 < γ2 ⇔ 1
γ2
ρ2
1C

TC − P < 0.

This concludes the proof. �

Note that Δuk is set to the allowed upper bound of
the control input max(Δuk). The threshold can be set as

J thk =
√
αNβ, (56)

where

β = supσrk

= γ1(δd,2 +
k∑
j=0

(ΔuTj Δuj)) (57)

+ γ2

(
δd,∞ + ΔuTkΔuk

)
(58)

such that

δd,2 ≥
k∑
j=0

(vTj vj), δd,∞ ≥ vTk vk

are the L2, and L∞ norm of the unknown input,
respectively. The parameter 0 < αN < 1 is a constant
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value that depends on the length of the evaluation window
N . The constants γ1 and γ2 are parameters that represent
the bounds on the variance of the residual signal. Note
that since the residual signal is a white noise process,
the threshold will depend on the statistical part of it
(which means the variance of the residual signal). After
the determination of a threshold, a decision whether a
fault occurs has to be made. The decision logic for the
FD system can be defined as follows: Jek > J thk ⇒ fault,
Jek < J thk ⇒ no fault. The threshold J thk is adaptive and
is influenced by Δuk, which has to be calculated online.
The simulations in the next section are performed in order
to validate the results of the proposed residual evaluator.

5. Simulation

The upper bounds on the unknown inputs are δd,2 = 0.15
and δd,∞ = 0.28. The length of the evaluation window
is set to 50 and αN is set to 0.3. The parameters of
the threshold (bounds on the variance of residual) are
computed as γ1 = 0.0058 and γ2 = 0.05. The threshold
is then to be determined (adaptively) on-line during the
simulation. From the result shown in Fig. 7, it is clear
that the adaptive threshold allows fault detection and the
likelihood of the false alarm rate is drastically minimized.

6. Conclusion

In this paper we deal with the residual generation and
evaluation issue within the framework of networked
control systems. The problems addressed in this paper
include (i) robustness against network delays as well as
noise and (ii) reducing the false alarm rate. In this context,
a quadrotor attitude sensor fault is detected by a post-filter
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Fig. 7. Evaluated residual.

and compared with an adaptive threshold that considers
the variation of control inputs as well as unknown inputs.
The problem of threshold design is established in terms
of linear matrix inequalities. Validation results show the
effectiveness of the obtained results.
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