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In this paper, a NonStandard Finite Difference (NSFD) scheme is constructed, which can be used to determine numerical
solutions for an epidemic model with vaccination. Here the NSFD method is employed to derive a set of difference
equations for the epidemic model with vaccination. We show that difference equations have the same dynamics as the
original differential system, such as the positivity of the solutions and the stability of the equilibria, without being restricted
by the time step. Our proof of global stability utilizes the method of Lyapunov functions. Numerical simulation illustrates
the effectiveness of our results.
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1. Introduction

The application of theories of Differential Equations
(DEs) in mathematical epidemiology has spread rapidly.
Various epidemic models, which describe the dynamical
behavior of the transmission of infectious disease, have
been proposed in the literature (Enszer and Stadtherr,
2009; Ma et al., 2004; Kouche and Ainseba, 2010).
The solutions of DEs describe the evolution of different
classes of subpopulations in the model for different times.
Therefore, one important task of mathematical modeling
is to obtain accurate theoretical solutions (Jódar et al.,
2008). However, theoretical solutions of these systems
exist only occasionally and are usually complicated,
so good approximations are necessary (Parra et al.,
2010). Numerical methods are often the method of
choice (Sekiguchi, 2009; Jang, 2007; Chinviriyasit and
Chinviriyasit, 2010; Enatsu et al., 2010; Muroya et al.,
2011; Jang and Elaydi, 2003). Furthermore, this allows
better use of statistical data for numerical simulations
since the infection data are compiled at discrete given time
intervals (Enatsu et al., 2010).

The discrete models constructed by numerical
methods yield a major difficulty in the calculation of
numerical solutions, since they may cause Numerical
Instabilities (NIs). NIs are solutions to the discrete
equations that do not correspond to any solution of
the original differential equations (Hildebrand, 1968;

Mickens, 1994). Discrete epidemic models contain
parameters in addition to those already existing in the
DEs such as the time and space step sizes. Variations in
these extra parameters may cause bifurcation phenomena
which show up as NIs. For example, traditional schemes
like forward Euler, Runge–Kutta, and others sometimes
generate oscillations and produce fictitious bifurcations,
artificial chaos and false steady states (Lambert, 1973).
Therefore, how to choose discrete schemes which
guarantee the global dynamics of the models is a very
important topic.

NSFD methods, developed by Mickens (1994; 2000;
2002; 2005), are increasingly being applied to numerical
integration of differential equations (Alexander et al.,
2006; Dumont and Lubuma, 2005; Bruggeman et al.,
2007; Arenas et al., 2008; Moghadas et al., 2003;
Anguelo and Lubuma, 2003; Dimitrov and Kojouharov,
2007; 2008; Dimitrov, 2005; Gumel, 2002; Jansen and
Twizell, 2002; Chen and Clemence, 2006; Obaid et
al., 2013). Their use is mainly based on the fact that
they are very effective in preserving certain qualitative
properties of the original differential equations (Mickens,
2000; Alexander et al., 2006; Sekiguchi and Ishiwata,
2010; Sekiguchi, 2010; Moghadas et al., 2003). Arenas
et al. (2008) developed a non standard numerical scheme
for an SIRS seasonal epidemiological model for RSV
transmission. Sekiguchi and Ishiwata (2010) derived a
discretized SIRS epidemic model with time delay by
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applying an NSFD scheme. With the NSFD scheme,
Sekiguchi (2010) proved the permanence of an SIRS
discrete epidemic model with time delays if an endemic
equilibrium of each model exists. Moghadas et al. (2003)
set forth a positivity preserving NSFD scheme for an
epidemic model.

In this paper, we will show that a discrete
epidemic model with vaccination constructed by NSFD
unconditionally guarantee the positivity of solutions and
the global dynamics of the corresponding continuous
model.

The remainder of this paper is organized as follows.
In the next section, we will introduce some useful
definitions and a lemma for the continuous epidemic
model with vaccination. In Section 3, we derive a
discretized epidemic model with vaccination. We obtain
a sufficient condition for the global asymptotic stability
of the equilibria in Section 4. Numerical simulations are
reported in Section 5.

2. Preliminaries

To prevent and control the spread of some communicable
diseases, vaccination is one of the commonly used
measures. Studies of epidemic models with vaccination
have become an important issue in the mathematical
theory of epidemiology (Ma et al., 2004; Anderson and
May, 1991). Vaccine-induced immunity may wane in
preventive vaccines against infectious diseases, such as
hepatitis B, polio and mumps, and so forth. These
vaccines can only offer a period of immunity to the
diseases. For example, the immunization period of the
hepatitis B vaccine is about five years, and that of the
rabies vaccine is about one and half years. During
the immunization period, the vaccinated individuals are
subjected to the natural death rate.

Let S(t) be the number of susceptible individuals,
I(t) be the number of infective individuals, and R(t) be
the number of removed individuals at time t. Ma et al.
(2004) studied the following continuous epidemic model
with vaccination, which is the following system of delay
differential equations:

S′ = a− dS − pS − βSI + pS(t− τ)e−dτ ,

I ′ = βSI − (d+ α+ γ)I,

R′ = γI + pS − dR− pS(t− τ)e−dτ ,

(1)

where a is the recruitment rate of the population, d
is the natural death rate of the population, p is the
vaccinating rate coefficient for a susceptible individual, β
is the infection coefficient, α is the disease-induced death
rate coefficient, γ is the recovery rate coefficient of the
infected individuals. The immunization period is referred
to as a delay τ , which means those who are vaccinated at

time t− τ would return to a susceptible individual at time
t.

We adopt the following notation: R
3 is a

three-dimensional real Euclidean space with norm | · |.
For τ > 0, we denote by C = C([−τ, 0],R3) the Banach
space of continuous functions mapping the interval [−τ, 0]
into R

3 with the topology of uniform convergence, i.e., for
ϕ = (ϕ1, ϕ2, ϕ3) ∈ C, the norm of ϕ is defined as

‖ ϕ ‖= sup
−τ≤θ≤0

{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|}.

The initial conditions for the system (1) are given as

S(θ) = ϕ1(θ) ≥ 0,
I(θ) = ϕ2(θ) ≥ 0,
R(θ) = ϕ3(θ) ≥ 0, − τ ≤ θ < 0,
S(0) = ϕ1(0) > 0,
I(0) = ϕ2(0) > 0,
R(0) = ϕ3(0) > 0

(2)

and the solution of the system (1) is denoted by
(S(t), I(t), R(t)).

Observe that the variableR(t) does not appear in the
first two equations of the system (1), and the behaviors of
R(t) can then be determined from the last equation in the
system (1). This allows us to consider the reduced system

S′ = a− dS − pS − βSI + pS(t− τ)e−dτ ,

I ′ = βSI − (d+ α+ γ)I,
(3)

where the initial conditions are

S(θ) = ϕ1(θ) ≥ 0,
I(θ) = ϕ2(θ) ≥ 0, − τ ≤ θ < 0,
S(0) = ϕ1(0) > 0,
I(0) = ϕ2(0) > 0.

(4)

Set

D =
{
(S, I) ∈ R

2|S > 0, I > 0, S + I ≤ a

d

}
.

Let D̊ denote the interior of D. It can be verified that D
is positively invariant with respect to the system (3). Ma
et al. (2004) derived the following result.

Lemma 1. In the system (3), (S, I) ∈ D. Set

S0 =
a

d+ p(1 − e−dτ )
,

S∗ =
d+ α+ γ

β
,

I∗ =
a

d+ α+ γ

(
1 − 1

R0

)

and

R0 =
βS0

d+ α+ γ
.
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Then, we have the following:

(i) If R0 ≤ 1, then the system (3) has a unique disease-
free equilibrium E0 = (S0, 0) which is globally
asymptotically stable in D.

(ii) If R0 > 1, then the system (3) has two equilibria, a
disease-free equilibriumE0 and an endemic equilib-
rium E∗ = (S∗, I∗). The endemic equilibrium E∗ is
globally asymptotically stable in D̊.

As is well known, it is desirable that the numerical
schemes preserve the dynamics of the system (1). In
particular, the numerical schemes must have at least the
following properties (Mickens, 2005; Oran and Boris,
1987; Potter, 1973):

• Positivity of solutions: For any nonnegative initial
data, the iterations must remain nonnegative.

• Correct number and stability of equilibria: The
properties (i)–(ii) of the system (3) must hold.

Consider the nonlinear functional differential
equation

dx(t)
dt

= f(xt), t ≥ 0, (5)

where f : C → R
n is continuous on compact subsets of

C, and xt ∈ C is defined by xt(s) = x(t+s), s ∈ [−τ, 0].
Under this hypothesis, the solutions x(t) = x(t, φ) of
Eqn. (5) are determined by the initial condition

xt0 = φ, where φ ∈ C, t0 = 0. (6)

Elements of x(t) and f(xt) will be denoted by xi(t) and
f i(xt), i = 1, 2, . . . , n respectively. For any vector x,
x > 0 will be used to denote xi > 0, ∀i.

For numerical schemes, the time at integration step
n ∈ N will be denoted by tn. As this paper deals
only with schemes using a fixed time step, the time step
will be denoted by h, and m will be a positive integer
satisfying τ = mh. The numerical approximation of the
solution vector x(tn) will be denoted by xn. According to
Bruggeman et al. (2007) as well as Moghadas and Gumel
(2003), we give the following definition.

Definition 1. (Unconditional positivity of a system) A
system (5) is called unconditionally positive if f(xt) is
such that x(t) > 0 for all t > 0, with φ ∈ C satisfying

φ(s) ≥ 0, s ∈ [−τ, 0], φ(0) > 0. (7)

Definition 2. (Unconditional positivity of a numerical
scheme) A numerical scheme ψ for the system (5) is
called unconditionally positive if xn > 0, n = 1, 2, . . .
for any given xk = φ(−kh) > 0, k = 0, 1, 2, . . . ,m, with
φ ∈ C satisfying (7).

Definition 3. (Unconditional stability of a numerical
scheme) A numerical scheme Ψ is called unconditionally
stable if it is stable irrespective of the value of the step size
used to simulate it.

Applying Mickens’ nonstandard discretization to the
continuous model (1), Ding et al. (2013), proposed the
following discretized epidemic model with vaccination

Sn+1 − Sn

h
= a− dSn − pSn+1 − βSn+1In

+ pSn−me
−dτ ,

In+1 − In
h

= βSn+1In − (d+ α+ γ)In,

Rn+1 −Rn

h
= γIn + pSn+1 − dRn − pSn−me

−dτ .

(8)
There, they show that, when

h < h0 =
1

d+ α+ γ
,

the difference equation system (8) can keep the global
dynamics of the continuous system (1). However, the
results in Ding et al. (2013) are limited by the step size.
In this paper, this restriction is removed by constructing
more proper nonstandard scheme.

3. Unconditionally positive discretized
model

In this section, denote by Sn the susceptible class, by In
the infective class and by Rn the recovered class at the
n-th step, respectively. Applying Mickens’ nonstandard
discretization to the continuous model (1), we derive the
following discretized epidemic model with vaccination,
which is a system of difference-delay equations:

Sn+1 − Sn

h
= a− dSn+1 − pSn+1 − βSn+1In

+ pSn−me
−dτ ,

In+1 − In
h

= βSn+1In − (d+ α+ γ)In+1,

Rn+1 −Rn

h
= γIn+1 + pSn+1 − dRn+1

− pSn−me
−dτ ,

(9)

where n = 0, 1, . . . . The initial conditions of the system
(9) are given by

S(−k) = ϕ1(−kh) ≥ 0,
S(0) > 0, I(0) > 0,

R(0) > 0, k = 1, 2, . . . , m.
(10)

Observe that the variable Rn does not appear in the
first two equations of the system (9), and the behaviors of
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Rn can then be determined from the last equation in the
system (9). This allows us to consider the reduced system

Sn+1 − Sn

h
= a− (d+ p)Sn+1 − βSn+1In

+ pSn−me
−dτ ,

In+1 − In
h

= βSn+1In − (d+ α+ γ)In+1,

(11)

where the initial conditions are

S(−k) ≥ 0, S(0) > 0, I(0) > 0,
k = 1, 2, . . . , m.

(12)

After some simple manipulations, the system (11) is
transformed into the following form:

Sn+1 =
ha+ Sn + hpSn−me

−dτ

1 + (d+ p)h+ βhIn
,

In+1 =
βhSn+1In + In

[1 + h(d+ α+ γ)]
.

(13)

It is easy to get the following lemma.

Lemma 2. The system (11) with the initial condition (12)
is unconditionally positive.

Set Nn = Sn + In +Rn. Then

Nn+1 =
ah+Nn − αhIn+1

1 + dh
≤ ah+Nn

1 + dh
. (14)

Therefore,

Nn ≤ max
{
N0,

a

d

}

and

lim sup
n→∞

Nn ≤ a

d
.

Theorem 1. For any solution (Sn, In, Rn) of the sys-
tem (9), the total populationNn satisfies

lim sup
n→∞

Nn ≤ a

d
. (15)

Define

Γ =
{
(Sn, In) ∈ R

2|0 < Sn,

0 < In, 0 < Sn + In ≤ a

d

}
,

and let Γ̊ denote the interior of Γ. It can be verified that Γ
is positively invariant with respect to the system (11). Our
results will be stated for the system (11) in Γ.

4. Global asymptotic stability of the
equilibria

In this section, we will show that the system (11) is
unconditionally stable.

An equilibrium of the system (11) satisfies

0 = a− (d+ p)S − βSI + pSe−dτ ,

0 = βSI − (d+ α+ γ)I.
(16)

It is easy to verify that the equilibria of the discretized
system (9) are the equilibria of the system (1).
Furthermore, the equilibria of the system (11) are the same
as (3), namely, E0 and E∗.

In this section, firstly, we obtain a sufficient condition
for global asymptotic stability of the disease-free
equilibrium E0 in the system (11) by a Lyapunov
function.

Theorem 2. In the system (11), we have the following:

(i) If R0 ≤ 1, the disease-free equilibrium E0 = (S0, 0)
of the system (11) is globally asymptotically stable in
Γ.

(ii) If R0 > 1, E0 is unstable.

Proof. Part (i). It is convenient to translate the
disease-free equilibriumE0 to the origin by setting Xn =
Sn − S0. By Eqn.(16), we know S0 satisfies a − (d +
p)S0 + pS0e−dτ = 0. Then Eqn.(11) becomes

Xn+1 −Xn

h
= −dXn+1 − pXn+1 − βXn+1In

− βS0In + pXn−me
−dτ ,

In+1 − In
h

= βXn+1In + βS0In

− (d+ α+ γ)In+1.

(17)

Define

L|1(11)n =
X2

n

2
+ [1 + (d+ α+ γ)h]S0In. (18)

We obtain

ΔL|1(11)n
=

1
2
(X2

n+1 −X2
n) + [hβS0Xn+1In

+ hβS02
In − (d+ α+ γ)hS0In]

=
1
2

{
X2

n+1 −
[
Xn+1 + ((d+ p)hXn+1

+ βhXn+1In + βhS0In − phXn−me
−dτ)

]2}
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+ S0(βhXn+1In + βhS0In − (d+ α+ γ)hIn)
≤−Xn+1((d+ p)hXn+1 + βhXn+1In

+ βhS0In − phXn−me
−dτ) + S0(βhXn+1In

+ βhS0In − (d+ α+ γ)hIn)

= − (d+ p)hX2
n+1 − βhX2

n+1In

+ phXn+1Xn−me
−dτ + βhS02

In

− (d+ γ + α)hS0In.
(19)

Then

ΔL|1(11)n ≤ − (d+ p)hX2
n+1 − βhX2

n+1In

+
phe−dτ

2
X2

n+1 +
phe−dτ

2
X2

n−m

+ βhS02
In − (d+ α+ γ)hS0In.

(20)

Define

L|2(11)n =
hpe−dτ

2

n∑
k=n−m

X2
k . (21)

Similarly, we obtain

ΔL|2(11)n =
hpe−dτ

2

( n+1∑
k=n+1−m

X2
k −

n∑
k=n−m

X2
k

)

=
hpe−dτ

2
(X2

n+1 −X2
n−m).

(22)
Set L|(11)n = L|1(11)n + L|2(11)n. Then we get

ΔL|(11)n
= ΔL|1(11)n + ΔL|2(11)n
≤ −[d+ p(1 − e−dτ )]hX2

n+1 − βhX2
n+1In

+ βhS02
In − (d+ α+ γ)hS0In

≤ −[d+ p(1 − e−dτ )]hX2
n+1

− S0h(d+ α+ γ − βS0)In
≤ −[d+ p(1 − e−dτ )]hX2

n+1

− S0h(d+ α+ γ)(1 −R0)In.

(23)

Obviously, when R0 ≤ 1, ΔL|(11)n ≤ 0; when R0 < 1,
ΔL|(11)n = 0 ⇔ Xn+1 = Xn−m = 0, In = 0;
when R0 = 1, ΔL|(11)n = 0 ⇔ Xn+1 = Xn−m =
0. Substituting R0 = 1 and Xn+1 = Xn−m = 0
into the system (17), we have In = In+1. That is, the
only compact invariant set where {	L|(11)n = 0} is the
singleton {Xn = 0, In = 0}. By Lyapunov functions
and stability (Stuart and Humphries, 1996), we have that
E0 is globally asymptotically stable in Γ, if R0 ≤ 1.

Part (ii). If R0 > 1 , the linearization of Eqn. (17) at E0

is

Xn+1 −Xn

h
= −dXn+1 − pXn+1 − βS0In

+ pXn−me
−dτ ,

In+1 − In
h

= βS0In − (d+ α+ γ)In+1.

(24)

Then the characteristic equation takes the form

∣∣∣∣
ϑ̃1 βhS0λm

0 ϑ̃2

∣∣∣∣ = 0, (25)

where

ϑ̃1 = [1 + (d+ p)h]λm+1 − λm − phe−dτ ,

ϑ̃2 = λm+1 − 1 + (α+ d+ γ)R0h

1 + (α+ d+ γ)h
λm.

It is easy to demonstrate that

λ0 =
1 + (α+ d+ γ)R0h

1 + (α+ d+ γ)h

is one of the roots of Eqn. (25). Clearly, if R0 > 1 , λ0 >
1. Therefore, if R0 > 1, the disease-free equilibrium E0

of the system (11) is unstable. �

Next, we will show the global stability for the
endemic equilibriumE∗ of the system (11) by a Lyapunov
function.

Theorem 3. If R0 > 1, the endemic equilibrium E∗ =
(S∗, I∗) of the system (11) is globally asymptotically sta-
ble in Γ̊.

Proof. Set

V |(11)n = V |1(11)n + V |2(11)n, (26)

where

V |1(11)n =Sn − S∗ − S∗ ln
Sn

S∗

+ [1 + (α+ d+ γ)h]

×
(
In − I∗ − I∗ ln

In
I∗

)
,

V |2(11)n = phe−dτ
0∑

k=−m

(
Sn−k − S∗

− S∗ ln
Sn−k

S∗
)
.

(27)

Set ψ(x) = 1 + lnx− x for all x > 0. We know that

ψ(x) ≤ 0 for x > 0, (28)
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with the equality holding if and only if x = 1. Then we
get

ΔV |1(11)n
=

[
Sn+1 − Sn + S∗ ln

Sn

Sn+1

]

+ [1 + (α+ d+ γ)h]
[
In+1 − In + I∗ ln

In
In+1

]

=
[
Sn+1 − Sn + S∗

(
ψ

( Sn

Sn+1

)
− 1 +

Sn

Sn+1

)]

+ [1 + (α+ d+ γ)h]
[
In+1 − In

+ I∗
(
ψ

( In
In+1

)
− 1 +

In
In+1

)]

≤
(
1 − S∗

Sn+1

)
(Sn+1 − Sn)

+ [1 + (α+ d+ γ)h]
[(

1 − I∗

In+1

)
(In+1 − In)

]
.

Together with Eqns. (11) and (16), we produce

ΔV |1(11)n
≤

(
1 − S∗

Sn+1

)
[(d+ p)hS∗ + βhS∗I∗ − phS∗e−dτ

− (d+ p)hSn+1 − βhSn+1In + phSn−me
−dτ ]

+
(
1 − I∗

In+1

)
[βhSn+1In − (d+ γ + α)hIn].

(29)

Similarly, we have

ΔV |2(11)n

=phe−dτ
0∑

k=−m

(
Sn+1−k − Sn−k + S∗ ln

Sn−k

Sn+1−k

)

=phe−dτ
(
Sn+1 − Sn−m + S∗ ln

Sn−m

Sn+1

)

=phe−dτ
[
Sn+1 − Sn−m

+ S∗
(
ψ

(Sn−m

Sn+1

)
− 1 +

Sn−m

Sn+1

)]

≤phe−dτ
(
Sn+1 − Sn−m − S∗Sn+1 − Sn−m

Sn+1

)
.

(30)

By Eqns. (16), (29) and (30), and using the fact that

S∗

Sn+1
+
Sn+1

S∗ ≥ 2, (31)

with the equality holding if and only if S∗ = Sn+1, we

obtain

ΔV |(11)n
=ΔV |1(11)n + ΔV |2(11)n
≤hS∗[d+ p(1 − e−dτ )]

(
2 − S∗

Sn+1
− Sn+1

S∗
)

+
(
βhS∗I∗ − βhSn+1In − βh

S∗2
I∗

Sn+1
+ βhS∗In

)

+
(
1 − I∗

In+1

)
[βhSn+1In − (d+ α+ γ)hIn]

≤βh
[
S∗I∗ − Sn+1In − S∗2

I∗

Sn+1
+ S∗In

+
(
1 − I∗

In+1

)
(Sn+1In − S∗In)

]

=βh
(
S∗I∗ − S∗2

I∗

Sn+1
− Sn+1In

In+1
I∗ +

S∗I∗In
In+1

)

=βhI∗
( S∗

Sn+1
− In
In+1

)
(Sn+1 − S∗)

=I∗(1 + βhS∗)
( S∗

Sn+1
− In
In+1

)(In+1

In
− 1

)
.

From Eqn. (11), it is easy to see that

In+1 − In =
1

1 + βS∗h
(βhSn+1In − βS∗hIn).

(32)
By Eqn. (32), we get

(1 + βS∗h)
(In+1

In
− 1

)
> −βhS∗,

S∗

Sn+1
=

βhS∗
(

In+1
In

− 1
)
(1 + βS∗h) + βhS∗

.
(33)

Set x = In+1/In. Then, by Eqn. (33), we have

ΔV |(11)n
≤I∗(1 + βhS∗)

×
[ βhS∗

(x− 1)(1 + βS∗h) + βhS∗ − 1
x

]
(x− 1)

= − I∗(1 + βhS∗)(x− 1)2

x[(x− 1)(1 + βS∗h) + βhS∗]
≤ 0

(34)

According to Eqns. (34), (28) and (31), we know
ΔV |(11)n = 0 ⇔ Sn+1 = Sn = Sn−m = S∗ and
In+1 = In. Substituting this into Eqn. (11), we get
the only compact invariant set, where {ΔV |(11)n = 0}
is the singleton {E∗}. By LaSalle’s invariance principle
(Sundarapandian, 2003), E∗ is globally asymptotically
stable in Γ̊. �

Remark 1. From Theorems 2 and 3, it cannot happen that
Sn is exponential decay. Thus, by the third equation of
(9), it should be easy to show that Rn > 0 with the initial
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condition (12). Together with Lemma 2, we know our
results in this paper can be translated straightforwardly to
the system (9).

5. Numerical simulation

For the system (9), Theorem 2 implies that the disease
decays if R0 ≤ 1, and Theorem 3 implies that the disease
persists if R0 > 1. In order to illustrate the validity of our
results, we consider the following two epidemic models
with vaccination. Firstly,

S′ = 14 − 0.3S − 0.6S − 0.04SI

+ 0.6S(t− 10)e−0.3×10,

I ′ = 0.04SI − (0.3 + 0.009 + 0.9)I,
R′ = 0.9I + 0.6S − 0.3R

− 0.6S(t− 10)e−0.3×10.

(35)

After some simple manipulations, we get R0 = 0.5276 <
1 and Eqn. (35) has a unique equilibrium E0 =
(S0, I0, R0) = (15.95, 0, 30.72). By Lemma 1(i), E0 is
globally asymptotically stable.

Then

S′ = 10 − 0.4S − 0.5S − 0.5SI

+ 0.5S(t− 10)e−0.4×10,

I ′ = 0.5SI − (0.4 + 0.4 + 0.6)I,
R′ = 0.6I + 0.5S − 0.4R

− 0.5S(t− 10)e−0.4×10.

(36)

It is easy to see that R0 = 3.9955 > 1 and Eqn. (35) has
two equilibria,

E0 = (S0, I0, R0) = (11.1874, 0, 13.8126),

E∗ = (S∗, I∗, R∗) = (2.8, 5.3551, 11.4897).

By Lemma 1(ii), E∗ is globally asymptotically stable.
In Figs. 1–6, the numbers of susceptible, infective

and recovered individuals (on the vertical axis) are
plotted versus the time steps n (on the horizontal axis).
Figure 1 shows that the solutions of the system (35) under
the numerical schemes (9) converge to the disease-free
equilibrium when h = 0.1, 1, 11. We can see that
the disease free equilibrium E0 of the system (35) is
globally asymptotically stable. On the other hand, Fig. 4
shows that the solutions of the system (36) under the
method (9) converge to the endemic equilibrium when
h = 0.1, 1, 11, and indicates that E∗ of the system (36)
is globally asymptotically stable.

In the following, we give some comparison of the
numerical scheme (8) with the scheme (9). Firstly, we
use the NSFD method (8) to calculate numerical solutions
for the underlying system (1). With the system (35),
moreover, when the step size reaches a certain degree,

the numerical solution exhibits oscillations of period two
(see Fig. 2(a)), and even completely loses stability (see
Fig. 3(a)). With the growth of the step size, the situation
of the system (36) is analogous to that of the system (35)
(see Figs. 5(a) and 6(a)). Then, we also use the NSFD
method (9) with the systems (35) and (36). It is shown
that the stability of the disease free equilibrium E0 and
endemic equilibrium E∗ have not been influenced even
though the step size grows (see Figs.1(c), 2(b), 3(b) and
4(c), 5(b), 6(b)).

In addition, we make a comparison between the 4-th
order Runge–Kutta method and the numerical scheme (9)
for the system (35). It can be seen that the 4-th order
Runge–Kutta method did not converge (see Fig.7(b)) or
in some cases took unreal negative values (see Fig.7(a))
for the infective population, while the numerical scheme
(9) converges to the correct endemic point and only has
positive solutions with the same time step size.

In order to further illustrate the advantages of the
proposed numerical scheme (9), we take the following
parameter values: a = 0.002, p = 1, d = 0.002,
b = 500, α = 20 and γ = 1. In Fig. 8 for
R0 > 1, it can be observed that the numerical scheme (9)
converges correctly to the endemic equilibrium point and
only produces positive values for all times t. However, the
routines of the Matlab software program with their default
error tolerance did not converge.

6. Conclusion and discussion

In this paper, we derived a discretized epidemic model
with vaccination by the NSFD method. For any h > 0, we
showed the positivity of numerical solutions and obtained
sufficient conditions for global behaviors of the equilibria
by a Lyapunov function. Our results demonstrate that the
dynamic behaviors of a discretized system is in keeping
with the continuous one.
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