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A multi-server queueing system with two types of customers and an infinite buffer operating in a random environment
as a model of a contact center is investigated. The arrival flow of customers is described by a marked Markovian arrival
process. Type 1 customers have a non-preemptive priority over type 2 customers and can leave the buffer due to a lack of
service. The service times of different type customers have a phase-type distribution with different parameters. To facilitate
the investigation of the system we use a generalized phase-type service time distribution. The criterion of ergodicity for a
multi-dimensional Markov chain describing the behavior of the system and the algorithm for computation of its steady-state
distribution are outlined. Some key performance measures are calculated. The Laplace–Stieltjes transforms of the sojourn
and waiting time distributions of priority and non-priority customers are derived. A numerical example illustrating the
importance of taking into account the correlation in the arrival process is presented.
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1. Introduction

A contact center is a facility used by companies to manage
all client contacts through a variety of mediums such as
telephone, fax, letter, e-mail, online live chat, etc. In
contrast to call centers, which purely handle telephone
correspondence, contact centers have a variety of roles
combined to provide all encompassing solutions to clients,
and customer contacts. Contact centers, along with
call centers and communication centers, all fall under a
larger umbrella labeled as the contact center management
industry. This is becoming a rapidly growing recruitment
sector in itself, as the capabilities of contact centers
expand and thus require ever more complex systems as
highly skilled operational and management staff.

Efficient operation of a contact center is very
important for every company and so a lot of research is
being done on optimization of design and work of call
centers. For background information and the present state
of the art in the study of call centers, the reader is referred
to the survey by Aksin et al. (2007), the papers of Jouini

et al. (2011; 2009), Kim and Park (2010), Dudin et al.
(2013b) and the references therein.

The models of call centers in the overwhelming
majority of existing papers assume that the arrival
flow of customers is described by a stationary Poisson
arrival process. This assumption greatly simplifies the
study of systems but at the same time reduces the
adequacy of the model, because the arrival flows in
modern telecommunication networks and contact centers
in particular do not possess the properties of stationarity,
memorylessness and ordinarity. Only recently have some
papers appeared where the arrival flow is described by
the MMAP (Marked Markovian Arrival Process) or MAP
(Markovian Arrival Process). The MAP was introduced
as a Versatile Markovian Point Process (VMPP) by
Neuts in the 1970s. The original development of the
VMPP contained an extensive notation; however, it was
simplified greatly by Lucantoni (1991) and ever since
this process bears the name Markovian arrival process.
The class of MAPs includes many input flows considered
previously, such as stationary Poisson (M), Erlangian
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(Ek), hyper-Markovian (HM), phase-type (PH), or the
Markov Modulated Poisson Process (MMPP). Generally
speaking, the MAP is correlated, so it is ideal to
model correlated and or bursty traffic in modern
telecommunication networks. The MMAP is an essential
generalization of the MAP to the case of heterogeneous
customers.

The most similar queueing model with the respect to
the one studied in the present paper was recently analyzed
by Dudin et al. (2013b). This quite a general model
has, however, two important shortcomings. The first
one consists in the imposed assumption that the service
times of both types of customers have an exponential
distribution. This assumption drastically decreases the
complexity of the mathematical analysis of the model. But
this assumption is not good from the practical point of
view because it implies that the most probable value of
the service time is equal to zero. Actually, the service of
a customer’s request in a contact center is implemented
non-instantaneously. It consists of a random sequence of
questions and answers (phases). So, definitely a much
more adequate model of the service time is given by the
so-called PH distribution. For more details about the
properties of this distribution and its partial cases, see,
e.g., the book by Neuts (1981).

The second shortcoming, typical for an
overwhelming majority of the queueing literature,
consists in the suggestion that the parameters of the
distributions characterizing the arrival and service
processes are fixed and do not fluctuate in time. In many
real life systems these parameters may change randomly
during the system operation due to different external
reasons. The intensity of requests processed in the contact
center of a bank may essentially depend on a season, day
of the week, day time, expected instants of the changes
in interest or exchange rates. If the exchange rate of a
currency essentially fluctuates during a day, the rate of
requests about a current exchange rate has sharp peaks
during the periods adjusted to the scheduled instants of
the possible changes of the rate. Correspondingly, the
service rate may be lower than the average one during
these peak times because of customers’ complaints about
long waiting time.

Some references to the literature about systems
operating in a random environment can be found, e.g., in
the works of Dudin et al. (2013a); Kim et al. (2010a;
2013a; 2007; 2010b) or Krieger et al. (2005).

In this paper, we consider the queueing model of a
contact center where the behavior of the system depends
on the current state of the Markovian random process with
a finite state space. Under the fixed state of this process
(which is called a random environment), the arrival flow is
modeled by the MMAP and the service time distributions
are of the PH type. Alternating the states of the
random environment implies the corresponding change

in the parameters of the arrival and service processes
immediately.

The rest of the paper is organized as follows.
In Section 2, the mathematical model is described.
The multi-dimensional continuous time Markov chain
(including the number of customers in the system and
the priority customers in a buffer, the state of the random
environment, and the states of the underlying MMAP and
PH processes) describing the dynamics of the system
is defined in Section 3. In Section 4, a necessary and
sufficient condition for ergodicity of this Markov chain
is presented and an algorithm for computing the steady
state distribution of the Markov chain is outlined. The
expressions for the computation of various performance
measures of the system are presented in Section 5. Section
6 contains the results of an analysis of the distribution
of the waiting and sojourn times of an arbitrary priority
customer in the system, and Section 7 is devoted to
investigation of the distribution of the waiting and sojourn
times of an arbitrary non-priority customer. The results
of the numerical experiment giving some insights into the
behavior of the system are presented in Section 8. Section
9 concludes the paper.

2. Mathematical model

We consider an N -server queueing system with two types
of customers and an infinite buffer as a model of a
contact center. The structure of the system under study
is presented in Fig. 1.

Fig. 1. Structure of the system.

The behavior of the system depends on the state
of the random environment. The environment is given
by the stochastic process rt, t ≥ 0, which is an
irreducible continuous time Markov chain with the state
space {1, 2, . . . , R} and the infinitesimal generator H.

The customers arrive to the system according to
the MMAP. That means the following. The arrival of
customers is directed by a stochastic process νt, t ≥ 0,
with the state space {0, 1, . . . , W}. Under the fixed state
r of the random environment this process is an irreducible
continuous time Markov chain. The sojourn time of this
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chain in the state ν is exponentially distributed with a
positive finite parameter λ

(r)
ν . When the sojourn time

in the state ν expires, with probability p
(r)
0 (ν, ν′), the

process νt jumps to the state ν′ without generation of
customers, ν, ν′ = 0, W , ν �= ν′, r = 1, R. The notation
ν = 0, W means that the parameter ν takes values in
the set {0, 1, . . . , W}. With probability p

(r)
1 (ν, ν′), the

process νt jumps to the state ν′ (probably the same) with
generation of a type 1 customer, and with probability
p
(r)
2 (ν, ν′) the process νt jumps to the state ν′ with

generation of a type 2 customer, ν, ν′ = 0, W, r = 1, R.
The behavior of the MMAP under the fixed state of

the random environment r is completely characterized by
the matrices D

(r)
0 , D

(r)
1 , and D

(r)
2 defined by the entries

(D(r)
0 )ν,ν = −λ(r)

ν , ν = 0, W, (1)

(D(r)
0 )ν,ν′ = λ(r)

ν p
(r)
0

(ν, ν′), ν, ν′ = 0, W, ν �= ν′, (2)

(D(r)
l )ν,ν′ = λ(r)

ν p
(r)
l (ν, ν′), (3)

ν, ν′ = 0, W , r = 1, R, l = 1, 2.

The square matrix D(r)(1) = D
(r)
0 +D

(r)
1 +D

(r)
2 of

the dimension W̄ = W +1 represents the generator of the
process νt, t ≥ 0, under fixed r, r = 1, R.

The average arrival rate λ(r) under the fixed state of
the random environment r is given as

λ(r) = θ(r)(D(r)
1 + D

(r)
2 )e, (4)

where θ(r) is the invariant vector of a stationary
distribution of the Markov chain νt, t ≥ 0, under the
fixed state r. The vector θ(r) is the unique solution to the
system θ(r)D(r)(1) = 0, θ(r)e = 1. Here e is a column
vector of the appropriate size consisting of ones and 0
is a row vector of appropriate size consisting of zeroes.
The average arrival rate λ

(r)
l of type l customers under

the fixed state of the random environment r is defined by
λ

(r)
l = θ(r) D

(r)
l e, l = 1, 2, r = 1, R.

The squared coefficient of variation c
(r)
var of intervals

between successive arrivals is given as

c(r)
var = 2λ(r)θ(r)(−D

(r)
0 )−1e − 1. (5)

The squared coefficient of variation c
(r,l)
var of

inter-arrival times of type l customers under the fixed state
of the random environment r is defined by

c(r,l)
var = 2λ

(r)
l θ(r)(−D

(r)
0 − D

(r)

l̄
)−1e− 1, (6)

l̄ �= l, l̄, l = 1, 2.

The correlation coefficient c
(r)
cor of two successive

intervals between arrivals under the fixed state of the
random environment r is given (see Chakravarthy, 2001),
as

c(r)
cor =

1

c
(r)
var

(λ(r)θ(r)(−D
(r)
0 )−1(D(r)(1) − D

(r)
0 )

× (−D
(r)
0 )−1e− 1).

(7)

The correlation coefficient c
(r,l)
cor of two successive

intervals between type l customers’ arrivals under the
fixed state of the random environment r is computed by

c(r,l)
cor =

1

c
(r,l)
var

(λ(r)
l θ(r)(D(r)

0 + D
(r)

l̄
)−1

× D
(r)
l (D(r)

0 + D
(r)

l̄
)−1e − 1),

l̄ �= l, l̄, l = 1, 2.

(8)

We assume that during the epochs of the transitions
of process rt, t ≥ 0, the states of the process νt, t ≥ 0,
do not change, and only the intensities of the transitions
of this process do.

We assume that type 1 customers have a
non-preemptive priority over type 2 customers. The
priority customers are impatient, so they must be serviced
as soon as possible, while the non-priority customers
can be stored and processed later. Thus, we suggest that
a non-priority customer be chosen for service only if
there are no priority customers in the buffer during the
service completion epoch. Some references to the papers
devoted to an analysis of the queues where one type of
customers has a time priority while the second one has
a space priority are given by Al-Begain et al. (2009),
who study a single-server system with stationary Poisson
inputs. It is worth mentioning that some other practical
interpretations (not in terms of contact centers) of the
model considered are presented in the above work and
the papers cited therein. Al-Begain et al. (2006) also
suggest the batch Markovian arrival process. However,
the buffer space is assumed to be finite for both the types
of customers. No analysis of waiting times is presented in
the work.

If there is a free server during an arbitrary customer
arrival epoch, this customer is admitted to the system and
occupies a free server. If all servers are busy during a
priority customer arrival epoch and k (k = 0, K), priority
customers are present in the buffer, then this customer
leaves (balks) the system with probability q

(r)
k under the

fixed state r of the random environment or moves to the
buffer with a complementary probability. If all servers
are busy during a priority customer arrival epoch and
K priority customers are already present in the buffer,
this customer is rejected, i.e., q

(r)
K = 1. Note that a

similar mechanism of customers dropping was analysed
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for a single server queue with one type of customers by
Chydziński and Chróst (2011).

If during a non-priority customer arrival epoch all
servers are busy, this customer is placed into the buffer
without any limitations. So, if i ≥ 0 customers are present
in the buffer in such a non-priority customer arrival epoch,
then this customer is always admitted to the system and
placed in the position number i + 1 in the buffer.

The priority customers can be impatient, i.e., under
the fixed state r of the random environment the customer
leaves the system due to a lack of service after its arrival
in an arbitrary time distributed exponentially with the
parameter α(r), 0 < α(r) < ∞.

The service time of a priority customer by each
server under the fixed state r of the random environment
has a PH distribution with an irreducible representation
(β(r)

p , S
(r)
p ). This service time can be interpreted as the

time until the underlying Markov process η
(1)
t , t ≥ 0,

with a finite state space {1, . . . , M1, M1 + 1} reaches the
single absorbing state M1 + 1 conditioned on the fact that
the initial state of this process is selected from among
the states {1, . . . , M1} according to the probabilistic row

vector β(r)
p = (β(r)

p,1 , . . . , β
(r)
p,M1

). The transition rates of

the process η
(1)
t within the set {1, . . . , M1} are defined

by the sub-generator S
(r)
p and the transition rates into the

absorbing state (which lead to the service completion) are
given by the entries of the column vector S(r)

p,0 = −S
(r)
p e.

The mean service time is calculated as b
(r)
p,1 =

β(r)
p (−S

(r)
p )−1e. The squared coefficient of variation

is given by c
(r)
p,var = b

(r)
p,2/(b(r)

p,1)
2 − 1, where b

(r)
p,2 =

2β(r)
p (−S

(r)
p )−2e.

The service time of a non-priority customer by each
server under the fixed state of the random environment
r has a PH distribution with M2 + 1 states and an
irreducible representation (β(r)

n , S
(r)
n ) as well as the

underlying Markov process η
(2)
t , t ≥ 0. The mean service

time is calculated as b
(r)
n,1 = β(r)

n (−S
(r)
n )−1e.

We assume that during the epochs of the transitions
of the process rt, t ≥ 0, the states of the processes
η
(1)
t , η

(2)
t , t ≥ 0, do not change, and only the intensities

of further transitions of these processes do.

3. Process of system states

In order to facilitate the investigation of the system,
instead of a separate discussion of two phase type
distributions of the service time of priority and
non-priority customers, we propose to consider one phase
type distribution of a generalized service time. We call
this distribution a generalized phase type distribution with
an irreducible representation (β(r)

p , β(r)
n , S(r)).

The generalized service time can be interpreted as a

time until the underlying Markov process ηt, t ≥ 0, with
a finite state space {1, . . . , M1, M1 + 1, . . . , M, M + 1},
where M = M1 + M2, reaches the single absorbing
state M + 1. The initial state of this process is selected
from among the states {1, . . . , M} depending on the type
of the customer which is chosen for the service. If a
priority customer is chosen for service under the fixed
state of the random environment r, the initial state of
this process is selected according to the probabilistic row
vector β

(r)
1 = (β(r)

p ,0M2), and if a non-priority customer
is chosen for service, the initial state of this process is
selected according to the probabilistic row vector β

(r)
2 =

(0M1 , β
(r)
n ). The transition rates of the process ηt within

the set {1, . . . , M} are defined by the sub-generator

S(r) =

(
S

(r)
p O

O S
(r)
n

)
, (9)

and the transition rates into the absorbing state (which lead
to the service completion) are given by the entries of the
column vector S

(r)
0 = −S(r)e.

Let it be the number of customers in the system, it ≥
0, rt be the state of the random environment, rt = 1, R,
kt be the number of priority customers in the buffer,

kt = 0, min{max{0, i − N}, K},
νt be the state of the directing process of the MMAP ,
νt = 0, W , and η

(m)
t be the number of servers at phase m

of service,

m = 1, M, η
(m)
t = 0, min{it, N},

M∑
m=1

η
(m)
t = min{it, N},

during the epoch t, t ≥ 0. Then the behavior of the
system under consideration can be described in terms of
the regular irreducible continuous-time Markov chain

ξt = {it, rt, kt, νt, η
(1)
t , . . . , η

(M)
t }, t ≥ 0. (10)

For further use throughout this paper, we introduce
the following notation:

• I is an identity matrix; ⊗ indicates the symbol of the
Kronecker product (see, e.g., Graham, 1981).

• Ti =
(
i+M−1
M−1

)
, i = 0, N ;

• D̃
(i)
0 = diag{D(r)

0 , r = 1, R} ⊗ ITi , i = 0, N ;
here diag{D(r)

0 , r = 1, R} means a diagonal matrix

having the diagonal blocks D
(r)
0 , r = 1, R;

• D̄
(k)
0 = diag{Ik+1 ⊗ D

(r)
0 , r = 1, R} ⊗ ITN , k =

1, K;
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• D̃
(k)
1 = diag{Q̃(r)

k ⊗ D
(r)
1 , r = 1, R} ⊗ ITN , k =

0, K;

• Q̃
(r)
k = diag{q(r)

0 , q
(r)
1 , . . . , q

(r)
k }, k = 0, K;

• Ai = diag{IW̄ ⊗Ai(N, S(r)), r = 1, R}, i = 0, N ;

• Āk = diag{I(k+1)W̄ ⊗ AN (N, S(r)), r =
1, R}, k = 1, K;

• Δi = −diag{IW̄ ⊗ diag{Ai(N, S(r))e +
LN−i(N, S̃(r))e}, r = 1, R}, i = 1, N, Δ0 =
OW̄R.

• Δ̄k = −diag{I(k+1)W̄ ⊗ diag{AN (N, S(r))e +
L0(N, S̃(r))e}, r = 1, R}, k = 1, K,

• S̃(r) =
(

0 0
S

(r)
0 S(r)

)
, r = 1, R;

• Jk = diag{α(r)Ck, r = 1, R} ⊗ IW̄TN
, k = 1, K;

• Ck = diag{0, 1, . . . , k}, k = 1, K;

• LN−i = diag{IW̄ ⊗LN−i(N, S̃(r)), r = 1, R}, i =
1, N ;

• C̄k = diag{E−
k ⊗ IW̄ ⊗ L0(N, S̃(r))PN−1(β

(r)
1 ) +

Ēk⊗IW̄ ⊗L0(N, S̃(r))PN−1(β
(r)
2 ), r = 1, R}, k =

1, K;

• E−
k , k = 1, K, is the matrix of size (k + 1) × k

with all zero entries except the entries (E−
k )l,l−1, l =

1, k, which are equal to 1;

• Ēk, k = 1, K, is the matrix of size (k + 1)× k with
all zero entries except the entry (Ēk)0,0 = 1;

• J̄k = diag{α(r)CkE−
k , r = 1, R} ⊗ IW̄TN

, k =
1, K;

• C̃ = diag{I− ⊗ IW̄ ⊗ L0(N, S̃(r))PN−1(β
(r)
1 ) +

Ī ⊗ IW̄ ⊗ L0(N, S̃(r))PN−1(β
(r)
2 ), r = 1, R};

• I− is the square matrix of size K + 1 with all zero
entries except the entries (I−)l,l−1, l = 1, K, which
are equal to 1;

• Ī is the square matrix of size K + 1 with all zero
entries except the entry (Ī)0,0 = 1;

• J̃ = diag{α(r)CKI−, r = 1, R} ⊗ IW̄TN
, k =

1, K;

• Bi = diag{D(r)
1 ⊗Pi(β

(r)
1 )+D

(r)
2 ⊗Pi(β

(r)
2 ), r =

1, R}, i = 0, N − 1.

• D̄
(k)
1 = diag{(I − Q̃

(r)
k )E+

k ⊗ D
(r)
1 , r = 1, R} ⊗

ITN , k = 0, K − 1;

• E+
k , k = 0, K − 1, is the matrix of size k × (k + 1)

with nonzero entries (E+
k )l,l+1, l = 0, k, which are

equal to 1;

• D̄
(k)
2 = diag{Ẽk ⊗ D

(r)
2 , r = 1, R} ⊗ ITN , k =

0, K − 1;

• Ẽk, k = 1, K − 1, is the matrix of size k × (k + 1)
with all zero entries except the entries (Ẽk)l,l, l =
0, k, which are equal to 1;

• D̂1 = diag{(I − Q̃
(r)
K )I+ ⊗D

(r)
1 , r = 1, R}⊗ ITN ;

• I+ is the square matrix of size K + 1 with all zero
entries except the entries (I+)l,l+1, l = 0, K − 1,
which are equal to 1;

• D̂2 = diag{IK+1 ⊗ D
(r)
2 , r = 1, R} ⊗ ITN .

A detailed description of the matrices Pi(β
(r)
l ), i =

0, N − 1, l = 1, 2, Ai(N, S(r)), i = 0, N, and
LN−i(N, S̃(r)), i = 0, N, and the algorithms for their
calculation are given by Kim et al. (2013b).

Let us enumerate the set of the states of this Markov
chain having the fixed value i of the first component it
in the direct lexicographic order of components (r, k, ν)
and the reverse lexicographic order of components
(η(1)

t , . . . , η
(M)
t ), and refer to this set as a level i of the

Markov chain.

Let Q be the generator of the Markov chain ξt, t ≥ 0,
consisting of blocks Qi,j , which define the transition rates
of the Markov chain ξt, t ≥ 0, from level i to level j,
i, j ≥ 0.

Theorem 1. The infinitesimal generator Q of the Markov
chain ξt, t ≥ 0, has a block-tridiagonal structure.

The non-zero blocks Qi,j , i, j ≥ 0, have the follow-
ing form:

Qi,i = H ⊗ IW̄Ti
+ D̃

(i)
0 + Ai + Δi,

i = 0, N − 1, (11)

QN,N = H ⊗ IW̄TN
+ D̃

(N)
0 + AN + ΔN + D̃

(0)
1 ,

(12)

Qi,i = H ⊗ I(i−N+1)W̄TN
+ D̄

(i−N)
0 + Āi−N

+ Δ̄i−N + D̃
(i−N)
1 − Ji−N ,

i = N + 1, N + K − 1, (13)
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Qi,i = Q0

= H ⊗ I(K+1)W̄TN
+ D̄

(K)
0 + ĀK + Δ̄K

+ D̃
(K)
1 − JK , i ≥ N + K, (14)

Qi,i−1 = LN−i, i = 1, N, (15)

Qi,i−1 = C̄i−N + J̄i−N , i = N + 1, N + K, (16)

Qi,i−1 = Q− = C̃ + J̃ , i > N + K, (17)

Qi,i+1 = Bi, i = 0, N − 1, (18)

Qi,i+1 = D̄
(i−N)
1 + D̄

(i−N)
2 , i = N, N + K − 1,

(19)

Qi,i+1 = Q+ = D̂1 + D̂2, i ≥ N + K. (20)

The proof of Theorem 1 proceeds using the analysis
of all transitions of the Markov chain ξt, t ≥ 0, during
an interval of an infinitesimal length and rewriting the
intensities of these transitions in block matrix form.

4. Ergodicity condition: Calculation of
stationary probabilities

It is obvious that the Markov chain ξt, t ≥ 0, belongs to
the class of quasi-birth-and-death processes with several
boundary levels (cf. Neuts, 1981). It follows from Neuts
(1981) that the ergodicity criterion can be expressed in
terms of the matrices Q0, Q

+, Q− as follows.
Let y be the left stochastic eigenvector of the matrix

Q0 + Q+ + Q− + I. It satisfies the equations

y(Q0 + Q+ + Q−) = 0, ye = 1. (21)

The Markov chain ξt, t ≥ 0, is ergodic if and only if the
following inequality holds good:

yQ+e < yQ−e. (22)

In what follows, we suggest that this condition is fulfilled.
Then the following limits (stationary probabilities) exist:

π(i, r, k, ν, η(1), . . . , η(M))
= lim

t→∞P{it = i, rt = r, kt = k,

νt = ν, η
(m)
t = η(m), m = 1, M},

(23)

i ≥ 0, r = 1, R, k = 0, min{max{0, i − N}, K},
ν = 0, W, η(m) = 0, min{i, N},

M∑
m=1

η(m) = min{i, N}.

We organize the stationary probabilities of the
Markov chain into the row vectors π(i, r, k) and into
the vectors πi, i ≥ 0, according to the introduced
enumeration of the states.

It is well known that the vectors πi, i ≥ 0, are
defined as a unique solution to the system

(π0, π1, π2, . . . )Q = 0, (24)

(π0, π1, π2, . . . )e = 1. (25)

This system is infinite and its solution is much more
difficult in comparison to solving similar finite systems,
see, e.g., the system by Olwal et al. (2012).

A numerically stable algorithm for the computation
of all these vectors, and in particular vectors πi, i =
0, N + K, is presented by Klimenok and Dudin (2006).
The vectors πi, i ≥ N + K, can be also computed by
Neuts’ formula,

πi = πN+KRi−N−K , i ≥ N + K, (26)

where the matrix R is the minimal non-negative solution
to the matrix equation

Q+ + RQ0 + R2Q− = O. (27)

5. Performance measures

As soon as the vectors πi, i ≥ 0, have been calculated,
we are able to find various performance measures of the
queueing system under consideration.

The stationary distribution of the number of
customers in the system is

lim
t→∞P{it = i} = πie, i ≥ 0. (28)

The average number of customers in the system is

L̃ =
∞∑

i=1

iπie. (29)

The average number of customers in the buffer is

Nbuffer =
∞∑

i=N+1

(i − N)πie. (30)

The average number of priority customers in the buffer is

Nbuffer
p =

∞∑
i=N+1

R∑
r=1

min{i−N,K}∑
k=1

kπ(i, r, k)e. (31)

The average number of non-priority customers in the
buffer is

Nbuffer
n =

∞∑
i=N+1

R∑
r=1

min{i−N,K}∑
k=1

(i − N − k)π(i, r, k)e

= Nbuffer − Nbuffer
p . (32)
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The average number of busy servers is

N server =
∞∑

i=1

min{i, N}πie. (33)

The loss probability of an arbitrary priority customer
at the entrance to the system due to the presence of K
priority customers in the buffer is

P ent−loss = λ−1
p

∞∑
i=N+1

R∑
r=1

π(i, r, K)(D(r)
1 ⊗ ITN )e,

(34)
where the average arrival rate λp of priority customers is
calculated as follows:

λp = θdiag{D(r)
1 , r = 1, R}e, (35)

and the vector θ is the unique solution to the following
system:

θ(H ⊗ IW̄ + diag{D(r)
0 +D

(r)
1 + D

(r)
2 , r = 1, R}) = 0,

(36)
θe = 1. (37)

The average arrival rate λn of non-priority customers
is calculated as

λn = θdiag{D(r)
2 , r = 1, R}e. (38)

The probability P esc−loss that an arbitrary priority
customer arrives when all servers are busy, the buffer is
not full, and the customer does not join the buffer and
leaves the system is given as

P esc−loss

= λ−1
p

∞∑
i=N

R∑
r=1

min{i−N,K−1}∑
k=0

q
(r)
k π(i, r, k)

× (D(r)
1 ⊗ ITN )e.

(39)

The intensity of the flow of customers, which obtain
service in the system, is

λout =
N∑

i=1

πiLN−ie

+
∞∑

i=N+1

πidiag{I(min{i−N,K}+1) ⊗ IW̄

⊗ L0(N, S̃(r)), r = 1, R}e.

(40)

The intensity of the output flow of priority customers
is

λout
p =

N∑
i=1

πidiag{IW̄ ⊗ LN−i(N, S̃(r)
p ), r = 1, R}e

+
∞∑

i=N+1

πidiag{I(min{i−N,K}+1) ⊗ IW̄

⊗ L0(N, S̃(r)
p ), r = 1, R}e,

(41)

where

S̃(r)
p =

(
0 0

((S(r)
p,0)

T ,0M2)T S(r)

)
.

The loss probability of an arbitrary priority customer
is

P loss = 1 − λout
p

λp
. (42)

The intensity of the output flow of non-priority
customers is

λout
n =

N∑
i=1

πidiag{IW̄ ⊗ LN−i(N, S̃(r)
n ), r = 1, R}e

+
∞∑

i=N+1

πidiag{I(min{i−N,K}+1) ⊗ IW̄

⊗ L0(N, S̃(r)
n ), r = 1, R}e

(43)

where

S̃(r)
n =

(
0 0

(0M1 , (S
(r)
n,0)

T )T S(r)

)
,

S(r)
n,0 = −S(r)

n e.

Because the non-priority customers are never lost in
the system, it is evident that

λout
n = λn. (44)

This relation can be used for the control of the accuracy
of computation of the stationary probabilities.

The probability P imp−loss that an arbitrary priority
customer after arrival will go to the buffer and leave it due
to impatience is computed by

P imp−loss = P loss − P ent−loss − P esc−loss. (45)

Let us derive an alternative formula for calculation
of this probability. To this end, let us introduce the
probabilities x(k, r, η(1), . . . , η(M)), k = 1, K, that
during the waiting time of a priority customer in the
buffer this customer does not leave the buffer due to
impatience conditioned on the fact that at its arrival epoch
there are k − 1 priority customers in the buffer, the
state of the random environment is r, r = 1, R, and the
states of the processes η

(1)
t , . . . , η

(M)
t are η(1), . . . , η(M),

correspondingly.

Lemma 1. The column vectors x(k) consisting
of the probabilities x(k, r, η(1), . . . , η(M)) enumerated
in the reverse lexicographic order of the components
η(1), . . . , η(M) and the direct lexicographic order of the
component r are given as follows:

x(1) = (J − H ⊗ ITN −A)−1LpeRKN , (46)
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x(k) = (kJ − H ⊗ ITN −A)−1

× (Lp + (k − 1)J )x(k − 1), k = 2, K,
(47)

where
J = diag{α(r), r = 1, R} ⊗ ITN , (48)

Lp = diag{L(r)
p , r = 1, R}, (49)

L(r)
p = L0(N, S̃(r))PN−1(β

(r)
1 ), (50)

A = diag{A(r), r = 1, R}, (51)

A(r) = AN (N, S(r)) − diag{AN (N, S(r))e

+ L0(N, S̃(r))e}, r = 1, R.
(52)

Corollary 1. The probability P imp−loss that an arbitrary
priority customer will go to the buffer and leave it due to
impatience is given by

P imp−loss

= λ−1
p

∞∑
i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )

× π(i, r, k)(D(r)
1 e ⊗ IKN )(eKN − x(k + 1, r))

(53)

where x(k, r) are calculated as the sub-vectors of the vec-
tors x(k), k = 1, K.

The existence of two different formulas (45) and
(53) for computation of the probability P imp−loss is also
useful for controlling the accuracy of computation of the
stationary probabilities.

6. Distribution of the sojourn time of an
arbitrary priority customer in the system

Let Vp(x) be the distribution function of the sojourn time
of an arbitrary priority customer in the system and

vp(s) =

∞∫
0

e−sxdVp(x), Re s > 0,

be its Laplace–Stieltjes Transform (LST).
Let us tag an arbitrary priority customer and keep

track of its staying in the system. We will derive
the expression for the LST vp(s) using the method of
collective marks (method of additional event, method
of catastrophes) for reference (see, e.g., Kesten and
Runnenburg, 1956; van Danzig, 1955).

To this end, we interpret the variable s as the intensity
of some virtual stationary Poisson flow of catastrophes.
Thus, vp(s) has the meaning of the probability that no
catastrophe arrives during the sojourn time of the tagged
customer.

To derive expression for the LST vp(s), we first need
to formulate and prove two auxiliary results.

Let yp(s, r, m) be the probability that a catastrophe
will not arrive during the rest of the tagged customer’s
service time in the system conditioned on the fact that at
the given moment the state of the random environment is
r, r = 1, R, and the state of service is m, m = 1, M1.

Let us form the vectors

yp(s, r) = (yp(s, r, 1), . . . , yp(s, r, M1))T , r = 1, R,
(54)

yp(s) = (yp(s, 1), . . . ,yp(s, R))T , (55)

and introduce the following notation:

• Ŝp = diag{S(r)
p , r = 1, R},

• Ŝp,0 = ((S(1)
p,0)

T , . . . , (S(R)
p,0 )T )T .

Lemma 2. The vector yp(s) is determined by the formula

yp(s) = (−Ŝp − H ⊗ IM1 + sI)−1Ŝp,0. (56)

Proof. Based on a probabilistic sense of the LST and
the law of total probability, it can be shown that the
probabilities yp(s, r, m) satisfy the following system of
linear algebraic equations:

yp(s, r, m)

= (−(S(r)
p )m,m − Hr,r + s)−1

×
(

(S(r)
p,0)m +

R∑
r′=1, r′ �=r

Hr,r′yp(s, r′, m)

+
M1∑

m′=1, m′ �=m

(S(r)
p )m,m′yp(s, r, m′)

)
,

r = 1, R, m = 1, M1.

(57)

Using the notation introduced above, we can rewrite
the system (57) in matrix form as

(Ŝp + H ⊗ IM1 − sI)yp(s) = −Ŝp,0, (58)

from which the statement of lemma follows immediately
because the matrix Ŝp + H ⊗ IM1 represents a
subgenerator, so the matrix (Ŝp +H⊗IM1 −sI)−1 exists.

�
Let wp(s, l, r, η(1), . . . , η(M)) be the probability that

a catastrophe will not arrive during the rest of the tagged
customer’s sojourn time in the system conditioned on the
fact that at the given moment the tagged customer has the
position l (l = 1, K) in the buffer, the state of the random
environment is r, r = 1, R, and the state of the service
processes are η(1), . . . , η(M).

Let us enumerate the probabilities
wp(s, l, r, η(1), . . . , η(M)) in the reverse lexicographic
order of the components η(1), . . . , η(M), and form from
these probabilities column vectors wp(s, l, r) and, then,
vectors wp(s, l) = (wT

p (s, l, 1), . . . ,wT
p (s, l, R))T .
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Lemma 3. The vectors wp(s, l), l = 1, K, can be deter-
mined by the following recursive formulas:

wp(s, 1) = (−A + J − H ⊗ ITN + sI)−1

× (Lp(IR ⊗ eTN )βpyp(s) + J e),
(59)

wp(s, l + 1) = (−A + (l + 1)J − H ⊗ ITN + sI)−1

× (J e + (Lp + lJ )wp(s, l)),

l = 1, K − 1,

(60)

where
βp = diag{β(r)

p , r = 1, R}. (61)

Proof. Based on a probabilistic sense of the LST and the
law of total probability, the probabilities wp(s, l, r), l =
1, K, r = 1, R, can be found from the system of linear
algebraic equations:

wp(s, l, r)

= ((s + lα(r) − Hr,r)ITN − A(r))−1

×
(

δl,1L0(N, S̃(r))eβ(r)
p yp(s, r)

+ (1 − δl,1)(L(r)
p + (l − 1)α(r)ITN )wp(s, l − 1, r)

+
R∑

r′=1, r′ �=r

Hr,r′wp(s, l, r′) + α(r)ITN

)
,

(62)

where δi,j = 0, if i = j, and δi,j = 1, otherwise. This
system can be rewritten in the following form:

(−sI− lJ +H⊗ ITN +A)wp(s, l)+ δl,1Lpeβpyp(s)

+ (1 − δl,1)(Lp + (l − 1)J )wp(s, l − 1)

+ J e = 0T , l = 1, K, (63)

from which the statement of the lemma follows
immediately because the matrix −lJ + H ⊗ ITN + A is
a subgenerator, and so the inverse matrices in the lemma
statement exist.

�
Theorem 2. The LST vp(s) of the distribution of an
arbitrary priority customer’s sojourn time in the system is
computed by

vp(s)

= P ent−loss + P esc−loss

+ λ−1
p

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
1 ⊗ ITi)eβ(r)

p yp(s, r)

+
∞∑

i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )π(i, r, k)

(D(r)
1 e⊗ ITN )wp(s, k + 1, r)

)
.

(64)

Proof. The proof follows from the law of total probability,
a probabilistic sense of the LSTs, as well as Lemmas 2
and 3. �

Corollary 2. The average sojourn time V soj
p of an arbi-

trary priority customer is

V soj
p

= −v′p(s)
∣∣
s=0

= −λ−1
p

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
1

⊗ ITi )eβ(r)
p

∂yp(s, r)
∂s

∣∣∣∣∣
s=0

+
∞∑

i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )π(i, r, k)

(D(r)
1 e⊗ ITN )

∂wp(s, k + 1, r)
∂s

∣∣∣∣∣
s=0

)
.

(65)

Here the vectors

∂wp(s, l, r)
∂s

∣∣∣
s=0

, l = 1, K, r = 1, R,

are calculated as the sub-vectors of the vectors

∂wp(s, 1)
∂s

∣∣∣∣∣
s=0

= (A− J + H ⊗ ITN )−1

× (e− (Lp(IR ⊗ eTN )βp

dyp(s)
ds

∣∣∣∣∣
s=0

)),

(66)

∂wp(s, l + 1)
∂s

∣∣∣∣∣
s=0

= (A− (l + 1)J + H ⊗ ITN )−1

× (e − (Lp + lJ )
∂wp(s, l)

∂s

∣∣∣
s=0

), l = 1, K − 1,

(67)

and the values ∂yp(s,r)
∂s

∣∣∣
s=0

are calculated as the sub-

vectors of the vector

dyp(s)
ds

∣∣∣
s=0

= (Ŝp + H ⊗ IM1)
−1e. (68)

Corollary 3. The average waiting time V wait
p of an arbi-

trary priority customer is determined from the formula

V wait
p

= −λ−1
p

∞∑
i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )

× π(i, r, k)(D(r)
1 e ⊗ ITN )

∂zp(s, k + 1, r)
∂s

∣∣∣∣∣
s=0

(69)
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where the values

∂zp(s, l, r)
∂s

∣∣∣∣∣
s=0

, l = 1, K, r = 1, R,

are calculated as the entries of the vector

∂zp(s, 1)
∂s

∣∣∣∣∣
s=0

= (A− J + H ⊗ ITN )−1e, (70)

∂zp(s, l + 1)
∂s

∣∣∣∣∣
s=0

= (A− (l + 1)J + H ⊗ ITN )−1

× (e− ((Lp + lJ )
∂zp(s, l)

∂s

∣∣∣
s=0

)), l = 1, K.

(71)

Theorem 3. The LST vserv
p (s) of the distribution of the

sojourn time of an arbitrary priority customer, which suc-
cessfully received service in the system, is computed by

vserv
p (s)

= (λout
p )−1

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
1 ⊗ ITi)eβ(r)

p yp(s, r)

+
∞∑

i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )π(i, r, k)

× (D(r)
1 e ⊗ ITN )fp(s, k + 1, r)

)
,

(72)

where the vectors fp(s, l, r), l = 1, K, r = 1, R, can be
calculated as sub-vectors of the following vectors:

fp(s, 1) = (−A + J − H ⊗ ITN + sI)−1 (73)

×Lp(IR ⊗ eTN )βpyp(s),

fp(s, l + 1)

= (−A + (l + 1)J − H ⊗ ITN + sI)−1

× (Lp + lJ )fp(s, l), l = 1, K − 1.

(74)

Corollary 4. The average sojourn time V soj−serv
p of an

arbitrary priority customer, which successfully received

service in the system, is calculated as

V soj−serv
p

= −(vserv
p (s))′|s=0

= −(λout
p )−1

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
1 ⊗ ITi)

eβ(r)
p

∂yp(s, r)
∂s

∣∣∣∣∣
s=0

+
∞∑

i=N

R∑
r=1

min{i−N,K−1}∑
k=0

(1 − q
(r)
k )

× π(i, r, k)(D(r)
1 e⊗ ITN )

∂fp(s, k + 1, r)
∂s

∣∣∣
s=0

)
.

(75)

Here the vectors

∂fp(s, l, r)
∂s

∣∣∣∣∣
s=0

, l = 1, K, r = 1, R,

are calculated as the sub-vectors of the vectors

∂fp(s, 1)
∂s

∣∣∣∣∣
s=0

= −(A− J + H ⊗ ITN )−2

× Lp(IR ⊗ eTN )βpyp(0)

+ (−A + J − H ⊗ ITN )−1

× Lp(IR ⊗ eTN )βp

dyp(s)
ds

∣∣∣∣∣
s=0

,

(76)

∂fp(s, l + 1)
∂s

∣∣∣∣∣
s=0

= −(A− J + H ⊗ ITN )−2

× (Lp + lJ )fp(0, l)

+ (−A + J − H ⊗ ITN )−1

(Lp + lJ )
∂fp(s, l)

∂s

∣∣∣∣∣
s=0

, l = 1, K − 1.

(77)

7. Distribution of the sojourn time of an
arbitrary non-priority customer in the
system

Let Vn(x) be the distribution function of the sojourn time
of an arbitrary non-priority customer in the system and

vn(s) =

∞∫
0

e−sxdVn(x), Re s > 0,
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be its LST. Let us tag an arbitrary non-priority customer
and keep track of its staying in the system. Consequently,
vn(s) has the meaning of the probability that no
catastrophe arrives during the sojourn time of the tagged
customer.

To derive the expression for the LST vn(s), we also
need to formulate and prove two auxiliary results. Let
yn(s, r, m) be the probability that a catastrophe will not
arrive during the rest of the tagged customer’s service time
in the system conditioned on the fact that during the given
moment the state of the random environment is r, r =
1, R, and the state of service is m, m = 1, M2.

Let us form the vectors

yn(s, r)

= (yn(s, r, 1), . . . , yn(s, r, M2))T , r = 1, R, (78)

yn(s) = (yn(s, 1), . . . ,yn(s, R))T , (79)

and introduce the following notation:

• Ŝn = diag{S(r)
n , r = 1, R};

• Ŝn,0 = ((S(1)
n,0)

T , . . . , (S(R)
n,0 )T )T .

Lemma 4. The vector yn(s) is computed by the formula

yn(s) = (−Ŝn − H ⊗ IM2 + sI)−1Ŝn,0. (80)

Proof. The proof is analogous to that of Lemma 2. �

Let wn(s, l, r, k, ν, η(1), . . . , η(M)) be the probability
that a catastrophe will not arrive during the rest of the
tagged customer sojourn time in the system conditioned
on the fact that, at the given moment, the number of
non-priority customers in the buffer that arrived to the
system earlier than the tagged customer is equal to l −
1, l ≥ 1, the state of the random environment is r, r =
1, R, the number of priority customers in the buffer is
equal to k, k = 0, K, and the states of the processes
νt, η

(1)
t , . . . , η

(M)
t , t ≥ 0, are ν, η(1), . . . , η(M), ν =

0, W, η(m) = 0, N,
∑M

m=1 η(m) = N, m = 1, M.
Let us enumerate the probabilities

wn(s, l, r, k, ν, η(1), . . . , η(M)) in the reverse
lexicographic order of the components η(1), . . . , η(M)

and the direct lexicographic order of the component ν,
and form from these probabilities the column vectors
wn(s, l, r, k).

Let us introduce also the column vectors

wn(s, l, r) = (wT
n (s, l, r, 0), . . . ,wT

n (s, l, r, K))T ,
(81)

l ≥ 1, r = 1, R,

wT
n (s, l) = (wT

n (s, l, 1), . . . ,wT
n (s, l, R))T , l ≥ 1.

(82)

Lemma 5. The vectors wn(s, l), l ≥ 1, can be calcu-
lated by the following recursive formulas:

wn(s, 1) = (sI − V)−1C̃n(IR ⊗ e(K+1)W̄TN
)βnyn(s),

(83)
wn(s, l + 1) = (sI − V)−1C̃nwn(s, l), l ≥ 1, (84)

where

V = H ⊗ I(K+1)W̄TN
− JK + D̄

(K)
0 + C̃p (85)

+J̃ + D̂1 + D̃
(K)
1 + D̂2 + ĀK + Δ̄K ,

C̃p = diag{I− ⊗ IW̄ ⊗ L0(N, S̃(r))

× PN−1(β
(r)
1 ), r = 1, R},

(86)

C̃n = diag{Ī ⊗ IW̄ ⊗ L0(N, S̃(r))

× PN−1(β
(r)
2 ), r = 1, R},

(87)

βn = diag{β(1)
n , . . . , β(R)

n }. (88)

Proof. Based on a probabilistic sense of the LST
and the law of total probability, it can be shown that
the probability vectors wn(s, l, r, k) satisfy the following
system of linear algebraic equations:

wn(s, l, r, k)

= ((s + lα(r) − Hr,r)IW̄TN
− D

(r)
0 ⊕ A(r))−1

×
(

δl,1δk,0IW̄ ⊗ L0(N, S̃(r))eβ(r)
n yn(s, r)

+ (1 − δl,1)δk,0IW̄

⊗ L0(N, S̃(r))PN−1(β
(r)
2 )wn(s, l − 1, r, 0)

+ (1 − δk,0)IW̄ ⊗ (L(r)
p + kα(r)ITN )

× wn(s, l, r, k − 1) +
R∑

r′=1, r′ �=r

Hr,r′wn(s, l, r′, k)

+ (1 − q
(r)
k )D(r)

1 ⊗ ITN wn(s, l, r, k + 1)

+ (q(r)
k D

(r)
1 + D

(r)
2 ) ⊗ ITN wn(s, l, r, k)

)
.

(89)

This system can be rewritten in matrix form as(
(−s + Hr,r)I(K+1)W̄TN

− α(r)CK ⊗ IW̄TN

+ IK+1 ⊗ (D(r)
0 ⊕ A(r)) + I− ⊗ IW̄ ⊗ L(r)

p

+ α(r)CKI− ⊗ IW̄TN
((I − Q̃

(r)
K )I+ ⊗ D

(r)
1

+ Q̃
(r)
K ⊗ D

(r)
1 + IK+1 ⊗ D

(r)
2 ) ⊗ ITN

)
wn(s, l, r)

+ δl,1Ī ⊗ IW̄ ⊗ L0(N, S̃(r))eβ(r)
n yn(s, r)

+ (1 − δl,1)Ī ⊗ IW̄ ⊗ L(r)
n wn(s, l − 1, r)

+
R∑

r′=1, r′ �=r

Hr,r′wn(s, l, r′) = 0T (90)
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and, then, in the form

(−sI + V)wn(s, l) + δl,1C̃neβnyn(s)

+ (1 − δl,1)C̃nwn(s, l − 1) = 0T . (91)

The statement of Lemma 5 immediately follows from
the formula (91). �

Theorem 4. The LST vn(s) of the distribution of an ar-
bitrary non-priority customer’s sojourn time in the system
is computed by the formula

vn(s)

= λ−1
n

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
2 ⊗ ITi)eβ(r)

n yn(s, r)

+
∞∑

i=N

R∑
r=1

min{i−N,K}∑
k=0

π(i, r, k)(D(r)
2 ⊗ ITN )

× wn(s, i − N − k + 1, r, k)
)

. (92)

Proof. The proof follows from the law of total probability,
a probabilistic sense of the LSTs as well as Lemmas 4
and 5. �

Corollary 5. The average sojourn time V soj
n of an arbi-

trary non-priority customer is calculated as

V soj
n = −v′n(s)

∣∣
s=0

= −λ−1
n

(N−1∑
i=0

R∑
r=1

π(i, r)(D(r)
2 ⊗ ITi)

× eβ(r)
n

∂yn(s, r)
∂s

∣∣∣∣∣
s=0

+
∞∑

i=N

R∑
r=1

min{i−N,K}∑
k=0

π(i, r, k)(D(r)
2 ⊗ ITN )

× ∂wn(s, i − N − k + 1, r, k)
∂s

∣∣∣∣∣
s=0

)
.

(93)

Here the vectors

∂wn(s, l, r)
∂s

∣∣∣∣∣
s=0

, l ≥ 1, r = 1, R,

are calculated as the sub-vectors of the vectors

∂wn(s, 1)
∂s

∣∣∣
s=0

= V−1(e− C̃n(IR ⊗ e(K+1)W̄TN
)βn

dyn(s)
ds

∣∣∣
s=0

),

∂wn(s, l + 1)
∂s

∣∣∣
s=0

= V−1(e− C̃n
∂wn(s, l)

∂s

∣∣∣
s=0

), l ≥ 1,

(94)

and the values
∂yn(s, r)

∂s

∣∣∣∣∣
s=0

are calculated as the sub-vectors of the vector

dyn(s)
ds

∣∣∣
s=0

= (Ŝn + H ⊗ IM2)
−1e. (95)

Corollary 6. The average waiting time V wait
n of an arbi-

trary non-priority customer is calculated by the formula

V wait
n

= −λ−1
n

∞∑
i=N

R∑
r=1

min{i−N,K}∑
k=0

π(i, r, k)(D(r)
2 ⊗ ITN )

× ∂zn(s, i − N − k + 1, r, k)
∂s

∣∣∣∣∣
s=0

,

(96)

where the values

∂zn(s, l, r, k)
∂s

∣∣∣∣∣
s=0

, l ≥ 1, r = 1, R, k = 0, K,

are calculated as the entries of the vector

∂zn(s, 1)
∂s

∣∣∣∣∣
s=0

= V−1e, (97)

∂zn(s, l + 1)
∂s

∣∣∣∣∣
s=0

= V−1
(
e− C̃n

∂zn(s, l)
∂s

∣∣∣∣∣
s=0

)
, l ≥ 1. (98)

8. Numerical example

To demonstrate the feasibility of the developed algorithms
and numerically show some features of the system under
consideration, we present the results of a numerical
experiment.

Let us assume that the random environment has two
states and the changes of the states are defined by the
infinitesimal generator

H =
( −0.01 0.01

0.1 −0.1

)
.

One may interpret that the first state of the random
environment corresponds to a normal mode of the system
operation while the second state—to a mode when the
system is overloaded by the customers (peak time).

Under the first state of the random environment
the service time distribution of priority customers is
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characterized by the vector β(1)
p = (0.2, 0.8) and the

matrix

S(1)
p =

( −0.4368 0.40768
0.42608 −1.71809

)
.

The average service time is b
(1)
p,1 = 1.934 and the

coefficient of variation of this time is c
(1)
p,var = 1.93.

The service time distribution of non-priority customers
is characterized by the vector β(1)

n = (0.2, 0.8) and the
matrix

S(1)
n =

( −1.2132 1.1235
2.5423 −3.173

)
.

The average service time is b
(1)
n,1 = 3.89 and the coefficient

of variation is c
(1)
n,var = 1.14. The intensity of impatience

is α(1) = 0.2, the probabilities of balking are q
(1)
k =

0.02(k + 1), k = 0, K − 1.
Under the second state of the random environment

the service time distribution of priority customers is
characterized by the vector β(2)

p = (0.7, 0.3) and the
matrix

S(2)
p =

( −0.6402 0.56812
0.22308 −1.34325

)
.

The average service time is b
(2)
p,1 = 2.18 and the coefficient

of variation is c
(2)
p,var = 0.91. The service time distribution

of non-priority customers is characterized by the vector
β(2)

n = (0.9, 0.1) and the matrix

S(2)
n =

( −2.9453 2.8435
0.2967 −0.6235

)
.

The average service time is b
(2)
n,1 = 3.47 and the coefficient

of variation is c
(2)
n,var = 0.9. The intensity of impatience

is α(2) = 0.3, the probabilities of balking are q
(2)
k =

0.03(k + 1), k = 0, K − 1.
We assume that under the first state of the random

environment the average arrival rate of customers λ(1) =
1 (the average arrival rate of priority customers λ

(1)
1 =

5/6, and the average arrival rate of non-priority customers

λ
(1)
2 = 1/6). Under the second state of the random

environment, the average arrival rate of customers is three
times higher: λ(2) = 3 (the average arrival rate of priority
customers λ

(2)
1 = 5/2, and the average arrival rate of

non-priority customers λ
(2)
2 = 1/2).

To demonstrate that the performance measures of
the system essentially depend not only on the average
arrival rates but also on correlation of inter-arrival times,
let us consider three different sets of MMAP flows having
the same average arrival rate but different coefficients of
correlation of inter-arrival times.

In the first set, coded as MMAP0, the arrival
flow under the first state of the random environment is

defined by the matrices D
(1)
0 = −1, D

(1)
1 = 5/6 and

D
(1)
2 = 1/6, and under the first state of the random

environment—defined by the matrices D
(2)
0 = −3,

D
(2)
1 = 5/2 and D

(2)
2 = 1/2. It this set, the arrival flows

have the coefficients of correlation c
(r)
cor = c

(r,l)
cor = 0 and

the coefficients of variation c
(r)
var = c

(r,l)
var = 1, r, l = 1, 2.

Here, the arrival processes of priority and non-priority
customers are defined as the stationary Poisson processes.

In the second set, coded as MMAP0.2, we assume
that the arrival flow under the first state of the random
environment is defined by the matrices

D
(1)
0 =

( −1.3518 0
0 −0.04388

)
,

D
(1)
1 =

(
1.119 0.00748

0.02037 0.01618

)
,

D
(1)
2 =

(
0.2238 0.00152
0.00407 0.00326

)
,

and under the second state of the random
environment—by the matrices

D
(2)
0 = 3D

(1)
0 , D

(2)
1 = 3D

(1)
1 , D

(2)
2 = 3D

(1)
2 .

It this set, the coefficients of correlation are c
(r)
cor = 0.2,

c
(r,1)
cor = 0.178, c

(r,2)
cor = 0.042 and the coefficients of

variation are c
(r)
var = 12.34, c

(r,1)
var = 11.19, c

(r,2)
var =

3.97, r = 1, 2.
In the third set, coded as MMAP0.4, we assume

that the arrival flow under the first state of the random
environment is defined by the matrices

D
(1)
0 =

( −3.41713 0.0201
0.001 −0.11082

)
,

D
(1)
1 =

(
2.81795 0.01288
0.01015 0.08133

)
,

D
(1)
2 =

(
0.56358 0.00262
0.00202 0.01632

)
,

and under the second state of the random
environment—by the matrices

D
(2)
0 = 3D

(1)
0 , D

(2)
1 = 3D

(1)
1 , D

(2)
2 = 3D

(1)
2 .

It has the coefficients of correlation c
(r)
cor = 0.4, c

(r,1)
cor =

0.39, c
(r,2)
cor = 0.23 and the coefficients of variation c

(r)
var =

12.33, c
(r,1)
var = 12.06, c

(r,2)
var = 7.9, r = 1, 2.

Let us fix the number of servers N = 5 and vary
the priority customer’s buffer capacity K in the interval
[0, 10].

Figures 2 and 3 illustrate the dependence of the
average number of non-priority customers Nbuffer

n and
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Fig. 2. Dependence of the average number of non-priority cus-
tomers in the buffer Nbuffer

n on the buffer capacity K.

Fig. 3. Dependence of the average number of priority customers
in the buffer Nbuffer

p on the buffer capacity K.

priority customers Nbuffer
p in the buffer on the buffer

capacity K for three sets of arrival processes.
The dependence of the loss probability P ent−loss

of an arbitrary priority customer at the entrance to the
system, the probability P imp−loss that an arbitrary priority
customer will go to the buffer and leave it due to
impatience and the loss probability P loss of an arbitrary
priority customer on the buffer capacity K is presented in
Figs. 4–6, respectively.

Figures 7 and 8 show the dependence of the average
sojourn and waiting times of an arbitrary priority customer
on the buffer capacity K .

Figures 9 and 10 illustrate the dependence of the
the average sojourn and waiting times of an arbitrary
non-priority customer on the buffer capacity K .

It is worth mentioning that the analysis of the
computational results shows that the following versions
of Little’s formula hold for the system under study:

V wait
p = (λp)−1Nbuffer

p , (99)

V wait
n = (λn)−1Nbuffer

n . (100)

The dependence of the average waiting time
V soj−serv

p of an arbitrary priority customer, which
successfully received service in the system, on the buffer
capacity K is presented in Fig. 11.

Fig. 4. Dependence of the probability P ent−loss on the buffer
capacity K.

Fig. 5. Dependence of the probability P imp−loss on the buffer
capacity K.

Three important conclusions can be drawn from the
analysis of the results of the numerical experiment.

• The capacity K of the buffer for priority customers
has essential impact on the performance measures
of the system. An increase in K leads to a
decrease in the loss probability of a priority customer
and probability of its loss at the entrance of the
system. However, it also implies an increase in the
probability of the loss of a priority customer due
to impatience and the average waiting and sojourn
times of a priority customer. Thus, our results can
be useful for solving various optimization problems,
e.g., for finding the value of K providing the minimal
value of a loss probability under the restriction on
the maximal admissible average waiting time or
providing the minimal value of the average waiting
time under the restriction on the admissible value of
the loss probability.

• An increase in K leads to worse performance
characteristics of service of non-priority customers.
Accordingly, possible formulations of optimization
problems may include also restrictions on the
average sojourn time of non-priority customers.
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Fig. 6. Dependence of the loss probability P loss on the buffer
capacity K.

Fig. 7. Dependence of the average sojourn time of an arbitrary
priority customer V soj

p on the buffer capacity K.

• Correlation in the arrival process has an essential
negative effect and ignorance of the correlation
(which occurs, e.g., if arrival flows under the fixed
values of the random environment are assumed to
be stationary Poisson) leads to significant errors
in the prediction of the values of the performance
characteristics of the system.

It should be noted from comparison of Figs. 8 and 11
that an increase in the average sojourn time of an arbitrary
serviced priority customer V soj−serv

p with an increase
in the parameter K is much more essential (especially
in the case of high correlation in arrival process) than
an increase in the average sojourn time of an arbitrary
priority customer V soj

p . This is explained by the fact that
in computation of the average sojourn time of an arbitrary
priority customer it is suggested that the sojourn time be
equal to zero in the case of the loss of a priority customer
while this probability decreases when K grows.

9. Conclusion

A multi-server queueing system with a heterogeneous
Markovian arrival process and phase-type distributions of
the service time operating under the influence of some

Fig. 8. Dependence of the average waiting time of an arbitrary
priority customer V wait

p on the buffer capacity K.

Fig. 9. Dependence of the average sojourn time of an arbitrary
non-priority customer V soj

n on the buffer capacity K.

external random environment was analyzed. One type of
customer has a time priority but restricted access to the
buffer while another type has a space priority (unlimited
access to the buffer). Customers having the time priority
are impatient and can balk the system when all servers
are busy at an arrival instant. The behavior of the system
was described by a multi-dimensional continuous time
Markov chain. The generator of this chain is written
in block matrix form. The chain belongs to the class
of quasi-birth-and-death processes with many boundary
states, so the problem of computation of its stationary
distribution is solved by standard techniques. Based
on ergodic theorems for Markov chains, expressions
for a bunch of performance measures of the system
were derived. The technique of a matrix analog of
the so-called method of catastrophes was successfully
applied for the derivation of algorithms for computation
of Laplace–Stieltjes transforms of the distributions of
waiting and sojourn time for customers having different
priorities. A numerical example illustrating the feasibility
of the developed algorithms and dependence of some
performance measures of the system on the capacity
of a buffer space available for time priority customers
was presented. The importance of taking into account
correlation in the arrival process (which is possible
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Fig. 10. Dependence of the average waiting time of an arbitrary
non-priority customer V wait

n on the buffer capacity K.

Fig. 11. Dependence of the average sojourn time of an arbitrary
serviced priority customer V soj−serv

p on the buffer ca-
pacity K.

due to the use of the marked Markov arrival process
instead of the stationary Poisson process) was numerically
illustrated. The validity of variants of Little’s formula for
the system under study were empirically justified.

The results can be useful for modeling a lot of
different real world systems, including call centers and
mobile networks with HSDPA protocols. They can be
applied for solving different optimization problems, e.g.,
selection of a required number of servers, sharing a buffer
space, dynamical adjusting of the required service rate to
the randomly changing arrival rate, etc.
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