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The aim of works described in this article is to elaborate and experimentally evaluate a consistent method of Language
Model (LM) construction for the sake of Polish speech recognition. In the proposed method we tried to take into account
the features and specific problems experienced in practical applications of speech recognition in the Polish language, reach
inflection, a loose word order and the tendency for short word deletion. The LM is created in five stages. Each successive
stage takes the model prepared at the previous stage and modifies or extends it so as to improve its properties. At the first
stage, typical methods of LM smoothing are used to create the initial model. Four most frequently used methods of LM
construction are here. At the second stage the model is extended in order to take into account words indirectly co-occurring
in the corpus. At the next stage, LM modifications are aimed at reduction of short word deletion errors, which occur
frequently in Polish speech recognition. The fourth stage extends the model by insertion of words that were not observed
in the corpus. Finally the model is modified so as to assure highly accurate recognition of very important utterances. The
performance of the methods applied is tested in four language domains.
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1. Introduction

Automatic Speech Recognition (ASR) over the past twenty
years has been the challenge for researchers all over
the world. Although various ASR paradigms have been
proposed and investigated, the most popular approach to
ASR is the one where the Hidden Markov Model (HMM)
of speech is created using the Language Model (LM)
and the Acoustic Model (AM). The LM represents the
stochastic properties of the language. In the course of
ASR recognition, it is used to estimate the probabilities
of word sequences that can constitute fragments of
utterances being recognized. The LM is typically created
using a representative set of texts from the domain of
ASR application. The set of texts used to construct LM
is usually called the corpus. Different LM construction
methods have been investigated in order to achieve
the accepted level of user satisfaction with a spoken
man–machine dialog, which can be measured empirically
as the Word Error Rate (WER). A WER less than 5–10%

must be reached in order for ASR-based software to
be widely accepted (Devine et al., 2007). A typical
approach lies in applying a stochastic n-gram LM, but
because of the insufficient amount of the available data
different discounting techniques composed with back-
off methods are proposed to obtain a smoothed LM,
which assigns non-zero probabilities also to n-grams not
occurring in the text corpus. In this typical approach
(Goodman, 2001; Jurafsky and Matrin, 2009; Chen and
Goodman, 1999; Gale and Sampson, 1995; Katz, 1987)
the probability mass obtained by discounting n-gram
probabilities is distributed in different ways among all
non-observed n-grams taking into account (n − 1)-gram
probabilities.

Such static strategies strongly depend on the size
of the vocabulary used, and in order to improve the
quality of the ASR system, different adaptive (dynamic)
technique are used. A class-based LM was applied by
Brown et al. (1992), Ward and Issar (1996) or Niesler
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et al. (1998). The method described by Chen and
Chan (2003) or Sarukkai and Ballard (1996) introduces a
trigger pair model to investigate a long distance dependent
relationship. The method presented by Mikolov et al.
(2011) is based on a combination (in the form of linear
interpolation) of advanced language modeling techniques
such as the class-based model, the cache model, the
maximum entropy model, structured LM and others. The
results of Iyer and Ostendorf (1999) suggest modelling
long distance dependence using topic mixtures model.

While the accuracy of advanced commercial and
experimental ASR systems for English reaches 97–98%,
the accuracy achieved typically for other languages is
significantly lower. The main reason of difficulties in
achieving a low WER is rich inflection of the language
and loose word order permitted by the language syntax.
Slavonic languages are particularly difficult for ASR due
to these reasons (Ziółko et al., 2010; Mauces et al.,
2003). Because of rich inflection, the language dictionary
contains much more word forms than in the case of
inflectionally simple languages. Experiments described
by Whittaker and Woodland (2003) show that in order to
obtain a similar level of corpus coverage, the dictionary
for Russian has to contain almost 7 times more words
than is needed for English. Firstly, a big number of words
in the dictionary leads to computational problems in the
recognition process. Additionally, phonetic differences of
word form pronunciations are often insignificant, which
leads to problems in distinguishing word forms based
on acoustic evidence. Therefore, for languages having
specific properties different methods taking into account
their individual features are considered.

For the Lithuanian language, Vaiciunas et al.
(2004) proposed word clustering first and then linear
interpolation of a classical model with a class-based
model. Another source of difficulties in ASR for
languages like Czech or Slovak or Polish is their loose
word order. In these languages the word order is not
so strictly imposed by the language syntax as, e.g., in
English or German. If a sequence of words constitutes
a syntactically and semantically correct utterance, then
it is very likely that the permutation of these words
also constitutes a syntactically correct phrase. As a
result, the language model perplexity of Polish is much
higher than that of English (Ziółko et al., 2010; Jurafsky
and Matrin, 2009). A typical LM based on counting
n-grams appearing in the language corpus and estimating
the probability of the next n-th word conditioned on the
preceding sequence of n − 1 words is less effective in
supporting ASR. This is because the actual conditional
probability p(wi|wi−n+1, . . . , wi−1) is more uniformly
distributed among words wi. For the Czech and Slovak
languages, Brychcin and Konopik (2011) proposed to use
morphological knowledge in a class-based n-gram LM
with linear interpolation.

In loose word order languages, instead of merely
relying only on the sequences of words actually observed
on adjacent positions in the training corpus, it seems
reasonable to increase the n-gram probabilities of all
word pairs that co-occur in the utterances in the language
corpus. In this way, a longer context of words can be
taken into account in the language model. Incorporation
of a distant context into the LM has been considered in a
number of publications. One of the possibilities is to take
higher order n-gram models.

Experiments described by Goodman (2001) show
that increasing the n-gram order up to 6 improves the
perplexity. This however, requires a very huge language
corpus in order for higher order n-gram probabilities
to be estimated reliably. Another approach utilizes
the observation that words once observed in the text
are likely to be repeated again. This leads to the
above-mentioned concept of a dynamic language model
where the probabilities of words just observed in the text
are temporarily boosted (Jelinek et al., 2001).

ASR accuracy can be also improved by applying
a multistage approach, where the earlier stage provides
a set of alternative word sequences and the subsequent
stages re-evaluate the candidate sequence scoring by
applying longer distance word co-occurrence properties.
This concept was applied in the Julius ASR system
(Lee et al., 2001) and proved to be effective also for
Polish. The method presented by Piasecki and Broda
(2007) exploits the concept of semantic similarities of
words. It was originally proposed for handwriting
recognition but can be easily adapted to ASR needs.
The likelihood is boosted for sequences containing word
combinations that are semantically similar each to other.
The semantic similarity can be defined in various ways,
but one of possibilities is to base it on word co-occurrence
frequency in the language corpus. Another idea described
by Kolorenc et al. (2006) explores the influence of
multi-words (compound words) in the continuous speech
recognition system of the Czech language. Multi-words
are made of short words (at most three characters long)
and frequently the following or the preceding word and
are added to the vocabulary. Quite a different approach
to ASR in Polish is presented in the work of Ziółko
et al. (2010), where instead of the HMM the method
using the Levenshtein distance is proposed. Another
paper concerning ASR for the Polish language (Ziółko
et al., 2011) considers specific acoustic features of the
language.

The adaptive approach presented in our previous
paper (Sas and Żołnierek, 2011) lies in modification of
typical n-gram LM. The modifications are arranged so as
to boost the probabilities of n-grams consisting of words
that co-occur in utterances but are not direct neighbors.
The modification can be applied to any backoff LM that is
based on discounting. In a typical approach (Goodman,
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2001) the probability mass obtained by discounting
estimated n-gram probabilities is distributed among all
not observed n-grams proportionally to (n − 1)-gram
probabilities. In our approach proposed previously
(Sas and Żołnierek, 2011), more probability is allocated
to co-occurring n-grams at the expense of lowering
the probability allocated to n-grams whose components
did not occur in the same utterance in the language
corpus. The factor by which the co-occurring n-gram
probabilities are boosted is set so as to minimize
the cross-perplexity computed using the subset of the
language corpus excluded from the set used for LM
construction. Application of an LM prepared in this way
in ASR reduced the overall WER of speech recognition
by about 4%.

Although many concepts aimed at constructing
effective LMs for ASR have been proposed and
investigated for other languages, still relatively little
work has been carried out towards the verification of
these concepts in the case of Polish ASR. The method’s
properties confirmed in the environment of one language
may not be confirmed for other languages. Therefore,
the ultimate aim of the works described in this paper
is to verify the effectiveness of methods related to LM
construction for the sake of ASR in Polish and to combine
selected methods into a consistent procedure of LM
construction. In the proposed procedure we try to take into
account specific features and problems related to Polish
ASR. The problems considered here are as follows:

• lack of large corpora published as full texts (in
extenso)—as a result, language models must be
built from limited corpora (this particularly concerns
narrow domain ASR applications, e.g., in medical
information systems);

• loose word order in sentences;
• frequent appearance of ASR errors typical for Polish

phonetics like the tendency for short word deletion;
• practical issues occurring in ASR applications: the

necessity to boost recognition accuracy of very
important utterances (that may not be represented in
the corpus used to build the LM) and insertion of
out-of-corpus words into the language model.

The method of LM construction proposed and
experimentally evaluated in this article creates the
LM by applying a sequence of stages. Each stage
modifies or extends the LM provided to its input by
applying the operation aimed at the specific LM feature.
For this reason we called the proposed method the
pipelined LM construction. At each stage, various
alternative methods are experimentally evaluated. The
one that gives the LM which exhibits the highest ASR
accuracy in tests is recommended.

The first stage consists in building an initial
smoothed stochastic LM. At this stage we compare

various smoothing methods, in order to test whether
there are significant differences in ASR accuracy between
LMs created using various smoothing methods. The
best smoothing method is used to build the initial LM.
It is then passed to the next stage, where the model is
improved by taking into account indirectly co-occurring
words. The proposed method boosts the probability of
bigrams corresponding to indirectly co-occurring words.
The next stage modifies the LM so as to avoid short
word deletion errors as much as possible. The fourth
stage introduces out-of-corpus words to the LM. These
are words that do not appear in the corpus utterances
but are necessary in a particular ASR application. At
the last stage the LM is modified so as to increase the
accuracy of very important phrase recognition. These
phrases are utterances (or fragments of utterances) which
are of crucial importance for the speaker. They may be
under-represented in the corpus, thus their recognition
accuracy may be not sufficient.

In pipelined language model construction we try to
achieve WER reduction by applying specific methods of
model extension or modification. At all stages except for
the first one, our own methods were used. At the second
stage of the pipeline we used our own method of distant
co-occurring bigram boosting, outlined earlier (Sas and
Żołnierek, 2011). Here its performance was evaluated
in various domain-specific areas of ASR application
and compared to that of the LM created using typical
smoothing methods. At the third stage, the concept of
multi-words was utilized. It is not quite new and was used
by other authors. In the approach presented by Chen and
Chan (2003) multi-words are used as specific collocation
contexts for other words that are frequently associated
with them. Kolorenc et al. (2006) apply the multi-word
concept for the same purpose as we consider here. They,
however, create multi-words by only analyzing short word
occurrence in specific bigrams in the corpus.

We used here a slightly different, novel approach.
The novelty consists in taking into account acoustic
similarities as the criterion of multi-word application is
the particular context. The idea of combing the LM with
the flat out-of-corpus word list used here at the fourth
stage of the pipeline can be found in the work of Brown
et al. (1992). In our work we applied the class-based
approach to Polish language modeling, using Part-Of-
Speech (POS) tagging. n-gram probabilities for classes
are estimated in a typical way from the corpus. The
method used at this stage is not quite novel because it
just combines techniques presented by other authors. Our
aim here was to find out if this known approach can
significantly improve the accuracy of out-of-corpus word
recognition. At the last stage our own method is applied,
which modifies the model so as to achieve high accuracy
of very important utterance recognition. The element of
novelty at this stage consists in using the HMM as the tool



652 J. Sas and A. Żołnierek

for artificial speech samples generation.
The organization of the paper is as follows. In

Section 2 the approach to ASR based on the LM is
shortly described. The next section presents selected
LM smoothing techniques which were used as candidates
to create the baseline LM at the first stage of the
pipeline. In Section 4, the method of co-occurring n-gram
probabilities boosting is presented in detail. Experimental
evaluation and comparison of LMs created using various
smoothing techniques in Polish speech recognition are
described in Section 5. The idea of application of
multi-words to short word deletion error avoidance is
presented in Section 6. Section 7 is devoted to the
method of combing the LM with the flat word list. In
Section 8, the method of boosting the probabilities of
very important phrases is described. For all new methods
presented in Sections 6–8, the results of their empirical
investigations are included in the corresponding sections.
The last section presents conclusions and further research
directions.

2. Automatic speech recognition with
acoustic and language models

A typical approach to the problem of automatic speech
recognition consists in building acoustic models and
language models combined into a compound hidden
Markov model. HMMs proved to be an efficient
technique in modeling sequential processes related to
various man-machine interactions as speech, handwriting
or gesture recognition (Kasprzak et al., 2012). Although
other approaches were tested in the ASR domain, the
HMM still remains the primary speech modeling and
recognition technique.

The HMM speech model can be considered a
three-level system. On the lowest level, simple Markov
models for individual phonemes specific to the language
are created and trained. A uniform HMM topology for
each phoneme is assumed. It consists of three observation
emitting states. The state transition probabilities as well
as the parameters of observations emission probability
density functions for all phoneme HMMs are estimated
using the Baum–Welch procedure. On the middle
level, the models of words are created by concatenating
models of subsequent phonemes appearing in the phonetic
transcription of the word. Because the phoneme HMMs
can be multiplied applied in various words, training of the
HMM for the language consisting of a set of words does
not require all words from the language to be presented
during training. Then for each admissible word from
the dictionary D = (w1, w2, . . . , wN ) we deal with the
word HMM which is built by concatenating HMMs for
subsequent phonemes.

Finally, on the highest level, the compound HMM
of the whole utterance is built by connecting word

HMMs in one language HMM. The probabilities of
transition from the terminal state of a word HMM to the
initial state of another word HMM are taken from the
domain-specific n-gram language model. Details of this
procedure are presented in the next section. In automatic
speech recognition we start with acquisition of the speech
acoustic signal from the sound device and segment
it into fragments being individual utterances separated
by silence. The isolated utterances are recognized
independently. Every utterance being recognized is
converted into a sequence of vectors of observations
(o1, o2, . . . , ot). Then, finally, the recognition with a
compound HMM consists in finding such a word sequence
W ∗ which maximizes its conditional probability given the
sequence of observations:

W ∗

= arg max
wi1 ,...,wik

∈D+
P (wi1 , . . . , wik

|o1, o2, . . . , ot)),

(1)

where D+ denotes the set of all nonempty sequences of
words from the dictionary D.

3. Backoff LM smoothing

We will be considering here the languages being sets
of sequences of words coming from the finite dictionary
D. A stochastic n-gram language model is the set of
data that makes it possible to estimate the probability of
appearance of the n-th word wi provided that the sequence
of preceding n − 1 words wi−n+1, wi−n+2, . . . , wi−1 is
known. In other words, the LM provides the method to
compute the estimation of

p(wi|wi−n+1, wi−n+2, . . . , wi−1). (2)

A sequence of n consecutive words is called the n-gram.
The conditional probabilities can be given explicitly in the
LM or they can be defined procedurally. The language
model is usually constructed from the language corpus
which is a sufficiently large set of sample phrases in the
language being modeled. The most obvious way to find
out the probability estimates is to count the occurrences of
n-grams in the model and to apply Maximum Likelihood
(ML) estimation:

pML(wi|wi−n+1, wi−n+2, . . . , wi−1)

=
c(wi−n+1, wi−n+2, . . . , wi−1, wi)

c(wi−n+1, wi−n+2, . . . , wi−1)
,

(3)

where c(w1, w2, . . . , wn) is the number of n-gram
occurrences w1, w2, . . . , wn in the corpus. Due to a
limited size of the corpus, nonzero ML estimates can be
obtained only for a very limited set of n-grams. For this
reason, in practice, low n-gram orders are used—in most
cases n does not exceed 3.
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In our experiments we use a bigram LM, which
corresponds to setting n = 2. Limiting the n-gram
order still does not solve the data sparseness problem
completely in the case of languages consisting of
thousands of words. It is still very likely that many
n-grams that may appear in typical language use are
missing in the corpus or the number of their occurrences
is not big enough to allow reliable ML estimation of
related probabilities. To prevent underestimation of
probabilities of missing n-grams, the concept of a back-
off is applied. Backing off consists in using lower order
n-gram probabilities when the number of occurrences of
an n-gram in the corpus is not sufficient. In such a case
the probability (2) is approximated using the lower order
n-gram probability p(wi|wi−n+2, . . . , wi−1).

In the bigram LM the probabilities p(wi|wi−1)
are approximated by prior wi word probabilities p(wi)
which in most cases can be reliably estimated with ML
estimators:

p(wi) =
c(wi)∑

w∈D c(w)
, (4)

where c(w) is the number of unigram w occurrences in
the corpus. While missing n-gram probabilities estimated
with the ML estimator are underestimated (nulled), the
probabilities of n-grams occurring in the corpus only
a few times are usually over-estimated. Therefore the
concept of the backoff is complemented with that of dis-
counting. Probability discounting consists in subtracting
some probability mass from the probabilities (2) estimated
with the ML based on the formula (3). As result,
for bigrams1 occurring in the corpus, the probability
pML(wi|wi−1) estimated using an ordinary ML estimator
is replaced by the discounted probability pd(wi|wi−1) ≤
pML(wi|wi−1).

In discounted backoff LMs, the probability mass
discounted from the ML estimates of probabilities
pML(wi|wi−1) for bigrams actually occurring in the
corpus is distributed among words that never occurred
as successors of wi−1. The discounted probability mass
β(w) for any word w can be computed as

β(w) = 1 −
∑

wk:c(w,wk)>0

pd(wk|w), (5)

where c(wi, wi−1) is the number of bigram (wi, wi−1)
occurrences in the corpus. The conditional probabilities
of words wi that never appeared as successors of w
are proportional to their prior probabilities computed
according to (4). The probabilities p(wi|w), however,
have to sum up to 1.0 for every word w over all words
from the dictionary D. Therefore the probabilities for
bigrams (w, wi) not observed in the corpus are finally

1In the further part of the paper we will restrict our discussion to
bigram language models.

computed as

p(wi|w) = α(w)p(wi), (6)

where

α(w) =
β(w)

∑
wk:c(w,wk)=0 p(wk)

=
β(w)

1 −
∑

wk:c(w,wk)>0 p(wk)
.

(7)

Various schemes of discounting were proposed and
tested in various LM applications (Goodman, 2001).
In our test, for the comparison purpose, the following
smoothing methods were chosen:

• Good–Turing (GT) estimate,
• Absolute Discounting (AD),
• Kneser–Ney (KN) smoothing,
• Modified Kneser–Ney (MKN) smoothing.

The details of the methods can be found in the work
of Goodman (2001), and their effectiveness in Polish ASR
will be investigated in Section 5. Let us briefly recall the
ideas of above mentioned methods, using the notation of
Goodman (2001).

The Good–Turing estimate states that for any
bigram that occurs r times we should pretend that it occurs
r∗ times:

r∗ = (r + 1)
nr+1

nr
, (8)

where nr is the number of bigrams that occur exactly r
times in the corpus. Consequently, we can calculate the
probability for a bi-gram δ with r counts,

pGT (δ) =
r∗

N
, (9)

where N =
∑∞

r=0 nrr
∗ .

In absolute discounting, the bigram probability
estimate pABS(wi|wi−1) is computed by subtracting a
fixed discount 0 ≤ d ≤ 1 from each nonzero count
of bigram occurrences, and by mixing the discounted
ML bigram estimate with the unigram estimate of the
successor word wi, i.e.,

pABS(wi|wi−1) =
max[c(wi−1, wi) − d, 0]

∑
w∈D c(wi−1, w)

+

+ (1 − λwi−1)pABS(wi).
(10)

To make this distribution sum up to 1, we should take

1 − λwi−1 =
d

∑
w∈D c(wi−1, w)

N1+(wi−1•), (11)

where the number of unique words that follow the
predecessor wi−1 is defined as
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N1+(wi−1•) =| {wi : c(wi−1, wi) > 0} | . (12)

The notation N1+ is meant to evoke the number of words
that have one or more counts, and • is meant to evoke a
free variable that is summed over.

Kneser–Ney smoothing is an extension of absolute
discounting where the lower-order distribution that one
combines with a higher-order distribution is built in
another manner. For a bigram model, we select a
smoothed distribution pKN that satisfies the following
constraint on unigram marginals for all wi:

∑

wi−1∈D
pKN (wi−1, wi) =

c(wi)∑
w∈D c(w)

. (13)

The Kneser–Ney model can be presented in the same
recursive way as (10), i.e.,

pKN (wi|wi−1) =
max[c(wi−1, wi) − d, 0]

∑
w∈D c(wi−1, w)

+ κ(wi−1)pKN(wi).
(14)

where

κ(wi−1) =
d

∑
w∈D c(wi−1, w)

N1+(wi−1•). (15)

The unigram probabilities can be calculated as follows:

pKN(wi) =
N1+(•wi)
N1+(••) , (16)

where

N1+(•wi) =| {wi−1 : c(wi−1, wi) > 0} | (17)

and
N1+(••) =

∑

wi∈D
(N1+(•wi)). (18)

In modified Kneser–Ney smoothing, the method
proposed by Goodman (2001), instead of using a single
discount d for all nonzero counts we use three different
parameters d1, d2 and d3+ that are applied to bigrams with
one, two, and three or more counts, respectively. Now the
formula (14) turns into

pMKN (wi|wi−1) =
c(wi−1, wi) − d(c(wi−1, wi))∑

w∈D c(wi−1, w)

+ γ(wi−1)pMKN (wi)
(19)

where

d(c) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if c = 0,
d1 if c = 1,
d2 if c = 2,
d3+ if c ≥ 3.

(20)

To make the distribution sum to 1, we take

γ(wi−1)

=
d1N1(wi−1•) + d2N2(wi−1•) + d3+N3+(wi−1•)∑

w∈D c(wi−1, w)
,

(21)

where N2(wi−1•) and N3+(wi−1•) are defined
analogously to N1(wi−1•) (12).

4. Probability boosting for indirectly
co-occurring n-grams

The idea presented by Sas and Żołnierek (2011) lies in
increasing the probability p(wk|w) for words w and wk

that occur in the corpus close each to other but do not
necessarily appear in adjacent positions. The idea behind
this concept is motivated by the fact that, in loose word
order languages like Polish, if two words co-occur in the
same utterance then it is likely that they will occur in
other utterances in adjacent positions. Thus, appearance
of the co-occurrence of words in the corpus in distant
positions can be an indication to increase the probability
of the corresponding bigram. We assume here that the
language corpus consists of clearly separated utterances.
The probability of a bigram will be boosted if its two
components co-occur in the same utterance.

Let us consider a single word w ∈ D. Let N (w)
denote the set of words that appear at least once in the
corpus directly after the word w, i.e., ∀wi ∈ N (w) :
c(w, wi) > 0. By F(w) we will denote the set of words
that co-occur in at least one utterance with the word w
but do not belong to N (w). X (w) denotes all remaining
words from the dictionary (X (w) = D \ N (w) \ F(w)).

In the ordinary LM the probabilities for bigrams
(w, wi) for wi ∈ F(w)∪X (w) are calculated according to
(6), where α(w) is uniformly calculated using the formula
(7). In order to boost the probability of bigrams consisting
of words from F(w), their probabilities will be increased
by the factor λ > 1.0, common for the whole model, i.e.,

∀wi ∈ F(w) : p(wi|w) = λα(w)p(wi). (22)

We assume that the total discounted probability mass
β(w) defined in Eqn. (5) remains unchanged. To achieve
this, the probabilities assigned to bigrams consisting of
words from X (w) must be lowered appropriately. Now
the probabilities (6) are multiplied by the factor λ̄(w) <
1.0, which must be individually calculated for each w, so
as the total probability mass β(w) is preserved:

λα(w)
∑

wk∈F(w)

p(wk) + λ̄(w)α(w)
∑

wk∈X (w)

p(wk)

= 1 −
∑

wk∈N (w)

pd(wk|w) = β(w),

(23)
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where pd(wk|w) is the discounted probability obtained
with any discounting method. Hence, λ̄(w) can be
calculated as

λ̄(w)

=

1 −
∑

wk∈N (w)

pd(wk|w) − λα(w)
∑

wk∈F(w)

p(wk)

α(w)
∑

wk∈X (w)

p(wk)
.

(24)

Finally, the probability p∗(wi|w) that the modified
language model assigns to a bigram (w, wi) can be
defined as

p∗(wi|w) =

⎧
⎨

⎩

pd(wi|w) if wi ∈ N (w),
λα(w)p(wi) if wi ∈ F(w),
λ̄(w)α(w)p(wi) if wi ∈ X (w).

(25)
The value of λ, common for the whole model, can

be computed so as to maximize the probability that the
model assigns to the separated fragment of the language
corpus. In order to do it, the corpus is divided into two
parts: the training part T and evaluation part E . The latter
is a set of word sequences s1, s2, . . . , sn. Assume that
each sequence starts with the specific start tag “<s>” and
ends with the end tag “</s>”:

sj = (< s >, w
(j)
1 , w

(j)
2 , . . . , w

(j)
l(sj)

, < /s >). (26)

The probability that the LM assigns to the utterance
sj can be computed as

P (sj ; LM(T , λ)) =
l(sj)+1∏

k=1

p∗(w(j)
k |w(j)

k−1; LM(T , λ)),

(27)
where w

(j)
0 = < s >, w

(j)
l(sj)+1 = < /s > and l(sj)

denotes the length of the utterance sj . The probability
that the language model LM(T , λ) assigns to the whole
evaluation set E is

P (E ; LM(T , λ)) =
∏

s∈E
P (s; LM(T , λ)). (28)

The value of λ is determined in an iterative procedure so
as to maximize the probability (28).

5. Experimental evaluation of LMs in
Polish speech recognition

In order to evaluate the performance of LMs created using
the methods described in the previous sections a series
of experiments was carried out. The LM performance is
assessed by (a) the perplexity computed on the sentence
set representative for a domain and (b) the word error
rate of a speech recognizer which uses the LM being

evaluated. The perplexity is the measure of LM quality.
It is based on the average probability that the tested LM
assigns to sentences in the test set computed “per word”
(Goodman, 2001). The lower the LM perplexity, the
better the language stochastic properties approximation by
the LM. However, from the practical point of view the
ultimate LM assessment should be rather determined by
evaluating the LM contribution to the accuracy increase
of the ASR process.

Four domains of the Polish language which differ in
complexity were used in the experiment2:

• CT: texts from the domain of medical diagnostic
image reporting, mainly related to CT and MRI
modalities; dictionary size—23 thousands of words,
corpus size—22 MB;

• TL: a collection of not copyrighted texts of the
Polish literature or foreign language books translated
to Polish; dictionary size—81 thousands of words,
corpus size—8 MB;

• GM: general medicine texts consisting of elements of
medical documentation, medical examination reports
and medical articles collected from Wikipedia;
dictionary size—119 thousands of words, corpus
size—94 MB;

• PL: general purpose Polish language texts consisting
of the Polish literature (8%), medical documentation
samples (11%), samples of newspaper articles
(1%), reports from the Polish Parliament sessions
(35%), Senate of Republic of Poland proceedings
(35%), European Parliament Proceedings from
Polish-English parallel corpus (Koehn, 2005) (10%);
dictionary size—576 thousands of words, corpus
size—370 MB.

The experiment consists of two stages. At the first
stage, the performance of typical language models built
with the smoothing techniques described in Section 3
are compared by their perplexities and by the WER
of a speech recognizer based on the model being
compared. Then the best smoothing method, taking into
account the WER, is selected for further experiments.
At the second stage, the chosen method is combined
with the backoff technique proposed here. The speech
recognition accuracy obtained using the modified model is
compared with the corresponding accuracy achieved with
the conventional LM.

The acoustic model for ASR was created in a
speaker-dependent manner as a triphone model using
speech samples recorded by a single male speaker. The

2The corpora used to build the LMs employed in the ex-
periments described in this article as well as the recorded
utterances used in the acoustic models are available at
http://sun10.ci.pwr.wroc.pl/˜sas/ASR.

http://sun10.ci.pwr.wroc.pl/~sas/ASR
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total duration of training utterances is about 5 hours. For
ASR accuracy testing the individual set of utterances was
used for each domain LM. The duration of the utterances
in the test set was in the range of 50–70 minutes. The HTK
toolkit (Young and Everman, 2009) was applied to build
the acoustic model. The open source recognition engine
Julius (Lee et al., 2001) was used as the speech recognizer.

The results of the first stage of the experiment
concerning perplexity comparison and ASR accuracy
evaluation are shown in Tables 1 and 2, respectively.
Just for the sake of comparison, results obtained with
the unigram (U) LM are also shown. No smoothing is
applied in the case of the unigram LM. The symbols
AD, GT, KN, MKN denote methods of smoothing as
described in Section 3, while CT, TL, GM, PL denote
the language corpora applied. Additionally, Table 2
contains the column “Total”, where the ASR accuracy of
the combination of utterances from the specific domains
CT, TL, GM, PL is presented. For the sake of
statistical significance evaluation of the obtained results,
the confidence interval radius ε was determined for each
smoothing method and the utterance combination. The
confidence level 1 − α = 0.9 was used.

It can be observed that there are practically no
significant differences between bigram models created
with various discounting methods. Despite the loose
word order of the Polish language, bigram models have
much lower perplexity than unigram models (U). The
bigram/unigram perplexity ratios for Polish are similar to

Table 1. Perplexity of models based on various smoothing
methods (the first row contains results obtained with
the unsmoothed unigram model).

Method CT TL GM PL

U 751.5 2688.3 1596.3 4233.6
AD 35.9 748.4 69.2 672.1
GT 35.9 733.2 68.2 665.4
KN 34.5 713.0 65.7 633.3

MKN 34.9 720.4 66.6 633.5

Table 2. ASR accuracy obtained with models based on various
smoothing methods (ε: confidence interval radius).

Method CT TL GM PL Total

U 0.937 0.893 0.925 0.904 0.914
ε=0.0025

AD 0.953 0.906 0.942 0.916 0.928
ε=0.0023

GT 0.952 0.908 0.949 0.920 0.932
ε=0.0022

KN 0.960 0.914 0.951 0.924 0.936
ε=0.0022

MKN 0.957 0.917 0.949 0.920 0.934
ε=0.0022

these reported for English by Jurafsky and Matrin (2009).
ASR in Polish is, however, much less sensitive to LM
perplexity than English. Goodman (2001) claims that
the increase of cross-entropy (which is a logarithm of
perplexity) by 0.2 results in the absolute increase of the
WER by 1%. The results presented in Tables 1 and
2 show much weaker dependence of the WER on the
model cross-entropy. Let us consider cross-entropies and
WERs of the CT and PL models obtained using the KN
method. According to Goodman (2001), cross-entropy
H is defined as H(T ) = log2(PP (T )), where PP
is the perplexity and T is the test set. The difference
of the cross-entropy between CT and PL models is
log2(633.3)− log2(34.4) = 4.2.

The increase in cross-entropy by 4.2 results in
the increase of the WER by only about 3.5%. Also
the superiority of the modified Kneser–Ney smoothing
method reported by Goodman (2001) over all other
methods is not confirmed in the case of the Polish
language. The performance of the modified Kneser–Ney
model is even slightly worse than that of the original
Kneser–Ney model. Although the performances of all
bigram models are similar, the original Kneser–Ney
model achieves the best results both in perplexity and
WER comparisons. To verify the statistical significance
of the obtained result, the confidence intervals of ASR
accuracy estimation were determined at the confidence
level 1 − α = 0.9. The analysis of confidence intervals
presented in the rightmost column in Table 2 shows
that only the unmodified Kneser–Ney method marginally
outperforms other compared techniques. It was used for
further experiments.

At the second stage, Kneser–Ney smoothing was
combined with our bigram boosting technique described
in Section 4. The accuracy of the speech recognizer was
then evaluated for the modified model. ASR accuracies
in various language domains are presented in Table 3.
CT, TL, GM and PL denote language corpora applied.
The rightmost column contains combined results obtained
using the mixture of utterances coming from individual
domains. The results of the Kneser–Ney method (the
same as in Table 2) used here as a baseline for comparison
are presented in the first row. The accuracies obtained
using the LM created with the bigram boosting method
from Section 4 are presented in the second row. The last
row contains the achieved relative WER reduction rate.

The application of indirectly co-occurring bigrams
boosting resulted in small but observable improvement of
the ASR accuracy in the case of all language domains
except for the simplest CT model. The average relative
WER reduction is about 5.7%. To show the statistical
significance of the obtained results, the confidence
interval radiuses of the accuracy estimates were calculated
for the combined test utterances set. The radii for
accuracy estimaties for baseline Kneser–Ney and the
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bigram boosting method are shown in the rightmost
column of Table 3. The confidence intervals do not
overlap, hence the superiority of the model created using
bigram boosting seems to be statistically significant.

6. Application of multi-words

Some words appear most frequently in specific
collocations. Pairs of strongly collocated words can
be replaced in the LM by their combinations called
here multi-words. Application of multi-words extends
the context represented in the n-gram LM and hence
makes it possible to model a language more precisely
without extension of its order. On the other hand,
however, too intensive application of multi-words reduces
LM generalization abilities because it assigns more
probability to n-grams actually appearing in the corpus
and lowers the backoff probability mass. In the extreme
case, if all sentences appearing in the text corpus are
converted to multi-words, only utterances represented in
the corpus can be recognized. The problem is therefore
which word pairs appearing in the corpus should be
replaced by the corresponding multi-words.

Application of multi-words can be particularly
beneficial in the case of two-word collocations where
at least one word is very short (in particular, where it
consists just of a single phoneme). Our experiments
with ASR applied to Polish show that recognizers exhibit
strong tendency to discard Short Words (SW) from the
recognized phrase. It is most often observed if the phone
ending the preceding word or beginning the next word is
acoustically similar to the phone being the pronunciation
of the short word. We will call such the situation the
deleting context and resulting recognition error will be
called the Short Word Deletion (SWD) error, for short.
Experiments with ASR in Polish (Sas, 2010) show that
ASR decoders tend to falsely skip a short word in deleting
contexts, which leads to approximately 3% of the WER.
Combining a short word with the adjacent one could
improve ASR accuracy, in particular in the case when
word insertion penalties are used.

The concept of multi-words is not new and

Table 3. ASR accuracy and WER reduction obtained with the
model based on indirectly co-occurring bigram proba-
bility boosting (ε: confidence interval radius).

CT TL GM PL Total

Kneser–
Ney(KN)

0.960 0.914 0.951 0.924 0.936
ε=0.0022

Bigrams
boosting

0.959 0.920 0.955 0.929 0.940
ε=0.0021

Relative
WER
reduction

-2.5% 6.9% 8.1% 6.5% 5.7%

its application to improve LM prediction abilities is
described in the literature. In the approach presented
by Chen and Chan (2003) multi-words are used as a
specific collocation contexts for other words that are
frequently associated with them. Kolorenc et al. (2006)
apply the multi-word concept for the same purpose as we
consider here. They, however, create multi-words by only
analyzing short word occurrence in specific bigrams in the
corpus. The novelty of the approach presented here lies in
taking into account acoustic similarities as the criterion of
multi-word selection.

We compared two approaches aimed at SWD
avoidance. The first one utilizes the multi-word concept.
It consists in text corpus modification by concatenating
words constituting deletion contexts into multi-words.
Then the typical language model building procedure is
applied to the modified corpus. If a multi-word is
recognized by the decoder, it is split into its component
words at the post processing stage executed after the basic
recognition of an utterance.

The second approach consists in boosting bigram
probabilities for bigrams corresponding to deletion
contexts in a way similar to the one described in Section 4.
Both methods lead to LM modification oriented to SWD
error rate decrease.

The first problem that needs to be solved is how to
select pairs of words that constitute the deletion context.
Our experiences with ASR applied to the Polish language
proved that deleting contexts comprise mainly pairs of
words where one of them is a single-phoneme word. In
Polish language there exist the following single phoneme
words: ‘i’ (and), ‘a’ (and/but depending on the context),
‘o’ (about), ‘u’ (at), ‘w’ (in/inside), ‘z’ (with/out of). The
strongest tendency to delete the short word appears if the
neighboring phoneme in the adjacent word is the same as
the phoneme being the short word. A weaker tendency of
SWD errors appears in the situations where ‘w’ or ‘z’ are
pronounced as voiceless consonants and the neighboring
phoneme in adjacent word is also voiceless.

Experiments described by Sas (2010) show that most
of SWD errors are related to ‘w’ and ‘z’ preposition
deletion in deleting contexts. In Polish single-word
prepositions and conjunctions causing a majority SWD
errors are most strongly collocated with successive
words. Therefore we will restrict our discussion to
deleting contexts where the short word is the first
element of a bigram. In the text corpus related to
medical diagnostic image reporting used in experiments,
the relative frequency of ‘w’/‘z’ preposition occurrence
in deleting contexts is about 3%. With the average
SWD probability in deleting contexts close to 0.5, this
introduces the overall deletion error rate 1.5%. With
the overall error rate achievable for speaker dependent
ASR close to 8%, SWD errors constitute about 20%
of word errors in speech recognition. Reduction of
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the SWD error rate would then observably contribute to
speech recognition accuracy improvement. In the method
proposed here we focus on typical deleting contexts that
are represented by bigrams appearing in the text corpus
used to create the language model; however, the concepts
applied can be extended also to other deleting contexts for
bigrams not appearing in the corpus.

6.1. Application of multi-words to reduction of SWD
errors. This method of reducing SWD errors consists
in a selective replacement of bigrams corresponding to
deleting contexts by multi-words being a concatenation
of original words constituting the deletion context. In
order to preserve the generalization ability of the resultant
LM, not all but only randomly selected deleting contexts
are replaced by multi-words. The probability of the
replacement of a particular occurrence of the deleting
context intuitively should depend on the SWD probability
in this context. Alternatively, it can be set up so as to
obtain the best model according to the cross-perplexity
criterion. The replacement probabilities are defined for
distinguished groups of deleting contexts. The groups are
distinguished based on acoustic similarities of adjacent
phonemes:

• A: SW is ‘w’ and the right neighboring word
pronounced in this context begins with the same
phoneme;

• B: SW is ‘w’ and the right neighboring word
pronounced in this context begins with a voiceless
phoneme, e.g. ‘w sytuacji’ (‘in the situation...’), ‘w
przypadku’ (‘in the case ...’);

• C: SW is ‘z’ and the right neighboring word
pronounced in this context begins with the same
phoneme;

• D: SW is ‘z’ and the right neighboring word
pronounced in this context begins with a voiceless
phoneme, e.g., ‘z samym’ (‘with only...’), ‘z powodu’
(‘because of ...’);

• E: SW is ‘a’, ‘i’, ‘o’ or ‘u’ and the right neighboring
word pronounced in this context begins with the
same phoneme.

Let pA, pB, pC , pD, pE denote the probabilities of
the replacement of deleting contexts by the corresponding
multi-words in the text corpus. Two methods were
considered to determine these probabilities:

• the probabilities pX are just estimates of SWD errors
made by the speech recognizer in corresponding
groups of deleting contexts X—the higher the SWD
probability in a group, the more frequently the
deleting context is replaced by the multi-word in the
corpus;

• the probabilities are determined so as to maximize
the cross perplexity of the obtained model tested on
the evaluation text set Ω disjoint form the corpus used
to create the language model.

The first method utilizes the actual tendency of
the speech recognizer to SWD errors, but unfortunately
makes the resultant LM dependent on acoustic properties
of the speech and hence introduces speaker dependency.
An LM optimized for one speaker may be inappropriate
for another.

The second method is independent of the speaker.
Let LM(pA, . . . , pE) denote the model created with
the modified corpus where the probabilities of deleting
context replacement in groups A, . . . , E are pA, . . . , pE .
Let wi,1, wi,2, . . . , wi,l(i) denote the sequence of words
constituting the i-th utterance in the evaluation set.
Let mi,1, mi,2, . . . , mi,lM (i) denote the sequence
corresponding to the i-th utterance, where word
pairs constituting deleting contexts were replaced by
corresponding multi-words (mi,j is here either the
original word occurring in the utterance or a multi-word
obtained by deleting context substitution). The numbers
l(i) and lM (i) denote lengths of the original and modified
i-th utterance.

The average probability per word that the LM
assigns to the i-th utterance wi,1, wi,2, . . . , wi,l(i) can be
calculated as follows:

p̃(wi,1, wi,2, . . . , wi,l(i); LM(pA, . . . , pE))

= max{(
l(i)∏

j=1

p(wi,j |wi,j−1))1/l(i),

(
lM (i)∏

j=1

p(mi,j |mi,j−1))1/lM (i)}.

(29)

Because both variants (consisting of original words or
containing corresponding multi-words) of the utterance
are equally accepted, the greater of the two probabilities
p(wi,1, wi,2, . . . , wi,l(i)) and p(mi,1, mi,2, . . . , mi,lM (i))
is selected. The probability assigned to the whole
evaluation set consisting of nΩ utterances is calculated as
a product of probabilities defined in Eqn. (29):

p(Ω; LM(pA, . . . , pE))

=
nΩ∏

i=1

p̃(wi,1, wi,2, . . . , wi,l(i); LM(pA, . . . , pE)).
(30)

The probabilities pA, . . . , pE should be set so as to
maximize the probability (30).

6.2. Reduction of SWD errors by direct modifica-
tions of probabilities in the LM. An alternative method
consists in direct boosting of bigram probabilities in
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the LM. Now we assume that we start with the LM
created using the methods described in Section 4. Our
aim is to modify the LM so as to reduce the total
WER by limiting the rate of SWD errors. Increasing
probabilities p(wi−1|wi) for word pairs (wi−1, wi)
constituting deleting contexts obviously leads to SWD
error reduction, but it may also increase the rate of errors
of false insertions of short words in contexts where they
actually do not occur. Therefore the method of conditional
probability modification in the LM should keep balance
between resultant tendencies to reduce SWD and false
short word insertion errors.

The idea of the approach proposed here is similar to
the one presented by Sas (2010). The method described in
this article assumes a kind of post processing, therefore it
may not be applicable to standard ASR tools, which do not
make it possible to change its processing pipeline. Here
we used the modification concerning only the LM.

As has already been pointed out, in Polish most of
single-phoneme words are strongly collocated rather with
the successive word. Our aim is therefore to boost the
probability p(wi−1|wi) for words constituting deleting
contexts, where wi−1 is a short word. Making a decision
on the boost rate individually for deleting contexts is
infeasible due to a lack of specific information about the
recognizer tendency to make SWD errors in individual
contexts. It seems rather reasonable to apply the same
boost rate for deleting contexts that are acoustically
similar, which results in setting the boost rate for groups
A, . . . , E specified in the previous section. One way
to achieve the probability boost is to apply the power
function to the original probability:

p′(wi−1|wi) = pμX (wi−1|wi), X ∈ {A, . . . , E},
(31)

where 0 < μX < 1. The μX factors are established for
deleting contexts belonging to groups A, . . . , E.

The typical LM bigram is a “forward” model, i.e., it
computes the unigram (prior) probabilities of words and
conditional probabilities of a successive word conditioned
on its predecessor. The proposed methods explicitly
modifies backward probabilities p(wi−1|wi). Then the
modified probabilities need to be converted to forward
probabilities p′(wi|wi−1) contained in the typical forward
model. The conversion can be obtained by simple
application of the Bayes rule:

p′(wi|wi−1) = p′(wi−1|wi)
p(wi)

p(wi−1)
, (32)

where the prior probabilities p(wi), p(wi−1) can be taken
from the input LM.

Boosting the selected (for the words considered
belonging to the deleting contexts, i.e., to the groups
A, . . . , E) probabilities according to the formula (31)
in effect causes the boosting of the probabilities (32)

included in the LM. Only the probabilities of bigrams
constituting deleting contexts which appear in the corpus
are modified. Consequently, for each word w from the
set (‘w’, ‘z’, ‘a’, ‘i’, ‘o’, ‘u’) the discounted probability
mass β(w) needs to be updated. Now the formula (5) is
modified so as to use p′d(wk|w) instead of pd(wk|w). For
example, for the word w =‘w’ the modified formula is

β(w) =1 −
∑

wk:(w,wk)∈(A∪B)

p′d(wk|w)

−
∑

wk:(w,wk) �∈(A∪B)

pd(wk|w),
(33)

where A and B are sets of words constituting deleting
contexts of ‘w’ defined in Section 6.1. Similarly, we
can calculate the discounted probability mass β(w) for
other considered words appearing in deleting contexts.
These probability masses, which for every analysed
word are less than previously, now are used for
calculating backed-off probabilities for bigrams not
explicitly represented in the initial model, i.e., using the
formulas (6), (7), (22) and (24). Finally, we obtain the
modified consistent LM as presented in the formula (25).
The complete procedure of LM modification consists of
three steps:

1. estimate the boosting factors μx for deleting context
groups A, . . . , E;

2. recalculate forward conditional probabilities for all
pairs of words constituting deleting contexts that are
explicitly represented in the LM;

3. update related model parameters β(w) to preserve
model consistency.

6.3. Experimental evaluation. The performance of
described methods was compared experimentally. We also
compared it with the results obtained for an alternative
idea described by Sas (2010), where SWD errors were
corrected at the postprocessing stage carried out after the
typical HMM-based recognition process was completed.
In order to evaluate the proposed methods, the SWD error
rate was estimated using the test set. The test utterances
are selected so as to contain at least one deleting context or
the word that appears in the corpus as the right neighbor in
frequently occurring deleting contexts. The environment
for the experiment as well as domain specific text corpora
were the same as described in Section 5.

For each domain, the test set was extracted from the
corpus and left aside. For the multi-word based method
the corpus was appropriately modified and then the LM
was created using Kneser–Ney smoothing combined with
indirectly co-occurring bigram boosting. For the method
consisting in direct modifications of bigram probabilities,
the same technique of initial LM creation was used. Three
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methods were compared: (a) the one described by Sas
(2010), which carries out SWD error correction as the post
processing step, (b) the one based on multi-words, where
these probabilities were determined using the perplexity
minimization, and (c) the one that applies direct bigram
probability boosting for deleting contexts. For each of the
domains presented in Section 5, the SWD error count was
evaluated for the original LM model and for that obtained
by applying approaches being compared (further denoted
correspondingly by LMa, LMb and LMc). Because
deleting context bigram probability boosting may lead to
errors consisting in insertion of unuttered short words,
false insertion errors were also counted. The performance
of the method using the model LMX in relation to the
baseline (unmodified) model LM can be assessed by the
gain factor η(LMX) computed as

η(LMX) = 1 − nd(LMX) + nf (LMX)
nd(LM) + nf (LM)

, (34)

where nd(LM) and nf (LM) are counts of SWD errors
and false insertion errors occurring in recognition based
on the model LM .

The higher (closer to 1.0) the gain factor value, the
more effective the model LMX in relation to the baseline
model LM . The assessment results for the methods
are presented in Table 4. The results in the columns
CT, TL, GM, PL were obtained using utterances coming
from corresponding domains specified in Section 5. The
rightmost column (Total) contains results computed using
the combination of utterances coming from all domains
(CT, TL, GM, PL).

For the sake of statistical significance evaluation of
the obtained results, SWD error estimates e(LMX) and
their confidence interval radii ε(LMX) were computed for
the compared methods at the confidence level 1−α = 0.9.
The meaning of symbols used in Table 4 is as follows: nw

is the total number of words in the test set, nDC is the
the number of deleting contexts in the test set, e(LM),
ε(LM) is the estimated SWD error rate in the baseline
reference model LM and its confidence interval radius,
e(LMX), ε(LMX) are the estimated SWD error and its
confidence interval radius obtained using the language
model LMX , η(LMX) is the gain factor of the model
LMX with respect to the reference model.

The method consisting in direct modification of
deleting context bigram probabilities in the language
model results in the highest gain factor. It reduces
almost 44% of SWD-related errors. The method
based on multi-words application and the substitution
probability computed with merely resultant model
perplexity minimization exhibits the worst performance.
However, with almost 35% of SWD-error reduction,
it seems usable in practice as well. The confidence
intervals of the estimated SWD errors (e(LMX) −
ε(LMX), e(LMX) + ε(LMX)) for the methods being

compared do not overlap with the confidence interval of
the estimated error of the reference model (e(LM) −
ε(LM), e(LM)+ ε(LM)). Hence the performance of all
compared methods related to SWD errors is significantly
better than that of the baseline model.

The results presented here were obtained by merely
modifying the LM used by the speech recognizer.
They can be compared to another alternative method
also aimed at SWD-error reduction described by Sas
(2010). His method applies an additional postprocessing
stage, therefore it is more troublesome in application,
in particular, as far as using standard ASR tools is
considered.

The average SDW reduction obtained with the
alternative method is 0.45, which is a slightly better result
than those achieved by methods described in this article.
The difference, however, is not practically significant.
The superiority of the approach presented here lies in its
easier implementation in the case of applying standard
ARS tools. Additionally, in the case of LMa, it can be
created in a purely speaker-independent manner without
considering any properties of the acoustic model, which
is not possible when applying the method presented by
Sas (2010).

7. Combining the LM with a flat word list

In many applications, except for a corpus that can be used
to build stochastic n-gram LM, we have also the flat list

Table 4. Comparison of SWD error rates obtained with the orig-
inal and modified language models.

CT TL GM PL Total

nw 2134 2370 2049 2417 8970
nDC 307 238 213 265 1023

nd(LM) 171 137 130 155 593
nf (LM) 4 3 4 6 17
e(LM) 0.082 0.059 0.065 0.067 0.068
εe(LM) 0.010 0.008 0.009 0.008 0.004
nd(LMa) 89 78 69 81 317
nf (LMa) 11 9 9 13 42
e(LMa) 0.047 0.037 0.038 0.039 0.040
εe(LMa) 0.007 0.006 0.007 0.006 0.003
η(LMa) 0.43 0.38 0.42 0.42 0.41
nd(LMb) 102 88 81 93 364
nf (LMb) 7 7 9 10 33
e(LMb) 0.051 0.040 0.044 0.043 0.044
εe(LMb) 0.008 0.006 0.007 0.007 0.003
η(LMb) 0.38 0.32 0.33 0.36 0.35
nd(LMc) 83 69 65 73 290
nf (LMc) 13 11 12 17 53
e(LMc) 0.045 0.034 0.038 0.037 0.038
εe(LMc) 0.007 0.006 0.007 0.006 0.003
η(LMc) 0.45 0.43 0.42 0.44 0.44
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of Out-Of-Corpus (OOC) words that do not appear in
the corpus, but belong to the general language glossary.
Our aim is to include OOC words into the n-gram LM
created in a typical way from the text corpus. The problem
is how to combine the OOC word list with the LM, in
particular how to estimate unigram probabilities for OOC
words and n-gram probabilities for n-grams containing
OOC words. Approximate unigram probabilities of OOC
words can be acquired or they are not known at all. A
typical case of an OOC word is the set of names (person
names, surnames, city or street names, etc.) specified
explicitly. In these cases, the approximate probabilities of
OOC word occurrence can be derived from sources other
than the corpus of texts, e.g., from databases containing
records related to named entities. In other cases there is
no explicit knowledge about OOC word occurrences.

We propose here to approximate their frequencies by
applying a class-based approach to language modeling,
which utilizes part-of-speech tagging. The concept of
class-based modeling was primarily proposed by Brown
et al. (1992) and then followed by other researches
with various grouping criteria. It is not only unigram
probabilities for OOC words that can be approximated
in this way, but also their n-gram probabilities. One
reasonable approach is to divide OOC and corpus words
into classes according to their POS tags. Then n-gram
probabilities for classes can be estimated in a typical way
from the corpus and they can be applied to calculate
word n-gram probabilities both for words appearing in the
corpus and for OOC words.

Experiments presented by Niesler et al. (1998) show
that a class-based approach utilizing POS tagging is not as
efficient as application of categories based on stochastic
properties of n-grams occurring in the corpus. In the case
of the problem being considered here, we cannot apply the
latter approach to OOC words because they are not present
in the corpus. Therefore we based the solution merely on
POS grouping.

Let us consider the set of POS classes {C1, . . . , CK}
corresponding to various parts of speech and to specific
inflectional forms (e.g., case, plural/singular forms for
nouns). Let c(w) denote the set of POS classes for the
word w. Due to the POS tagging ambiguity, this set
may consist of more than one class. The set of POS
classes can be determined from the corpus and OOC
words automatically. For the precise context-dependent
tagging of Polish words, we can use tools described by
Piasecki (2007) as well as Piasecki and Radziszewski
(2008). As another option, the simpler tool Morfeusz
described by Woliński (2006) can be applied to find
grammatical categories of isolated words. The class-based
model LMCB is then created using the standard method
described by Niesler et al. (1998). The standard word
n-gram model LMW is also created using the same
corpus. The model LMW is then extended by OOC

word inclusion in two steps. In the first one, the total
probability of all OOC words occurrences is estimated
and it is discounted from the probability mass assigned to
unigrams actually occurring in the corpus. In the second
step, the discounted probability mass is redistributed
among OOC words.

In order to assign non-zero unigram probabilities
to OOC words, the fraction of prior probabilities of
words occurring in the corpus is discounted and the saved
probability mass is distributed among OOC words. It is
reasonable to approximate the discounted probability as
the probability that a word in the utterance is an Out-
Of-Vocabulary (OOV) word3. This probability can be
estimated by a simple experiment where the text corpus
utilized in the LM creation procedure is used again.
Obviously, the stochastic properties of the corpus will not
be changed significantly if we extract a single sentence
from it. For words in the extracted sentence, checks are
made if they appear in the remaining part of the corpus.

By applying this experiment to all individual
sentences in a leave-one-out manner, we can count the
number of missing word occurrences nf . The overall
probability pf of OOV word occurrence can be then
approximated as

pf =
nf

nT + nf
, (35)

where nf is the count of words that occur in the corpus
only once and nT is total number of word occurrences
in the corpus. Let us assume that OOC words cover an
arbitrary assumed fraction δ of all OOV words. Therefore,
the probability mass that will be assigned to OOC words
will be δpf , and the same mass of probability must be
discounted from unigram probabilities of the words in the
corpus. The updated probabilities of corpus words p′(w)
can be calculated as p′(w) = p(w)(1 − δpf ), where p(w)
is the prior word probability in the primary LMW .

The discounted probability mass δpf is distributed
among POS classes resulting in class residual
probabilities pr(ci). The residual probabilities are
proportional to the corresponding class probabilities
computed in the LMC model. Only these classes
having their members in OOC word set are considered.
Probabilities pr(ci) are finally redistributed among OOC
words belonging to them. OOC words are assigned
to POS classes using their POS tagging. The words,
however, often cannot be assigned to a unique POS class
unambiguously. If a word is assigned to various POS
classes in the corpus, then it should be given higher
probability than the word assigned only to a single class.
It leads to the following formula for the final OOC word

3OOV is not quite the same as OOC. By OOC we denote the words
from a finite, explicitly given list, while OOV is the set of all words
belonging to the language that do not occur in the corpus: OOC ⊆
OOV .
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unigram probability pOOC(w):

pOOC(w) = δpf

∑
c∈c(w) p(c)/nc

∑
c∈Ξ(OOC) p(c)

, (36)

where c is the symbol of the POS class, pc is the POS
class probability determined using LMCB, c(w) denotes
the set of POS classes to which the word w was assigned
by the tagger, nc is the number of OOC words tagged with
the class c (i.e., nc = card{w : w ∈ OOC ∧ c ∈ c(w)})
and Ξ(OOC) is the set of POS classes that appear at least
once as a tag of an OOC word. Because we have no
information about OOC word frequencies other than that
resulting from POS classification, we assume that each
occurrence of a word in the POS class is equally probable.

In the resultant LM, bigrams (wi, wi+1), where
wi+1 ∈ OOC, do not appear explicitly because such word
pairs were by definition not encountered in the corpus.
Therefore, similarly as in the case of other word pairs not
occurring in the corpus, the bigram probability for word
pairs containing an OOC word is calculated by backing
off to unigram probability.

7.1. Empirical evaluation. The aim of the experiment
described here is to compare the proposed method of OOC
word list inclusion into the LM with a simpler approach,
where all unigram probabilities of all new words are set
equal each to other. In this rival method, the mass of
discounted probability is determined also by estimating
the probability of OOV word occurrence, but next it is
distributed uniformly among OOC words.

The class set was created based on the POS
assignment to words and their inflectional features specific
for individual parts of speech. For nouns and adjectives,
42 classes were created based on the case, number and
gender. 18 classes were created for verbs based on the
tense, person and number. 35 classes were created for
numerals. For the remaining parts of speech, a single class
was used for each individual part. The Morfeusz program
was used for assigning POS tags to words. Morfeusz is
based on a database consisting of verified words tagging.
Therefore, it is not able to assign tags to new words not
registered in its database. In our experiment, for words
not recognized by Morfeusz, the classes were determined
based on other correctly tagged words having the same
longest suffix. If σ(w) is the set of words sharing the
longest suffix with the word w, then the set of classes c(w)
containing w is determined as

c(w) =
⋃

v∈σ(w)

c(v) (37)

The data for the experiment were prepared in the
following way. First, the fraction of the available corpus
was excluded from the text set used later to create the

baseline LM. This fraction was selected so as to contain
all occurrences of the least frequently occurring words.
The OOC word list was created from all words in the
excluded set that do not occur in the remaining part of
the corpus. The test set was created be selecting such
utterances from the excluded set which contained at least
one OOC word. The utterances selected in this way were
then recorded as speech samples and used to test the
recognizer performance. The baseline LM was prepared
using the remaining part of the corpus. Finally, this
model was extended with OOC words using two methods
being compared (uniform OOC word probabilities and
OOC probabilities computed using POS grouping). The
experiment was carried out for 4 domains: CT, TL, GM
and PL, presented in Section 5. For each domain, OOC
words recognition accuracy was computed as

Acc(LM) =
nOOC − ne(LM)

nOOC
, (38)

where nOOC is the count of OOC word occurrences in
test utterances and ne(LM) is the count of OOC words
recognized incorrectly using the LM.

Results for the LM created by uniform probability
distribution among OOC words (LMU ) and for the LM
created using the class-based approach (LMCB) are
shown in Table 5. The first row contains counts of words
n in the test sets. The counts of OOC words occurrences
nOOC are given in the second row. The meaning of
the symbols Acc(LM) and ne(LM) is as in the formula
(38). For comparison, the 3 bottom rows contain results
obtained using the test set consisting entirely of words
occurring in the text corpus and the recognizer based on
the unigram language model (LMug). The confidence
intervals of the estimated accuracies were determined at
the confidence level 1 − α = 0.9 and are denoted by
εAcc(LM).

It can be observed that application of the class-based
approach in computing unigram probabilities of OOC
words does not lead to a significant improvement of

Table 5. Speech recognition accuracy of utterances containing
OOC words.

CT TL GM PL Total

n 9540 11076 10767 12699 44082
nOCC 1678 2270 1939 2151 8037

ne(LMU ) 120 236 173 257 768
Acc(LMU ) 0.928 0.896 0.911 0.880 0.902
εAcc(LMU ) 0.010 0.011 0.011 0.011 0.005
ne(LMCB) 113 228 177 238 756
Acc(LMCB) 0.933 0.899 0.908 0.889 0.906
εAcc(LMCB) 0.010 0.010 0.011 0.011 0.005
ne(LMug) 105 247 141 208 701
Acc(LMug) 0.937 0.891 0.927 0.903 0.913
εAcc(LMug) 0.010 0.011 0.010 0.011 0.005
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the OOC word recognition accuracy in comparison with
application of the simpler method, where OOC words are
given uniformly distributed probabilities. The confidence
intervals determined for the estimated accuracies of the
compared models overlap strongly. This indicates that
the models obtained using the compared methods are not
significantly different. The achieved OOC recognition
accuracy is very close to the overall recognition accuracy
obtained with a completely flat unigram language model.
This observation is consistent with the conclusion drawn
in Section 5 that in Polish (and probably in other
loose word order languages) strongly smoothed language
models exhibit good properties in ASR.

8. Boosting the probability of very
important phrases

In some cases of ASR applications, there are especially
significant or frequently used Very Important Utterances
(VIU) that should be recognized with very high accuracy
(e.g., commands interleaved with text being dictated to
the ASR system). Recognition errors in such utterances
are particularly annoying and users insist on improving
recognition accuracy of these utterances, even at the
expense of slight reduction of the accuracy of other
utterances. The obvious way to achieve this goal is to
(a) add artificially many instances of important utterances
to the text corpus used to build the LM or (b) increase
significantly probabilities of n-grams constituting the
utterance. Radical modification of the LM aimed at
selected utterances may, however, lead to a significant
degradation of recognition of other utterances consisting
of words phonetically similar to those appearing in
important utterances. The problem is therefore how
to modify the LM so as to assure the probability of
correct VIU recognition at least at the specified level α
of accuracy, while minimizing the degradation of other
utterances’ recognition quality.

Let us define the problem more formally as follows.
Let U = {u1, . . . , um} denote the set of VIUs where each
VIU is a sequence of words ui = (wi1 , wi2 , . . . , wili

).
In particular, the sequence may contain just a single
word. We assume that the LM used in speech recognition
contains all words appearing in the set U . Our aim is to
keep VIU-related recognition error rate at the specified
level α. The VIU-related error consists in erroneous
recognition of VIU utterances and in recognizing other
utterance as one of VIUs. The first type error probability
for the single utterance u ∈ U is

peI (u) = P (Ψ(O(v); LM)) �= u|v = u), (39)

while the second type error probability is

peII (u) = P (Ψ(O(v); LM)) = u|v �= u)

=
∑

v∈W+ p(v)P (Ψ(O(v); LM)) = u)
∑

v∈W+ p(v)
.

(40)

Ψ(O(v); LM) denotes here the recognizer applied to the
observation sequence O(v) extracted from the acoustic
signal of the utterance v. The LM is the language
model used by the recognizer. W+ denotes the set
of all word sequences consisting of words appearing in
the LM, excluding words being VIUs. In the approach
presented here, the suppression of the VIU-related error
rate is achieved by modifying the LM so that, for each
u ∈ U, peI (u) < α and peII (u) < α. The error
consisting in recognition of one VIU as another VIU is
neglected. This is motivated by the fact that in a majority
of applications VIUs can be selected intentionally so as
to minimize mutual acoustic similarity among them. The
method of VIU set selection that minimizes VIUs mutual
similarity is presented by Sas (2009).

The method of second type error probability
computation defined in Eqn. (40) is formally well-founded
but troublesome in practice due to the summation over
all possible word sequences W+. In practice it can be
simplified by summing only over the relatively small set
q(u) of utterances that are likely to appear in real speech
or are likely to be misrecognized as u. Thus, instead of
considering the overall second type error probability as
defined in (40), only the error probability conditioned on
the set q(u) can be considered:

p̂eII (u) =

∑
v∈q(u) p(v)P (Ψ(O(v); LM)) = u)

∑
v∈q(u) p(v)

. (41)

The VIU can be either a single word or a sequence
of words. In the latter case, the VIU can be replaced
by a corresponding multi-word, which will be added to
the vocabulary of words in the model. Hence, hereafter
we will assume that VIUs ui are single words. In
most applications it seems to be reasonable to assume
that VIUs are uttered as isolated utterances. Thus, a
method of LM modification can be used that is similar
to that one proposed in the previous section, where
some discounted unigram probability was redistributed
among multi-words. Now, however, according to the
assumed isolation of VIUs, more appropriate approach is
to redistribute bigram probabilities p(w|〈s〉) for bigrams
(〈s〉, w) containing words w that appear in the initial
LM. The symbol 〈s〉 denotes here the pseudo-word
representing the beginning of the utterance. The
discounted probability will be assigned to bigrams (〈s〉, u)
for u ∈ U .

The unigram probabilities for words occurring in the
corpus do not need to be modified. If VIUs are new words
or multi-words, then for formal LM consistency they must
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be added to unigrams. However, their probabilities are
set to zero. This is because we assume here that VIUs
will be always recognized as isolated utterances, so they
can occur only as successors of the pseudo-word 〈s〉. In
the case of a bigram LM, the unigram probabilities are
necessary only in order to compute the probability if the
bigram is not explicitly contained in the LM, i.e., if the
successor word wi+1 does not belong to the set N (wi)
specified in Section 4. In such a case, the backoff to
unigrams is applied according to the formula (25). The
explicit bigrams (〈s〉, u) for all u ∈ U will be added to
the LM. For all other preceding words, the appearance of
VIU as a successor is forbidden, which will be achieved
by setting VIU unigram probabilities to zero.

We will need to discount the probabilities p(w|〈s〉)
for bigrams represented explicitly in the initial LM and
to redistribute the discounted probability mass among
bigrams containing VIUs as successors. In order to
preserve the model properties related to other utterances,
our aim is to modify the model as little as possible so as
to achieve the assumed VIU recognition accuracies. Thus
the problems to be solved are the following:

(a) how much of the probability mass should be
discounted from the probabilities p(w|〈s〉);

(b) how the discounted probability mass should be
redistributed among the probabilities p(u|〈s〉), u ∈
U .

Alternatively, the problem is: What should the minimal
probabilities p(u|〈s〉) be which yield VIU-related error
within the assumed interval (0, α).

A theoretical solution to the optimal selection of
VIU bigram probabilities is difficult due to the complexity
of the computations involved in the Viterbi procedure
(Young and Everman, 2009; Lee et al., 2001) typically
applied in HMM-based speech recognizers. A purely
empirical approach is not feasible in most cases either due
to the necessity to collect a big number of VIU acoustic
samples. Therefore we propose here a procedure that
utilizes the existing acoustic model as a kind of artificial
speech sample synthesizer.

Let r(u) denote the set of speech samples created
by uttering the VIU u, and let R denote the sum of sets
R =

⋃
u∈U r(u). Let us denote by g(u) the set of speech

samples obtained by uttering other utterances out of U
that are likely to be incorrectly recognized as u. The sets
r(u) and g(u) constitute the verification set used in order
to modify the LM appropriately. The VIU-related errors
peI (u) and p̂eII (u) can be estimated empirically as

peI
(u) =

neI (u)
card(r(u))

, peII
(u) =

neII (u)
card(g(u))

,

(42)
where neI (u) is the count of samples from the set
r(u) incorrectly recognized, and neII (u) is the count

of samples from the set g(u) incorrectly recognized as
u. VIU-related error approximation can be used in the
iterative procedure of LM modification. In the i-th
iteration it finds the minimal bigram probability p(ui|〈s〉)
that leads to the error estimate on the test set within the
assumed interval.

Probabilities established once for already processed
VIUs are not changed in the later steps of the procedure,
so the necessary discounted probability mass is always
obtained from other bigrams representing words actually
appearing in the corpus and not being VIUs. Application
of the probability estimates (42) instead of the true
probabilities (39) and (41) is acceptable when they are
precise. Of course, this requires many speech samples
in sets r(u) and q(u). In the method proposed here the
real utterances were replaced by observation sequences
produced by the HMM model used as a random automaton
that produces observation sequences.

The utterances represented in the sample set g(u)
should be drawn from the corpus, so that they are likely
to appear in the real utterances. To make the second type
error estimation feasible, the amount of testing utterances
must be kept within the reasonable limit. For this reason,
the set g(u) should consist of utterances that are likely to
be misrecognized when O(u) is presented to the speech
recognizer. Most of speech recognizers provide the option
to deliver not only the most likely words sequence but
rather a list of N-best candidates. In the method presented
here, the word sequences used to create the set g(u) ⊂
W+ are obtained by gathering N-best word sequences not
being the actually spoken VIU obtained when recognizing
speech samples from the set r(u). In this way, the set of
word sequences q(u) is obtained. Then for each sequence
from q(u) the corresponding random HMM automaton
is configured. By running this automaton randomly, an
unlimited number of artificial speech samples constituting
the set g(u) can be created. By Q we will denote the set
of verification utterances created in this way.

The misrecognition of an utterance is the result of
its acoustic similarity to other sequences of words. The
likelihood of VIU misrecognition is used to order them
in the procedure of LM modification. Misrecognition
likelihood can be evaluated by acoustic similarity to
the most similar word sequence that can be constructed
from the words in the LM vocabulary. The most likely
misrecognition results can be taken from the set q(u)
obtained as described above. For each u ∈ U its
similarity to all elements of q(u) can be evaluated, and
finally the misrecognition likelihood can be computed
based on the similarity to the most similar misrecognized
sequence of words. For the sake of this method,
acoustic similarity of two utterances is calculated as the
edit distance (Levenshtein distance) between sequences
of phones obtained as phonetic transcriptions of the
utterances. The original edit distance, being the number of
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insertion, deletion and substitution operations, is modified
so as the substitutions of various types of phones are
assigned various weights corresponding to their acoustic
similarities.

The complete procedure applied here to modify the
input LM can be defined as Algorithm 1. It iteratively
increases the bigram probability p(u|〈s〉) for the utterance
u ∈ U being currently processed until the first type error
probability falls within the required interval or the second
type error probability goes out of it. The permissible
bigram probability interval is (pmin, pmax), where pmin =
1/k, pmax = 1/2m), k is the number of words in the
vocabulary and m is the number of VUIs in the set U .

Algorithm 1. LM modification for correct VIU
recognition.

create the set of observation sequences R and Q
using the random automaton based on LM/AM;

order the set U by VIU importance;
for all u ∈ U in decreasing order do

for p = pmin; p ≤ pmax; step δ do
LM’ = LM;
set p(u|〈s〉) = p in LM’;
discount the probability p from

bigrams p(w|〈s〉), w /∈ U ;
calculate estimates peI

(u), peII
(u) using LM ′;

if peI
(u) < α or peII

(u) > α then
break;

end if
end for
LM = LM ′;

end for
return LM ;

8.1. Empirical evaluation. The proposed method is
based on the assumption that the accuracy of recognition
of the artificially created utterances is close to the
accuracy achieved for the human speaker. The aim of the
experiment is to verify this assumption. We also want to
test how the boosting of VIU bigram probability impacts
the recognition of other acoustically similar utterances. In
the experiment, the speaker-independent, gender specific
acoustic model was used. We tested the set of VIUs
being commands that control the editing of the text being
dictated. The set of commands in Polish and their
translations into English are listed in Table 6. The test set
was created by uttering commands by the set of speakers.
Each command was uttered 20 times by each of the 6
speakers (3 female, 3 male).

Then the initial LM was modified using the tuning
procedure described in the previous section to achieve
the VIU recognition error rate at the level of α ∈
(0.01, 0.07). The actual accuracy of VIU recognition was

then evaluated using the set of test utterances. The results
are shown in Fig. 1.

It can be observed that the actual error rate is greater
than the expected one based on testing with artificial
utterances. This can be explained by the fact that the
acoustic model does not simulate the speech perfectly, so
the error rate for real speech is higher than that evaluated
using the model which is also used in the recognition
procedure. The dependence of the predicted and actual
error rate is, however, almost linear, apart from the
interval (0.1, 0.2), where the assumed error rate cannot
be achieved due to an increasing second type error. The
experiment shows that in order to obtain the assumed
first type error close to α′ the model should be tuned for
α ≈ 0.7α′.

Decreasing first type error peI(u) by increasing
the probability p(u|〈s〉) leads to the increase of the
second type error consisting in erroneous recognition of
other utterances as u. The proposed algorithm prevents
excessive increase of the second type error by limiting the
bigram probability p(u|〈s〉) if peII(u) exceeds assumed

Table 6. Set of VIUs used in the experiment.
Command utterance Translation into English

Wyczyść Clear
Cofnij Back

Zakończ Terminate
Zapisz Save

Nowa linia Insert the new line
Zapisz do pliku Save to a file
Zaznacz słowo Select word

Na koniec Go to the end
Na pocza̧tek Go to the beginning

Nastȩpne słowo Go to the next word
Poprzednie słowo Go to the previous word

Duże litery Upper case letters
Małe litery Lower case letters

Fig. 1. First type actual error peI(u) vs. the expected error level
α.



666 J. Sas and A. Żołnierek

limit α. In Fig. 1 this can be observed for α < 0.02,
where the actual first type error is not further reduced
because the second type error exceeds its limit. When
LM is being updated in the iterative algorithm, it uses
the estimates of first and second type errors based on the
artificial utterances. The legitimacy of artificial utterance
application when estimating the second type error was
verified experimentally. In the experiment, second
type error estimation based on artificial utterances was
compared with its estimate based on actual human-spoken
utterances from q(u) sets. Estimates obtained with
modified LMs created for various values of α ∈
(0.01, 0.07) were compared. Results are shown in Fig. 2.

The results obtained in experiments related to the
VIU are obviously specific for the VIU set and the LM
being used. For other VIUs and/or LMs, the relation
of the actual accuracy to that obtained with artificial test
sets as well as the relation of the first type to the second
type errors can be different. We believe, however, that
general tendencies demonstrated in this particular case
are also valid in different conditions. Thus achieving
the sufficiently low VIU related error using the proposed
method is possible without deteriorating ASR accuracy
for other utterances.

9. Conclusions and future work

In this paper, we focused on the problems of constructing
language models for automatic speech recognition in
Polish. The main aim of the described works was
to take into account the specific features of the
Polish language when building the language models,
such as rich inflection, loose word order, or frequent
appearance of short words that exhibit the tendency to
be falsely removed in the recognized sentence. We
also took into account practical issues often encountered
when constructing the language model for the specific
application: the need to extend the model with words

Fig. 2. Comparison of second type error estimates obtained with
artificial and human-spoken utterances.

that did not appear in the text corpus and the need
to recognize the small set of selected utterances with
very high accuracy. We proposed the pipelined model
construction method, where the initial model is created
at the first stage and then extended or improved at
subsequent stages.

At the first stage we tested various smoothing
methods used when building the initial language model:
absolute discounting, Good–Turing, Kneser–Ney and
modified Kneser–Ney smoothing. The tests were carried
out for four subdomains of Polish speech that differ
in complexity (available amount of texts in the corpus,
size of the dictionary). The tests showed that there are
no significant differences in speech recognition accuracy
obtained when applying language models constructed
using the compared techniques. The Kneser-Ney
method showed marginally better performance than other
methods, hence it was used as the baseline at further stages
of model building.

At the next stage, the method that takes into account
the loose word order in Polish was applied to modify the
model. The method boosts the probabilities of bigrams
which were observed at distant positions in sentences
belonging to the corpus. As a result, we obtained small
but observable improvement in recognition accuracy in
domains where model perplexity is high and speech
recognition is difficult. In the case of simple models,
where perplexity is low, model modification resulted in
worsening recognition accuracy. Hence, the practical
conclusion is that the bigram probability boosting of
distant co-occurring words should be applied only to
models of high perplexity.

The model modification introduced at the third stage
is aimed at avoidance of short word deletion. Our
experiences with practical application of ASR to Polish
speech showed that it is one of the most common errors.
The methods proposed here achieve the goal by modifying
the language model only. They were compared with
another method (proposed earlier by the same author)
which carries out short word deletion correction as the
postprocessing stage. The performance of all compared
methods is similar. Short word deletion error rate relative
reduction is at the level of 40%. The methods proposed
here are, however, easier in application, because the effect
can be obtained by merely modifying the language model.
As a result, the method can be used in any ASR system,
without the need to modify the system logic.

The aim of the next stage is to extend the model
with additional words not appearing in the corpus.
Two methods of model extension with the flat list of
additional words were compared. The first, simpler
method assigns equal unigram probabilities to all new
words. The alternative method assigns probabilities to
new unigrams using part-of-speech tagging. Experimental
evaluation showed that there are no statistically significant
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differences between the compared methods. Hence
the practical recommendation is to use the method that
assigns uniform probabilities to new words, due to its
simplicity.

At the last stage a method was proposed that
modifies the model so as to assure that the selected
utterances are recognized with an arbitrarily high level
of accuracy. The experiments carried out with the set
of important utterances being the spoken text editor
commands proved that the goal can be achieved without
significant degradation of other utterances recognition
accuracy.

The overall conclusion following from the
experiments described here is that the Polish language is
hard for speech recognition due to its specific features.
Application of methods focused specifically at individual
sources of difficulties may improve recognition accuracy.
The procedure of language model construction presented
here is an example of such an approach. Although the
experiments were carried out for the Polish language,
we believe that similar results can be obtained for other
languages of similar properties, e.g., for Slavonic ones.

The concept of the language construction pipeline
can be extended with more stages aimed at other language
features or specific type of errors in speech recognition.
A promising direction seems to be at application of
class-based models combined with ordinary word-based
ones. A class-based approach relying on POS tagging can
be used to exclude specific sequences of words that are
almost impossible to appear in spoken language. This can
be useful in eliminating the error consisting in successive
appearance of short conjunctions or prepositions. This
type of error often occurs in utterance fragments being
short pauses not detected at the acoustic level.

Experiments in pattern recognition prove that
application of classifier combinations can increase
recognition accuracy (Woźniak and Krawczyk, 2012).
The classifier combination concept can be also applied
to ASR. One of the possibilities is to combine
classifiers based on LMs created using various corpora or
construction techniques. Model combination can be also
used at the level of LM construction for a single classifier.
A direction that seems to be insufficiently explored in the
case of Polish ASR, is a model construction by combining
simpler models. It can be applied to the construction of a
domain specific language model by combining a model
created from a relatively small corpus of domain-specific
texts with a domain-independent model built using a
bigger corpus.
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Ziółko, J., Gałka, J. and Skurzok, D. (2010). Speech modelling
using phoneme segmentation and modified weighted
Levenshtein distance, Proceedings of the ICALP2010 Col-
loquium, Bordeaux, France, pp. 743–746.

Jerzy Sas received his Ph.D. degree from the
Institute of Biocybernetics and Biomedical En-
gineering of the Polish Academy of Sciences in
1993. Currently he is an assistant professor at
the Institute of Informatics, Wrocław University
of Technology. His research focuses on speech
recognition, medical informatics and photorealis-
tic computer graphics. Doctor Sas has published
over 90 papers. He has been involved in many re-
search and developments projects related to med-

ical informatics. He was also the leader of the development team of a
commercially available speech recognition system for Polish aimed at
medical and mobile applications.
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