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In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying
asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson
processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis
and the theory of fuzzy sets. We assume that some parameters of the financial instrument cannot be precisely described and
therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various
sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal
entropy martingale measure and Levy characteristics.
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1. Introduction

The Black–Scholes model (Black and Scholes, 1973)
is the best known and the most widely used model of
option pricing. One of the assumptions made by Black
and Scholes is the continuity of the price process. In
their approach the underlying asset evolves according
to a geometric Brownian motion. The above-mentioned
model delivers the completeness of the market and the
uniqueness of the derivative pricing. The Black–Scholes
formula represents the arbitrage-free option price and it
is given in an analytically closed form (see Hull, 1997).
However, it is well documented in the finance literature
that the Black–Scholes model suffers from two main
shortcomings. Firstly, the (log) returns of the underlying
process S in the real market have leptokurtic and skewed
to the left distribution (see Davis, 2001). Secondly, the
implied volatility is a convex function of the stike price
(see Bakshi et al., 1997; Bates, 1996) while, under the
Black–Scholes model, this should be a constant function.
Such an empirical phenomenon is called the volatility
smile.

Many authors have applied discontinuous models
to generalize and improve the Black–Scholes model. In
Merton’s approach the stock price process was modeled
as exponential of sum of a Brownian motion with
drift and a compound Poisson process with jump sizes

following normal distribution (Merton, 1976). Merton
solved the option pricing problem assuming that jump
risk is not systematic. Kou (2002) obtained European
and interest rate options valuation formulas, applying
also a jump diffusion model in which the jump sizes
have an asymmetric double exponential distribution. Kou
and Wang (2004) used the above-mentioned double
exponential jump diffusion model for pricing finite
horizon American options and path-dependent options.
The work of Xu et al. (2011) was dedicated to foreign
equity option pricing.

The authors took into account empirical studies
which showed that models with constant volatility do
not fully describe equity returns or option prices. They
proposed a stochastic volatility model with simultaneous
jumps in price and volatility for description of foreign
asset prices and exchange rates. Other important
approaches, applying pure jump Levy processes to option
pricing, are the inverse Gaussian model proposed by
Barndorff-Nielsen (1998) as well as the variance gamma
model studied by Madan and Seneta (1990).

One of the purposes of this paper is to improve the
pricing model. Like in the above mentioned approaches,
we take into account the fact that in the real market asset
prices do jump, and some risks cannot be handled within
continuous-path models. We consider the independent
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sum of a Brownian motion with drift and a linear
combination of a finite number of independent Poisson
processes as the model of the log-price Y . The so defined
process Y is a Levy process and its discontinuous part can
model positive and negative jumps of the underlying asset
caused by external shocks. We continue and generalize
our previous approach (Nowak and Romaniuk, 2010).
The proposed log-price process is an extension of the
previous model considered with one possible Poisson
component. A similar model for two Poisson components
was considered by Nowak (2011) in a preliminary version,
without Monte Carlo simulations. In the paper, stochastic
analysis and fuzzy sets theory are employed to prove the
option pricing formula.

An approach similar to ours was applied to
the Black–Scholes model by Wu (2004) along with
its improved version (Wu, 2007). Yoshida (2003)
also considered the Black–Scholes model in a fuzzy
environment. However, rational expected option price
proposed by him depends on a fuzzy goal, which
represents the buyer’s/writer’s subjective judgement and
therefore can be different for different financial analysts.
Zhang et al. (2012) obtained the European option fuzzy
pricing formula based on Kou’s double exponential jump
diffusion model. They also proposed a crisp possibilistic
mean option pricing formula by using the possibilistic
mean values of fuzzy numbers. Fuzzy numbers may be
also used in other areas of financial mathematics, e.g.,
financial time series forecasting (see Li and Chiang,
2012).

Within the stochastic analysis used in our discussion,
martingale theory and its application play important
roles in this paper. We also use characteristics of
the Levy process (see Shiryaev, 1999) to find the
valuation expression. As the equivalent martingale
measure we apply the Minimal Entropy Martingale
Measure (MEMM). This measure is used by many authors
for option pricing (see El Karoui and Rouge, 2000;
Frittelli, 2000). The relation of the MEMM to market
efficiency and maximisation of exponential utility makes
the measure economically meaningful (see Ssebugenyi,
2011). As we have mentioned above, we use fuzzy
set theory and fuzzy arithmetic (see Zadeh, 1965). A
fluctuating financial market and the lack of detailed
information cause that many parameters of the model
cannot always be described in a precise sense. We take
into account this type of uncertainty. Experts’ opinions
or imprecise estimates are introduced to the model in the
form of fuzzy numbers. A financial analyst, using fuzzy
parameters in the valuation formula, can obtain a tool
to pick the option price with an acceptable membership
degree for later use (see Wu, 2004).

Computation techniques, which illustrate the
theoretical results, will be mainly applied to the European
call options. However, the proposed pricing method can

also be used for other derivatives.
The paper is organized as follows. Section 2 contains

preliminaries from the fuzzy arithmetic. In Section 3 we
present basic definitions and facts concerning stochastic
analysis and the minimal entropy martingale measure.
In Section 4 we propose a geometric Levy process as
the model of the underlying asset and we prove the
European call option pricing formula. Section 5 is devoted
to evaluation of the derivative with fuzzy parameters.
In Section 6 we conduct Monte Carlo simulations to
illustrate and analyse the previously obtained valuation
expression. The last section contains concluding remarks.

2. Fuzzy sets: Notation and definitions

Let Ã be a fuzzy subset of the set of real numbers R. We
denote by μÃ its membership function μÃ : R → [0, 1],
and by Ãα = {x : μÃ ≥ α} the α-level set of Ã, where
Ã0 is the closure of the set {x : μÃ �= 0}.

Let ã be a fuzzy number. We assume that μã is an
upper semicontinuous function. Then the α-level set ãα

is a closed interval of the form ãα = [ãL
α, ãU

α ] (see, e.g.
Zadeh, 1965).

Next we recall the arithmetic of fuzzy numbers.
Let ⊕, �, ⊗ and � be binary operators between fuzzy
numbers, and let +, −, × and / be standard operators
between crisp real numbers. Let 	 be an operator from
the first group and let ◦ be the operator from the second
group corresponding to 	. Then, for fuzzy numbers ã and
b̃, the membership function of ã 	 b̃ is defined by (see
Zhou, 2002)

μã�b̃ (z) = sup
(x,y):x◦y=z

min{μã(x), μb̃(y)} . (1)

Let 	int be a binary operator⊕int, �int, ⊗int or �int

between two closed intervals [a, b] and [c, d]. Then

[a, b] 	int [c, d] = {z ∈ R : z = x ◦ y,

∀x ∈ [a, b], ∀y ∈ [c, d]} , (2)

where ◦ is the standard crisp operator corresponding to
	int (i.e., +,−,× or /, if the interval [c, d] does not
contain zero in the last case).

Therefore, if ã, b̃ are fuzzy numbers, then ã	 b̃ is also
a fuzzy number defined via its α-level sets by

(ã ⊕ b̃)α = ãα ⊕int b̃α = [ãL
α + b̃L

α, ãU
α + b̃U

α ] ,

(ã � b̃)α = ãα �int b̃α = [ãL
α − b̃U

α , ãU
α − b̃L

α] ,

(ã ⊗ b̃)α

= ãα ⊗int b̃α

=
[
min{ãL

α b̃L
α, ãL

α b̃U
α , ãU

α b̃L
α, ãU

α b̃U
α},

max{ãL
α b̃L

α, ãL
α b̃U

α , ãU
α b̃L

α, ãU
α b̃U

α}
]

,
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(ã � b̃)α

= ãα �int b̃α

=
[
min{ãL

α/b̃L
α, ãL

α/b̃U
α , ãU

α /b̃L
α, ãU

α /b̃U
α},

max{ãL
α/b̃L

α, ãL
α/b̃U

α , ãU
α /b̃L

α, ãU
α /b̃U

α}
]

,

if the α-level set b̃α does not contain zero for all α ∈ [0, 1]
in the case of �.

Let F (R) be the set of all fuzzy numbers.

Proposition 1. Let f : R → R be a function and let {x ∈
R : f(x) = y} be a compact set for each y ∈ R. Then f
induces a fuzzy-valued function f̃ : F (R) → F (R) via
the extension principle and for each Λ̃ ∈ F (R) the α-
level set of f̃(Λ̃) has the form f̃(Λ̃)α = {f(x) : x ∈ Λ̃α}.

The proof of this proposition may be found in the
work of Wu (2004).

Now we introduce definitions of some special cases
of fuzzy numbers which may be useful in our discussion.

A triangular fuzzy number ã is a fuzzy number with
the membership function defined by

μã(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
for a1 ≤ x ≤ a2,

x − a3

a2 − a3
for a2 ≤ x ≤ a3,

0 otherwise,

(3)

where [a1, a3] is the supporting interval and the
membership function has peak in a2. The triangular fuzzy
number ã is denoted further by

ã = (a1, a2, a3) .

Left-Right (L-R) fuzzy numbers are generalizations
of triangular fuzzy numbers (see, e.g., Bardossy and
Duckstein, 1995; Dubois and Prade, 1980), where the
linear functions used in (3) are replaced by monotonic
functions. We apply L-R numbers in our numerical
analysis of the fuzzy pricing formula for the European call
option (see Section 6).

Definition 1. A fuzzy number ã is called an L-R number
if its membership function has the form

μã(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L
(

a2−x
a2−a1

)
for a1 ≤ x ≤ a2,

R
(

x−a2
a3−a2

)
for a2 ≤ x ≤ a3,

0 otherwise,

(4)

where L and R are continuous strictly decreasing
functions defined on [0, 1] with values in [0, 1] satisfying
the following conditions:

L(x) = R(x) =

{
1 if x = 0,

0 if x = 1.

The L-R fuzzy number ã is denoted further by

ã = (a1, a2, a3)LR .

3. MEMM for Levy processes

We recall some basic facts about the stochastic analysis
and the martingale method.

Let
(
Ω,F , (Ft)t∈[0,T ] , P

)
be a probability space

with filtration satisfying standard assumptions. Let T <
∞ be a time horizon.

A stochastic process H = (Ht)t∈[0,T ] is cadlag if its
trajectories are functions which are right-continuous with
left limits.

H is (Ft)-adapted if Ht is (Ft)-measurable for each
t ∈ [0, T ].

A probability measure Q on (Ω,F) is absolutely
continuous with respect to P (Q << P ) if, for all A ∈ F ,

P (A) = 0 ⇒ Q (A) = 0,

and it is equivalent to P if P and Q have the same sets
with zero measure.

Let St be an (Ft)-adapted cadlag stochastic process
describing the underlying asset. Let r denote a constant
risk-free interest rate, and let

Zt = e−rtSt (5)

be the discounted process of values of the underlying
asset. We have to find a measure Q equivalent to P for
which Zt is a martingale.

The next step is to find the form of the process St

with respect to this new probability measure Q. The price
of a derivative with a payment function f is given by the
formula

Ct = exp (−r(T − t)) E
Q (f (S) |Ft) , t ∈ [0, T ] .

(6)
A cadlag stochastically continuous process Y =

(Yt)t∈[0,T ], Y0 = 0 a.s., is called a Levy process if it
satisfies the following conditions:

1. Yt − Ys is independent of Fs for all 0 ≤ s ≤ t ≤ T.

2. Yt − Ys and Yt−s have the same distributions for all
0 ≤ s ≤ t ≤ T.

We assume that a truncation function h is defined
by the formula h (x) = xI|x|≤1. We denote by M(R)
the space of non-negative measures on R. For a Levy
process Y local characteristics (Bt, Ct, νt) are defined by
the Levy–Khintchine formula

ϕt(θ) = E
P eiθYt

= exp
{
iθBt − 1

2
θ2Ct

+
∫

R

(
eiθx − 1 − iθh(x)

)
νt(dx)

}
,
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where ϕt(θ) is the characteristic function of Yt,

Bt : [0, T ] → R, Bt = bt,

Ct : [0, T ] → R, Ct = ct,

νt : [0, T ] → M(R), νt (dx) = ν (dx) t,

ν ({0}) = 0,

∫

R

(|x|2 ∧ 1
)
ν (dx) < ∞ ,

b, c ∈ R and ν ∈ M(R). Moreover, only constant
b depends on the form of h. For details concerning
characteristics of Levy processes and their generalizations
for semimartingales we refer the reader to the works of
Shiryaev (1999) as well as Jacod and Shiryaev (1987).

A stochastic process S = (St)t∈[0,T ] is called
a geometric Levy process if it can be written in the
following form:

St = S0 exp (Yt) , t ∈ [0, T ] , (7)

where Yt is a Levy process.
Throughout this paper we assume that S is of the

form (7), F = FT and for t ∈ [0, T ]

Ft = σ (Ss, s ∈ [0, t]) = σ (Ys, s ∈ [0, t]) .

The relative entropy I (Q, P ) of Q with respect to P
is defined by

I (Q, P ) =

{
EP

(
dQ
dP ln

(
dQ
dP

))
if Q � P,

+∞ otherwise.

If an equivalent martingale measure P0 satisfies the
inequality

I (P0, P ) ≤ I (Q, P )

for all equivalent martingale measures Q, then P0 is called
the minimal entropy martingale measure.

Let

g(MEMM) (θ)

= b +
(

1
2

+ θ

)
c

+
∫

{|x|≤1}

(
(ex − 1) eθ(ex−1) − x

)
ν (dx)

+
∫

{|x|>1}
(ex − 1) eθ(ex−1) ν (dx) .

The following theorem of Miyahara (2004), proved
by Fujiwara and Miyahara (2003), will be useful in our
further discussion.

Theorem 1. If the equation

g(MEMM) (θ) = r (8)

has a solution θ0, then the minimal entropy martingale
measure P0 of S exists. The process Y is also a Levy pro-
cess under P0 and the generating triplet (b0, c0, ν0) of Y
under P0 has the form

b0 = b + θ0c +
∫

{|x|≤1}
x

(
eθ0(e

x−1) − 1
)

ν (dx) ,

c0 = c,

ν0 (dx) = eθ0(e
x−1)ν (dx) .

4. Pricing with crisp parameters

Let
(
Ω,F , (Ft)t∈[0,T ] , P

)
be a probability space with

filtration defined in the previous section. Let T < ∞.
We assume that the price of the underlying asset St

is the geometric Levy process given by (7), where

Yt = μt+σWt + k1N
κ1
t + k2N

κ2
t + · · ·+ kDNκD

t , (9)

Wt is a Brownian motion, D is a positive integer,
σ > 0, μ, k1, k2, . . . , kD ∈ R, Nκ1

t , Nκ2
t , . . . , NκD

t

are independent Poisson processes with the intensities
κ1 > 0, κ2 > 0, . . . , κD > 0. We also assume
that Wt and the Poisson processes are independent. The
numbers k1, k2, . . . , kD describe the heights of jumps in
the underlying asset price.

The process (9) can be also described as the
compound Poisson process of the form

Yt = μt + σWt +
Nκ

t∑
i=1

ξi , (10)

where Wt is also a Brownian motion, σ > 0, μ, k ∈R, Nκ
t

is a Poisson process, independent of Wt, with the intensity
κ = κ1+κ2+· · ·+κD, and independent random variables
{ξi} i=1,2,... take value kj with probability pj = κj/κ
, j = 1, 2, . . . , D. From a probabilistic point of view
they can be treated as the same processes, since they have
the same finite dimensional distributions. In particular,
they have the same characteristic triplets. The equivalence
of similiar type between a GPL process, which is a
linear combination of independent Poisson processes
with positive integer coefficients, and a corresponding
compound Poisson process was discussed and explained
by Brigo et al. (2007). In comparison with (10), the form
(9) is more convenient to obtain the pricing formula for
the European call option.

Theorem 2. The price of the European call option with
the strike price K and the payment function f (x) = (x−



A fuzzy approach to option pricing in a Levy process setting 617

K)+ at time 0 is given by

C0

= e−(κ′
1+κ′

2+···+κ′
D)T

×
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mD=0

(κ′
1)

m1

m1!
(κ′

2)
m2

m2!
. . .

(κ′
D)mD

mD!

× T m1+m2+···+mDIm1,m2,...,mD ,

where

Im1,m2,...,mD

= S0e
(μ1−r)T+ σ2T

2 +km

Φ
(
dm
+

) − e−rT KΦ
(
dm
−

)
,

Φ is the cumulative distribution function of the standard
normal distribution and θ0 is the solution of the equation

μ+
(

1
2

+ θ

)
σ2 +

D∑
i=1

κi

(
eki − 1

)
eθ(eki−1) = r, (11)

km = k1m1 + k2m2 + · · · + kDmD,

μ1 = μ+θ0σ
2 , κ′

i = κie
θ0(eki−1), i = 1, 2, . . . , D,

dm
− =

ln S0
K + μ1T + km

σ
√

T
,

dm
+ =

ln S0
K + μ1T + σ2T + km

σ
√

T
.

Proof. We apply Theorem 1 to price the option. Equation
(8) has the form (11). Since g is an increasing continuous
function of θ limθ→−∞ g (θ) = −∞ and limθ→∞ g (θ) =
∞, the above equation has a unique solution. We denote it
by θ0. According to Theorem 1, with respect to P0, Y has
the form

Yt =
(
μ + θ0σ

2
)
t + σW 0

t + k1N
κ′
1

t + k2N
κ′
2

t

+ · · · + kDN
κ′

D
t , t ∈ [0, T ],

(12)

where W 0 is a Brownian motion, N
κ′
1

t , N
κ′
2

t , . . . , N
κ′

D
t

are Poisson processes with respect to P0, and all these
processes are independent.

The price of the derivative is given by

C0 = e−rT
E

P0 (ST − K)+

= e−rT
E

P0 (ST − K) I{ST >K}

= E
P0

(
S0e

(μ1−r)T+σW 0
T +k1N

κ′
1

T +k2N
κ′
2

T +···+kDN
κ′

D
t

−e−rT K
)
I{ST >K}

= E
P0

∞∑
m1=0

∞∑
m2=0

. . .

∞∑
mD=0

I{
N

κ′
1

T =m1,N
κ′
2

T =m2,...,N
κ′

D
T =mD

}

×
(
S0e

(μ1−r)T+σW 0
T +km − e−rT K

)

× I{
(μ1−r)T+σW 0

T +km>ln K
S0

−rT
}

= e−(κ′
1+κ′

2+···+κ′
D)T

×
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mD=0

(κ′
1)

m1

m1!
(κ′

2)
m2

m2!
. . .

(κ′
D)mD

mD!

× T m1+m2+···+mD ·
× E

P0

(
S0e

(μ1−r)T+σW 0
T +km − e−rT K

)

× I{
(μ1−r)T+σW 0

T +km>ln K
S0

−rT
} .

Since

(μ1 − r) T+σW 0
T +km ∼ N

(
(μ1 − r) T + km, σ

√
T

)
,

applying standard integral operations we obtain

E
P0

(
S0e

(μ1−r)T+σW 0
T +km − e−rT K

)

× I{
(μ1−r)T+σW 0

T +km>ln K
S0

−rT
}

= S0e
(μ1−r)T+ σ2T

2 +km

Φ
(
dm
+

) − e−rT KΦ
(
dm
−

)

= Im1,m2,...,mD .

�
Applying the Taylor expansion of the function exp,

in a further part of the paper, we shall replace the pricing
formula by

C0 = e−(κ′
1+κ′

2+···+κ′
D)T

×
N∑

m1=0

N∑
m2=0

· · ·
N∑

mD=0

(κ′
1)

m1

m1!
(κ′

2)
m2

m2!
. . .

(κ′
D)mD

mD!

× T m1+m2+···+mDIm1,m2,...,mD

(13)

for a sufficiently large N .
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5. Pricing with fuzzy parameters

In this section we will take into account possible
errors and uncertainties which arise from the estimation
of financial market parameters. We introduce fuzzy
parameters, assuming that they are L-R numbers. To
indicate their fuzziness, we will write the symbol ˜ on
top of them. Other parameters will be treated as crisp
numbers. The methodology similar to the one applied
below can be found in the work of Wu (2004).

Let us assume that the drift μ, the volatility σ, the
interest rate r, k1, k2, . . . , kD, κ1, κ2, . . . , κD are not
known precisely. Therefore we will treat them as L-R
fuzzy numbers μ̃, σ̃, r̃, k̃1, k̃2, . . . , k̃D, κ̃1, κ̃2, . . . , κ̃D.
Let μ∗, σ∗, r∗, k∗

1 , k∗
2 , . . . , k∗

D, κ∗
1, κ

∗
2, . . . , κ

∗
D be their

defuzzified versions. We obtain the following form of the
pricing formula (13):

C̃0 =e−(κ̃′
1⊕κ̃′

2⊕···⊕κ̃′
D)⊗T

⊗
N⊕

m1=0

N⊕
m2=0

· · ·
N⊕

mD=0

(
(κ̃′

1)
m1 � m1!

)

⊗ (
(κ̃′

2)
m2 � m2!

)

⊗ . . . ⊗ (
(κ̃′

D)mD � mD!
) ⊗ T m1+m2+···+mD

⊗
(
S0 ⊗ e[((μ̃′�r̃)⊗T)⊕(σ̃⊗σ̃⊗T2)⊕k̃m]

⊗Φ̃
(
d̃m
+

)
�

(
e−r̃⊗T ⊗ K ⊗ Φ̃

(
d̃m
−

)))
,

(14)

where

k̃m =
(
k̃1 ⊗ m1

)
⊕

(
k̃2 ⊗ m2

)
⊕ · · · ⊕

(
k̃D ⊗ mD

)
,

μ̃′ = μ̃ ⊕ (θ0 ⊗ σ̃ ⊗ σ̃) ,

κ̃′
i = κ̃i ⊗ e

θ0⊗
(

ek̃i�1
)

, i = 1, 2, . . . , D,

d̃m
− =

[
ln (S0 � K) ⊕ (μ̃′ ⊗ T ) ⊕ k̃m

]
�

(
σ̃ ⊗

√
T

)
,

d̃m
+ =

[
ln (S0 � K) ⊕ (μ̃′ ⊗ T ) ⊕ (σ̃ ⊗ σ̃ ⊗ T )⊕ k̃m

]

�
(
σ̃ ⊗

√
T

)
,

and θ0 is the solution (with respect to θ) of the equation

μ∗+(σ∗)2
(

1
2

+ θ

)
+

D∑
i=1

κ∗
i e

θ
(

ek∗
i −1

) (
ek∗

i − 1
)

= r∗.

(15)
In Eqn. (15) the parameters with ∗ are defuzzified

using one of the maximum methods (e.g., the mean of
maximum method) for L-R numbers. The existence of the
solution of (15) follows from the same argument as in the
proof of Theorem 2.

Applying Proposition 1, we can calculate the α-level
set of (

C̃0

)
α

=
[
C̃L

0α, C̃U
0α

]
,

using corresponding combinations of r̃L
α or r̃U

α , μ̃L
α or

μ̃U
α , σ̃L

α or σ̃U
α , k̃L

iα or k̃U
iα, κ̃L

iα or κ̃U
iα, i = 1, 2, . . . , D,

respectively. From the resolution identity

μC̃0
(c) = sup

0≤α≤1
αI(C̃0)

α

(c)

we obtain the membership function of C̃0. The α-level
sets of C̃0 can be comfortable tools for decision making.

For a given α (e.g., α = 0.95) the α-level set of
C̃0 can be treated by a financial analyst as the interval of
the European call option prices. Then the financial analyst
can pick any value from this interval as the option price
with an acceptable membership degree. For example, if
the market price of the European call option is outside
of such an interval, an appropriate course of action (i.e.,
buying or selling the financial instrument) may be taken
by the decision-maker.

6. Numerical experiments and analysis

As can be easily seen, the fuzzy pricing formula for the
European call option (14) may be calculated numerically.
However, for more complicated derivatives, Monte Carlo
simulations may be a better approach.

Therefore in this section we present the application
of the simulation method for the option pricing in the
case of the fuzzy framework. We conduct simulations
in a similar manner as in our previous work (Nowak
and Romaniuk, 2010). For our analysis we set D = 2,
although simulations may be also applied for other values
of D.

We fix an α-level. For the L-R fuzzy parameters
μ̃, σ̃, r̃, k̃1, k̃2, κ̃1, κ̃2, we find the solution θ0 of (15) using
their defuzzified counterparts μ∗, σ∗, r∗, k∗

1 , k∗
2 , κ∗

1 and
κ∗

2. For given α-level sets of the parameters we randomly
pick the value of each parameter treating the appropriate
sets as intervals for uniform distribution. We repeat this
procedure n times to find the estimate of α-level set C̃α of
the option price. If the closed-form formula for the option
price is sufficiently regular (as in the case of (14)), the
estimator of C̃α is given by the minimum and maximum
of n samples obtained via the method described above.
Apparently, we could find other descriptive statistics apart
from the minimum and maximum in the same way. These
statistics may be also useful for an experimenter, e.g.,
if someone is interested in a crisp value of the option
price, instead of the whole set C̃α, they may use the
median or mean. On the other hand, standard deviation
may be treated as an indicator of numerical stability for
the simulations.

If the closed formula for the option price is not
known, simulations may be applied for an iterative
version of process Yt, which is analogous to the formula
known as the Euler scheme in the Black–Scholes model
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(Glasserman, 2004; Nowak et al., 2002). For example, if
D Poisson processes are considered, we have

Yti+1 = Yti exp
((

μ + θ0σ
2
)
δt + σ

√
δtεi

+k1ν1i + k2ν2i + · · · + kDνDi) , (16)

where i = 0, 1, . . . , m for ti0 = 0 and tim =
T , δt = ti+1 − ti = const, ε0, . . . εm−1 are i.i.d.
random variables from the standard normal distribution,
ν10, . . . , ν1m−1, ν20, . . . ν2m−1, . . . , νD0, . . . , ν2D−1 are
i.i.d. realizations from Poisson processes with the
intensities κ′

1, κ
′
2, . . . , κ

′
D, respectively (cf. (12)). The

value m is the number of steps in each trajectory.
Then we generate n separate trajectories via the

formula (16). For each trajectory, as previously noted,
we randomly pick values of the fuzzy parameters. The
discounted values for the fixed payment function of the
appropriate derivative for n trajectories are used to obtain
the estimator for C̃α.

In our numerical experiments we use the formula
(14) for a model with two Poisson processes to obtain the
estimator of the option price. We assume that S0 = 1 (one
monetary unit assumption), K = 0.9 and expiration date
T = 1 (one year assumption). In each experiment we use
n = 10000 simulations.

6.1. Analysis I. We set α = 0.9, i.e., the option price
will lie in some interval with the membership degree 0.9.
The appropriate intervals for the parameters are described
in Table 1. As mentioned before, based on the generated
samples, we may find descriptive statistics for the option
price (see Table 2). Therefore the estimator for C̃α is given
by the interval [0.109991, 0.16266] (if the minimum and
maximum is used) or by the crisp value 0.136173 (if, e.g.,
the mean is applied).

Table 1. Parameters given by intervals in Analysis I.
Parameter Interval

μ̃ [0.01,0.05]
r̃ [0.01,0.05]
σ̃ [0.1,0.15]
κ̃1 [0.05,0.1]
κ̃2 [0.05,0.1]
k̃1 [0.05,0.1]
k̃2 [−0.1,−0.05]

6.2. Analysis II. We analyse the option price if some
parameters are changed and the others are set as constants.
Let us assume that intervals for the parameters k1 > 0 and
k2 < 0 are becoming wider, i.e., the value of the right side
for the k̃1 interval is getting bigger and the value of the
left side for the k̃2 interval is getting lower. In such a way

Table 2. Descriptive statistics for Analysis I.
Statistics Value

Mean 0.136173
Standard dev. 0.0111235

Minimum 0.109991
Q1 0.126787

Median 0.136205
Q3 0.145481

Maximum 0.16266

the upward and downward jumps are more important for
the trajectory of the underlying asset.

The descriptive statistics for some intervals for the
parameters k̃1 and k̃2 may be found in Table 3. Other
parameters are the same as described in Table 1. Some
statistics may be also compared in Fig. 1.

� � � � � � �

� �
�

�
�

�
�

� �
�

�

�
�

�

� � � � � � �

� � � � �
�

�

0.10 0.15 0.20 0.25 0.30 0.35 0.40
k

0.10

0.12

0.14

0.16

0.18

Price

Fig. 1. Graphs for descriptive statistics for option price in Anal-
ysis II (rectangles: minimum, triangles: 0.05 quantile,
circles: mean, upside down triangles: 0.95 quantile,
rhombus: maximum, X axis: absolute value for the right
side of the k1 interval and for the left side of the k2 in-
terval).

6.3. Analysis III. We analyse the option price as the
function of a value α. Triangular fuzzy numbers are used
to denote the fuzzy parameters μ̃, σ̃, r̃, k̃1, k̃2, κ̃1, κ̃2 for
the case considered (see Table 4). The estimators for the
option price for various α are given by the intervals (where
the minimum and maximum are used), or by the crisp
values (where mean is used) and can be found in Table
5. As we could see, the intervals are becoming wider and
crisp values are becoming lower for a lower value of α
(see Fig. 2).

6.4. Analysis IV. Next we focus on some statistical
properties of the samples generated via the method
described earlier. We set α = 0.9, and the appropriate
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Table 3. Parameters and data for Analysis II.
k̃1 [0.05,0.1] [0.05,0.15]
k̃2 [−0.1,−0.05] [−0.15,−0.05]

Mean 0.136173 0.136181
Standard dev. 0.0111235 0.0111413
Minimum 0.109991 0.111297
Q1 0.126787 0.127886
Median 0.136205 0.135429
Q3 0.145481 0.144312
Maximum 0.16266 0.163922

k̃1 [0.05,0.2] [0.05,0.25]
k̃2 [−0.2,−0.05] [−0.25,−0.05]

Mean 0.137726 0.13895
Standard dev. 0.0114401 0.0117028
Minimum 0.107177 0.109422
Q1 0.128584 0.129857
Median 0.137759 0.138936
Q3 0.146129 0.147754
Maximum 0.166949 0.169483

k̃1 [0.05,0.3] [0.05,0.35] [0.05,0.4]
k̃2 [−0.3,−0.05] [−0.35,−0.05] [−0.4,−0.05]

Mean 0.139338 0.140513 0.142314
Standard dev. 0.0120532 0.0129048 0.0137104
Minimum 0.10738 0.110263 0.105973
Q1 0.130199 0.131068 0.131789
Median 0.139361 0.140338 0.142105
Q3 0.147899 0.149172 0.151735
Maximum 0.176408 0.180148 0.184716

Table 4. Parameters given by fuzzy numbers in Analysis III.
Parameter Triangular fuzzy number

μ̃ [0.02, 0.04, 0.06]
r̃ [0.03, 0.05, 0.7]
σ̃ [0.1, 0.2, 0.3]
κ̃1 [1, 2, 4]
κ̃2 [1, 2, 4]
k̃1 [0.1, 0.2, 0.3]
k̃2 [−0.3, −0.2, −0.1]

intervals for the parameters can be found in Table 6. The
generated samples may be treated as statistical samples
and could be easily visualised by common statistical
tools, like a histogram (see Fig. 3) or a box-and-whisker
plot (see Fig. 4). In our case the samples tend to be
right-skewed (see Fig. 3), therefore it may be profitable
to use the median as the estimator of the crisp value of the
option price instead of the average. However, there are no
indications of outliers (see Fig. 4).

Users may be also interested if the samples are
distributed according to, e.g., some normal distribution
in order to conduct additional statistical tests. Therefore,
the Shapiro–Wilk or Kolmogorow–Smirnov tests may
be applied. In our case both of these tests reject the

Table 5. Price interval and price crisp value for various α in
Analysis III.

α Price interval Price crisp value

0.95 [0.214156, 0.27526] 0.241641
0.9 [0.181198, 0.307302] 0.240797
0.85 [0.158509, 0.331152] 0.237491
0.8 [0.143532, 0.389082] 0.237128
0.75 [0.121319, 0.413456] 0.234365

null hypothesis of normality—p-values are lower than
0.00001.

7. Conclusions

In the paper a geometric Levy process for the underlying
asset was introduced. The discontinuous part of the
log-price process is a linear combination of independent
Poisson processes and it describes positive and negative
jumps of the financial instrument prices. The combination
of stochastic analysis and fuzzy theory enables us to
obtain the pricing formula for the European call option.
We prove the valuation formula and presented appropriate
simulation techniques for option pricing in the case of the
fuzzy framework.
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Fig. 2. Graphs for the price intervals (rectangles and circles) and
the price crisp values (diamonds) for various α in Anal-
ysis III.

Table 6. Parameters given by intervals in Analysis IV.
Parameter Interval

μ̃ [0.01,0.05]
r̃ [0.02,0.07]
σ̃ [0.1,0.15]
κ̃1 [1,2]
κ̃2 [1,2]
k̃1 [0.05,0.1]
k̃2 [−0.1,−0.05]
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