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We formulate and analyze an unconditionally stable nonstandard finite difference method for a mathematical model of HIV
transmission dynamics. The dynamics of this model are studied using the qualitative theory of dynamical systems. These
qualitative features of the continuous model are preserved by the numerical method that we propose in this paper. This
method also preserves the positivity of the solution, which is one of the essential requirements when modeling epidemic
diseases. Robust numerical results confirming theoretical investigations are provided. Comparisons are also made with the
other conventional approaches that are routinely used for such problems.
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1. Introduction

Mathematical models play a significant role in
understanding the dynamics of biological systems.
In most cases, these models are described by autonomous
systems of nonlinear ordinary differential equations,
(see, for example, the works of Kouche and Ainseba
(2010), Xu et al. (2011), and the references therein).
Very often, such systems are so complex that their exact
solutions are not obtainable and hence the need for robust
numerical methods arises. However, as mentioned by
Villanueva et al. (2008), numerical methods like those
of Euler, Runge–Kutta and others fail to solve nonlinear
systems generating oscillations, chaos, and false steady
states. One way to avoid such numerical instabilities
is the construction of nonstandard finite difference
schemes. Dimitrov and Kojouharov (2007) pointed
out that numerical methods one uses to approximate
the solutions of dynamical systems are expected to be
consistent with the original differential systems, and
should be zero-stable and convergent.

In view of the above, in this paper we design a special
class of numerical methods, known as NonStandard

Finite Difference Methods (NSFDMs). These NSFDMs
are explored by many researchers to solve problems in
biological sciences and other areas. Below, we mention
a few of them.

Arenas et al. (2008) developed a nonstandard
numerical scheme for an SIR (where S, I and R stand
for susceptible, infected and removed individuals,
respectively) seasonal epidemiological model for
Respiratory Syncytial Virus (RSV). They compared their
technique with some well-known explicit methods and
carried out some simulations with data from Gambia and
Finland. They showed that the forward Euler and fourth
order Runge–Kutta schemes do not converge unless the
step-size used in the numerical simulations for these two
methods is less than a critical step-size hc = 0.1.

Some useful studies on dynamical systems are
those by found in the works of Dulęba (2004), Rauh
et al., (2009; 2009), as well as Zhai and Michel
(2004). General two-dimensional autonomous dynamical
systems and their standard numerical discretizations are
considered by Dimitrov and Kojouharov (2005) who
designed and analyzed nonstandard stability-preserving
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finite-difference schemes based on the explicit and
implicit Euler and the second-order Runge-Kutta
methods. The methods proposed in that paper can
be applicable for solving arbitrary two-dimensional
autonomous dynamical systems. In another work,
Dimitrov and Kojouharov (2006), formulated positive and
elementary stable nonstandard finite-difference methods
to solve a general class of Rosenzweig–MacArthur
predator-prey systems which involve a logistic intrinsic
growth of the prey population. Their methods preserve the
positivity of solutions and the stability of the equilibria for
arbitrary step-sizes, while the approximations obtained
by the other numerical methods experience difficulties
in preserving either the stability or the positivity of the
solutions, or both.

Gumel et al. (2005) investigated a class of NSFDMs
for solving systems of differential equations arising in
mathematical biology. They showed that their methods
can often give numerical results that are asymptotically
consistent with those of the corresponding continuous
model by using a number of case studies in human
epidemiology and ecology.

Some fundamental concepts and applications of
nonstandard finite difference schemes for the solution of
an initial value problem of ordinary differential equations
are presented by Ibijola et al. (2008). They stated the
reason why nonstandard methods are needed despite the
fact that we have numerous standard methods available
by pointing out that one of the shortcomings of standard
methods is that qualitative properties of the exact solution
are not usually transferred to the numerical solution.

Jódar et al. (2008) explained how to construct
two competitive implicit finite difference schemes for
a deterministic mathematical model associated with
the evolution of influenza in human population. They
obtained numerical simulations with different sets of
initial conditions, parameter values, and time step-sizes.

Villanueva et al. (2008) developed (and analyzed
numerically) nonstandard finite difference schemes which
are free of numerical instabilities, to obtain the numerical
solution of a mathematical model of infant obesity
with constant population size. This model consists of
a system of coupled nonlinear ordinary differential
equations describing the dynamics of overweight and
obese populations. The numerical results presented in that
paper showed that their methods have better convergence
properties when compared to the classical Euler or the
fourth-order Runge–Kutta methods and the MATLAB
routines in the sense that these routines give negative
values for some of the state variables.

The relationship between a continuous dynamical
system and numerical methods to solve it, viewed as
discrete dynamical systems, is studied by Anguelov et al.
(2009). In this work, the authors further categorized the
term ‘dynamic consistency’ as the ‘topological dynamic

consistency’ and proposed a topologically dynamically
consistent nonstandard finite difference method.

Applications of these NSFDMs for singularly
perturbed problems can be seen in the work of Kadalbajoo
et al. (2006), Lubuma and Patidar (2006; 2007c; 2007a;
2007b), Munyakazi and Patidar (2010), Patidar and
Sharma (2006a; 2006b), or Patidar (2008). However, an
exhaustive account of work that use such methods is
provided in the survey article by Patidar (2005).

In this paper, we consider a mathematical model
of HIV infection proposed by Bacaer et al. (2008).
The governing model is an initial value problem for a
system of nonlinear ordinary differential equations. It
describes the dynamics of HIV epidemic by partition
of human population into susceptibles and infectious
subpopulations, denoted respectively by S and I . We
modify this model by incorporating a function of the
Hill type for the transmission rate of HIV rather than the
function e−λH used by Bacaer et al. (2008), where λ is
a parameter representing the behavioral change and H
denotes the HIV prevalence.

We develop some NSFDMs for numerical solution
of a nonlinear system of ordinary differential equations
describing the transmission dynamics of HIV. To the
best of our knowledge, this is the first time that these
NSFDMs are designed for this system. To keep the
methods fully explicit, we will use the forward difference
approximations for the first derivative terms. The nonlocal
approximations will be used to tackle the nonlinear terms.
In some cases, we will also make use of denominator
functions which are a little more complex functions of the
time step-size than the classical one. Furthermore, we will
show that these NSFDMs preserve some key properties of
the corresponding continuous model. It should be noted
that the proposed schemes are unconditionally stable.

The rest of this paper is organized as follows.
The continuous model and its stability properties are
discussed in Section 2. In Section 3 we design and
analyze a numerical method to solve the model proposed
in Section 2. Further numerical analyses as well as some
numerical simulations are presented in Section 4. A
thorough discussion on the results as well as the scope
for some future research is presented in Section 5.

2. Mathematical model

In this paper, we will consider the mathematical model for
HIV proposed by Bacaer et al. (2008) that describes the
dynamics of HIV epidemic. The total human population
is divided into susceptibles and infectious subpopulations
denoted by S and I , respectively. It is assumed that,
at any time t, new recruits enter the susceptible class
at a constant rate B. Upon effective contact with an
infectious individual at time t, a susceptible individual
acquires infection and moves into the class I of infectious
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Table 1. Description and values of parameters used in the sys-
tem (1).

Description Parameter Value

Birth rate B 200/year
Maximum transmission rate d 0.7/year
Parameter representing λ0 5.9
behavior change
Natural death rate μ1 0.02/year
Mortality rate of infectious μ2 0.1/year
individuals
Hill coefficient k variable

individuals. The effective contact rate at time t is denoted
by f(H(t)). It is a decreasing function of the HIV
prevalence H that reflects a reduction in risky behavior
resulting from the awareness of individuals to a higher
HIV prevalence. The death rates of susceptible and
infected individuals are respectively denoted by μ1 and
μ2. Using these notations and terminology, the governing
model is described by the following nonlinear system of
ordinary differential equations:

dS(t)
dt

= B − f(H(t))H(t)S(t) − μ1S(t),

dI(t)
dt

= f(H(t))H(t)S(t) − μ2I(t),
(1)

where H(t) is the prevalence of HIV given by

H(t) =
I(t)
N(t)

, (2)

withN(t) = S(t)+I(t) as the total number of population.
The function f(H) in this model is considered to be

the following function of the Hill type:

f(H) =
d

1 + λ0Hk
, k ≥ 1, (3)

where d, λ0 and k are real numbers and defined in
Table 1. The descriptions of the state variables and other
time-invariant parameters as well as their values (as
presented by Bacaer et al. (2008)) are given in Table 1
below.

Remark 1. It should be noted that the model (1) does not
distinguish the progression stages of HIV infection. The
aim of this work is to focus on the impact of the response
function on the dynamics of the model where estimates of
the parameters are considered averages over all stages as
indicated by Bacaer et al. (2008). However, regarding the
stage progression property, the readers may refer to the
work of Gumel et al. (2006) and the references therein.

The following results, which determine the basic
qualitative features of the continuous model (1), will
be useful in designing a robust nonstandard finite

difference method for solving (1). These results (which
are easy to prove) will further be used in measuring the
competitiveness of NSFDMs.

Theorem 1. The set

D =
{

(S, I) ∈ R
2
+ : S + I ≤ B

μ1

}

is positivity-invariant for the system (1).

The basic reproduction number of the system (1) is
given by

R0 =
d

μ2
. (4)

To find the equilibria of system (1), we notice that, in
terms of the prevalence of HIV at an equilibrium

H∗ =
I∗

S∗ + I∗
,

the system (1) has the following characteristic equation:

H∗(μ2λ0H
∗k + dH∗ + μ2(1 −R0)) = 0, (5)

whereH∗ = 0 corresponds to the disease free equilibrium

E∗
0 =

(
B

μ1
, 0
)
, (6)

and any (as we can have more, one for each H∗) endemic
equilibrium is given by

E∗ =
(

B(1 −H∗)
μ1(1 −H∗) + μ2H∗ ,

BH∗

μ1(1 −H∗) + μ2H∗

)
,

(7)
where H∗ is a positive solution of the equation

μ2λ0H
∗k + dH∗ + μ2(1 −R0) = 0. (8)

However, the above endemic equilibrium will be
unique if R0 > 1. (Note that, in this case, the function
defined by Eqn. (8) is increasing, which means that there
is only one endemic equilibrium point.) In summary,

• if R0 ≤ 1, then only the disease free equilibrium
exists;

• if R0 > 1, then there exists a unique endemic
equilibrium.

As a consequence of the above results, we have the
following theorem.

Theorem 2. For any value of the Hill coefficient k, the
system (1) exhibits a transcritical bifurcation.
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Now, for k = 1, we provide the equilibria and
their basic stability properties for the system (1). While
the disease free equilibrium is given by (6), the unique
endemic equilibrium of this system reads as

E∗ = (E∗
1 , E

∗
2 ) , (9)

which exists only if R0 > 1, where

E∗
1 =

B(1 + λ0)
μ1(1 + λ0) + μ2(R0 − 1)

E∗
2 =

B (R0 − 1)
μ1(1 + λ0) + μ2 (R0 − 1)

.

It can further be proved that these equilibria have the
following stability properties:

Theorem 3. The disease free equilibrium of the sys-
tem (1), E∗

0 , is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Theorem 4. The disease free equilibrium of the sys-
tem (1), E∗

0 , is globally asymptotically stable in D if
R0 < 1.

Theorem 5. The endemic equilibrium of the system (1),
E∗

1 , is locally asymptotically stable if R0 > 1.

Regarding the cases when k > 1, it can be seen from
(8) that the analytical evaluation of equilibria becomes
algebraically cumbersome. We therefore evaluate them
numerically, and we will also investigate some of the
properties that they possess. This will be done in
Section 4.1.

3. Construction and analysis of the NSFDM

In this section, we design a nonstandard finite difference
method that satisfies the positivity of the state variables
involved in the system. It is important that a numerical
method preserves this property when used to solve
differential models arising in population biology because
these state variables represent subpopulations which never
take negative values.

To begin with, the time domain [0, T ] is partitioned
through the discrete time levels tn = n�, where � > 0 is
the time step-size.

To construct the NSFDM, we discretized the
system (1) based on the approximation of the temporal
derivatives by a generalized first order forward difference
method as follows.

For S(t) ∈ C
1(R), the discrete derivative is defined

by

dS(t)
dt

=
S(t+ �) − S(t)

ψ(�)
+ O(ψ(�)) as �→ 0, (10)

where ψ(�) is a denominator function (Mickens and
Smith, 1990; 2007) which is a real-valued function and
satisfies

ψ(�) = �+ O(�2) for all � > 0. (11)

The discrete derivative for I(t) is obtained analogously
whereas the non-derivative terms are approximated
locally, i.e., at the base time level.

Denoting the approximations of S(nh) and I(nh)
by Sn and In, respectively, where n = 0, 1, 2, . . . , the
NSFDM reads

Sn+1 − Sn

ψ(�)
= B − μ1S

n+1 − f(Hn)HnSn+1,

In+1 − In

ψ(�)
= f(Hn)HnSn+1 − μ2I

n+1,

(12)

where discretizations for H and f(H) are given by

Hn =
In

Sn + In
(13)

and

f(Hn) =
d

1 + λ0(Hn)k
, (14)

respectively.

Remark 2. It is to be noted that, besides the use
of a non-classical denominator function, we have also
used some non-local discretizations. As mentioned in
the literature (see, e.g., Mickens and Ramadhani, 1994;
Patidar, 2005) a finite difference method is termed a
nonstandard finite difference method if either we use a
denominator function or a non-local approximation. In
view of this, when ψ(�) = �, the above method will be
referred to as “NSFDM-I”. However, if the denominator
function ψ(�) is different from �, the method will be
referred to as “NSFDM-II”. In this work, this function is
considered to be (eμ2� − 1)/μ1, μ2 > μ1.

Simplifying (12), we obtain

Sn+1 =
Sn + ψ(�)B

1 + ψ(�) {f(Hn)Hn + μ1} ,

In+1 =
In + ψ(�)f(Hn)HnSn+1

1 + μ2ψ(�)
.

(15)

The positivity of the solution reflects from the above
method (15), because if the initial values S(0) and I(0)
are non-negative then the right hand side of (15) admits
no negative terms for any of n = 0, 1, 2, 3, . . . .

In the following section we determine the stability
properties of the system (12), and we verify that

(i) the continuous and the discrete models have the same
equilibria, and

(ii) both models possess similar qualitative features near
these equilibria.
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3.1. Fixed points and stability analysis. We study in
this section the stability and convergence properties of the
fixed points of the proposed NSFDM numerical method
(12).

We begin by noting that the fixed points (Ŝ, Î) of the
system (12) can be found by solving

F (Ŝ, Î) = Ŝ,

G(Ŝ, Î) = Î ,
(16)

where F (Ŝ, Î) and G(Ŝ, Î) can be obtained by
considering the right hand sides in (15), i.e.,

F (Ŝ, Î) =
Ŝ + ψ(�)B

1 + ψ(�)
{
f(Ĥ)Ĥ + μ1

} ,

G(Ŝ, Î) =
Î + ψ(�)f(Ĥ)ĤŜ

1 + μ2ψ(�)
,

(17)

where

Ĥ =
Î

Ŝ + Î
. (18)

Solving (16), we obtain the following equation for Ĥ:

Ĥ(μ2λ0Ĥ
k + dĤ + μ2(1 −R0)) = 0. (19)

In the above equation, Ĥ = 0 corresponds to the disease
free equilibrium

Ê0 =
(
B

μ1
, 0
)
, (20)

whereas any endemic equilibrium is given by

Ê =

(
B(1 − Ĥ)

μ1(1 − Ĥ) + μ2Ĥ
,

BĤ

μ1(1 − Ĥ) + μ2Ĥ

)
, (21)

in which Ĥ corresponds to the positive solutions of the
characteristic equation

μ2λ0Ĥ
k + dĤ + μ2(1 − R0) = 0. (22)

The form of the above equation is similar to the
characteristic equation for the continuous systems (1)
given by (8). Therefore, both the systems (1) and (12)
have the same characteristic equation and expressions of
equilibria. Hence, we have the following result.

Remark 3. For any k, the continuous system (1)
and the discrete system (12) have the same equilibria.
Furthermore, when k = 1, then, in addition to the above
disease free fixed point, the system (12) has the following
endemic fixed point:

Ê =

(
B(1 + λ0)

Êd1
,
B(R0 − 1)

Êd1

)
, (23)

which exists only if R0 > 1, where

Êd1 = μ1(1 + λ0) + μ2(R0 − 1).

The next theorems give us the stability properties
only when k = 1. However, it is difficult to find
the endemic fixed points for the system (12) in closed
form when k ≥ 2, and we will be investigating them
numerically. This will be shown in Section 4.2. Moreover,
we will show that both systems (discrete as well as
continuous) behave similarly near their equilibria.

Theorem 6. Let ψ(�) be a real-valued function such that
ψ(�) = � + O(�2). If R0 < 1, then the system (12) is
unconditionally (i.e.,regardless of the step-size �) local-
ly asymptotically stable at the disease free equilibrium,
Ê0 = (B/μ1, 0), and unstable otherwise.

Proof. The Jacobian matrix of the system (12) evaluated
at the disease free equilibrium, Ê0, is

J(Ê0) =

⎛
⎜⎝

1
1+ψ(�)μ1

− ψ(�)d
1+ψ(�)μ1

0 1+ψ(�)d
1+ψ(�)μ2

⎞
⎟⎠ .

Being a triangular matrix, its eigenvalues are the entries
along the main diagonal, i.e.,

λ1 =
1

1 + ψ(�)μ1
, λ2 =

1 + ψ(�)d
1 + ψ(�)μ2

.

It should be noted that the inequality |λ1| < 1 always
holds since R0 < 1 for the disease free equilibrium.
Hence, the spectral radius is strictly less than unity
in magnitude if R0 < 1 for all �, and then, using
Theorem 2.10 of Allen (2007), the required result is
obtained. �

Theorem 7. The endemic equilibrium of the system (12),
Ê, is unconditionally locally asymptotically stable if
R0 > 1.

Proof. The Jacobian matrix of the system (12) evaluated
at the endemic equilibrium (23) is

J(Ê) =

⎛
⎜⎝
R0(1+λ0)+ψ(�)μ2(R0−1)

Jd
1

−μ2(1+λ0)ψ(�)

Jd
1

μ2(R0−1)2ψ(�)
R0(1+ψ(�)μ2)(1+λ0)

R0+ψ(�)μ2
R0(1+ψ(�)μ2) )

⎞
⎟⎠ ,

where

Jd1 = R0((1 + ψ(�)μ1)(1 + λ0) + ψ(�)μ2(R0 − 1)),

which can be written in the following form:

J(Ê) =

⎛
⎝b1 −b2

b3 b4

⎞
⎠ ,
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where

b1 =
a1 + a2

a1a3 +R0a2
,

b2 =
a4

a1a3 +R0a2
,

b3 =
a2(R0 − 1)

a5a7
,

b4 =
a6

a7
,

with

a1 = R0(1 + λ0),
a2 = ψ(�)μ2(R0 − 1),
a3 = 1 + ψ(�)μ1,

a4 = μ2(1 + λ0)ψ(�),
a5 = 1 + λ0,

a6 = R0 + ψ(�)μ2,

a7 = R0(1 + ψ(�)μ2).

Since we have R0 > 1, it follows that ai > 0, 1 ≤ i ≤ 7,
0 < b1, b4 < 1 and b2, b3 > 0.

The characteristic equation associated with the above
matrix is given by

g(λ) = λ2 −A1λ+A2 = 0, (24)

where

A1 = b1 + b4 > 0 and A2 = b1b4 + b2b3 > 0.

Lemma 1. (Brauer and Castillo-Chavez, 2001) The roots
of Eqn. (24) satisfy |λi| < 1, i = 1, 2, if and only if the
following conditions are satisfied:

1. g(1) = 1 −A1 +A2 > 0,

2. g(−1) = 1 +A1 +A2 > 0,

3. g(0) = A2 < 1.

From Eqn. (24), we have

g(1) = 1 −A1 +A2,

= (1 − b1)(1 − b4) + b2b3,

> 0, (25)

as both b1 and b4 are less than unity. Also

g(−1) = 1 +A1 +A2,

> 0, (26)

since both A1 and A2 are greater than zero. Moreover, we
have

g(0) = A2,

=
ν1 + ν2

ν1 +R0ν2 + ν3
< 1, (27)

since R0 > 1, where

ν1 = R0(1 + λ0) > 0,

ν2 = �μ2(R0 + λ0) + �2μ2
2(R0 − 1) > 0,

ν3 = �μ1R0(1 + λ0)(1 + �μ2) > 0.

From (25)–(27), the conditions of Lemma 1 hold.
Therefore, the eigenvalues of the associated Jacobian
matrix in this case are strictly less than unity in modulus
when R0 > 1 for all step-sizes �. Hence, the numerical
method (12) is unconditionally stable at its endemic
equilibrium Ê. �

Remark 4. From the results in this section, we can
conclude that both models (the continuous one (1) as well
as the discrete one (12)) have the same equilibria, and
their behavior is qualitatively similar near these equilibria.
Therefore, the nonstandard finite difference method (12)
is elementary stable.

4. Numerical results and simulations

We present some numerical simulations using the
proposed NSFDMs in this section. The numerical results
that we obtain support our theoretical results. The methods
are also tested for convergence. We numerically show
that both of these methods (NSFDM-I and NSFDM-II)
are elementary stable when the Hill coefficient k ≥
2. A number of different numerical simulations are
carried out and comparisons are made with other
well-known numerical methods for various time step-sizes
�. Parameter values used in the simulations are presented
in Table 1. Some of these parameters are varied to test
the robustness of the methods. As mentioned in Section
2, we attempt to investigate the endemic equilibria and
their stability for both continuous and discrete models
numerically as shown below in Tables 2–4. Parameters
used for this part of the simulations are taken from Table
1, which gives R0 > 1.

4.1. Numerical stability analysis of the endemic equ-
ilibria. In this section, we tabulate the equilibria and
their respective eigenvalues associated with the Jacobian
matrices for the continuous system (1) for different values
of Hill coefficient k. It should be noted that, when solving
the system (1) for its equilibria when k = 2, 3, . . . , 10, it
always has the disease free equilibrium E∗

0 = (10000, 0)
and k endemic equilibria (for the set of parameter values
presented in Table 1, which give (R0 > 1)), but there is
only one endemic equilibrium point for each value of k. It
is clear from the above tabular results that, the eigenvalues
in each case of k = 2, 3, . . . , 10 are negative. We therefore
have the following remark.

Remark 5. For k = 2, 3, 4, . . . , 10, the system (1) has a
disease free equilibrium when R0 < 1 and it possesses a
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Table 2. Endemic equilibria and their eigenvalues for the sys-
tem (1) when k ≥ 2.
k S∗ I∗ λ1 λ2

2 1280 1744 −0.1998 −0.0890
3 1019 1796 −0.2903 −0.0876
4 866 1827 −0.3652 −0.0881
5 763 1847 −0.4288 −0.0889
6 689 1862 −0.4832 −0.0897
7 633 1873 −0.5296 −0.0904
8 589 1882 −0.5690 −0.0910
9 553 1889 −0.6022 −0.0916
10 523 1895 −0.6298 −0.0922

number of endemic equilibria as presented above in Table
2 when R0 > 1. Each of these endemic equilibria is
locally asymptotically stable if R0 > 1.

4.2. Numerical stability analysis of the fixed points.
The spectral radii of the Jacobian matrices corresponding
to the fixed points of the numerical method for different
values of Hill coefficient k and the time step-size � are
tabulated in this section. We recall from Remark 3 that the
equilibria of both systems (1) and (12) remain the same
for any value of k.

It can be seen from the two tables above that all the
spectral radii are less than one in magnitude irrespective
of the time step-size used in the simulations. Hence, each
of these fixed points is locally asymptotically stable if
R0 > 1 for k = 2, 3, . . . , 10. Thus, we have the following
remark.

Remark 6. For k = 2, 3, . . . , 10, each fixed point of
system (12) is locally asymptotically stable if R0 >
1. Moreover, the system is unconditionally elementary
stable.

4.3. Numerical simulations for the disease free
equilibrium. The Disease Free Equilibrium (DFE) is
calculated using the proposed NSFDMs along with other
numerical methods conventionally used. A thorough
comparison of these methods is presented for many
different scenarios. The maximum transmission rate, d,
is very important from the biological point of view and
hence its value will be varied in a certain range while
keeping R0 < 1 (as needed for the DFE).

In Section 2, we showed that system (1) has an
asymptotically stable disease free equilibrium if R0 < 1.
The numerical value of this DFE is given by E∗

0 =
(10000, 0). In order to check whether these numerical
methods converge to the theoretical value of the DFE, we
require a tolerance value. To this end, for the susceptible
we consider their value as 1% of the susceptible
population whereas we consider 20 individuals as the
tolerance value for the infectious population. Although

all the numerical methods converge to the disease free
equilibrium, E∗

0 , for any time step-size used when d =
0.07, we can see from Fig. 1 that only NSFDM-II achieves
much better convergence. In Table 5 as well as in Fig. 2, it
is shown when d = 0.09 only NSFDM-II converges to the
correct disease free equilibrium, E∗

0 , for different values
of the step-size.

To see the robustness of the NSFDMs with respect to
the initial conditions, the results are presented in Table 6.
In this table we also put the results obtained by the fourth
order Runge–Kutta method and the MATLAB solver
ode45. It can be seen that NSFDM-II converges for all
initial conditions whereas the others do not. This also can
be seen in Fig. 3.

As far as the positivity of the solutions obtained by
these methods is concerned, we note that the Euler method
does not preserve this property although it converges for
a wide range of the step-sizes and initial conditions (see,
Fig. 4). However, NSFDMs always preserve this property.

4.4. Numerical simulations for the endemic equili-
bria. In this section, we study the convergence behavior
of numerical methods to endemic equilibria. We provide
the results for various values of the Hill coefficient k.

4.4.1. Case I: Hill coefficient k = 1. When k = 1,
the unique endemic equilibrium, E∗, of the system (1) is
locally asymptotically stable if d > μ2 (R0 > 1). In this
section, the tolerance values are 1% and 10% for S∗ and
I∗, respectively.

It can be seen from Figs. 5 and 6 that all numerical
methods converge almost to the endemic equilibrium E∗

when d > μ2. However, NSFDM-II converges more
accurately.

Furthermore, all the numerical methods converge to
the correct endemic equilibrium for any initial conditions
used. However, when d is close to μ2 (which means
that R0 is close to 1), only NSFDM-II could achieve
convergence for a wide range of the initial conditions.
This is shown in Table 7 as well as in Fig. 7. Again
as in the case of the DFE, the preservation of the
positivity of the solutions is observed only for NSFDM-I.
The Euler method failed to do so although it converges
asymptotically to the correct endemic equilibrium. This is
depicted in Fig. 8 below.

4.4.2. Case II: Hill coefficient k > 1. In this section,
simulation results are presented for different numerical
methods for a range of k > 1. As in the previous case, the
tolerance value for S∗ is taken as 1%. However, for k > 1,
there will be sufficient fluctuations in the dynamics of the
infectious population and therefore we would not take the
tolerance as 10% in this case, and hence the 1% tolerance
would suffice for I∗. It can be seen that all the methods in
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Table 3. Spectral radii of the Jacobian matrices corresponding to the fixed points of NSFDM-I for k ≥ 2.
k � = 0.01 � = 0.5 � = 1 � = 10 � = 20 � = 100

2 0.998864 0.945832 0.896589 0.431238 0.241651 0.034112
3 0.998706 0.938325 0.882257 0.352413 0.136550 0.177431
4 0.998608 0.933664 0.873359 0.303474 0.071299 0.266411
5 0.998546 0.930702 0.867703 0.272367 0.029823 0.322969
6 0.998508 0.928864 0.864195 0.253071 0.004094 0.358054
7 0.998486 0.927820 0.862201 0.242107 0.010524 0.377988
8 0.998476 0.927359 0.861322 0.237270 0.016973 0.386782
9 0.998476 0.927340 0.861285 0.237065 0.017247 0.387155
10 0.998482 0.927659 0.861895 0.240424 0.012768 0.381048

Table 4. Spectral radii of the Jacobian matrices corresponding to the fixed points of NSFDM-II for k ≥ 2.
k � = 0.01 � = 0.5 � = 1 � = 10 � = 20 � = 100

2 0.994338 0.767892 0.607976 0.018925 0.102996 0.137513
3 0.993553 0.735724 0.553645 0.160140 0.255862 0.295163
4 0.993066 0.715752 0.519913 0.247812 0.350768 0.393039
5 0.992756 0.703058 0.498472 0.303540 0.411093 0.455252
6 0.992564 0.695183 0.485172 0.338109 0.448515 0.493845
7 0.992455 0.690708 0.477615 0.357751 0.469777 0.515773
8 0.992407 0.688735 0.474282 0.366415 0.479157 0.525446
9 0.992405 0.688651 0.474140 0.366783 0.479555 0.525856
10 0.992438 0.690022 0.476455 0.360766 0.473041 0.519139
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Fig. 1. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)), (b)) obtained by using different numerical me-
thods when d = 0.07, with initial conditions (S(0), I(0)) = (9900, 100). � = 1.

Table 5. Results obtained by different numerical methods when d = 0.09 with initial conditions (S(0), I(0)) = (9900, 100). The
disease free equilibrium is given by (S∗, I∗) = (10000, 0).

� ode45 RK4 NSFDM-I NSFDM-II

0.01 Diverge Diverge Diverge Converge
0.1 Diverge Diverge Diverge Converge
0.5 Diverge Diverge Diverge Converge
1 Diverge Diverge Diverge Converge
4 Diverge Diverge Diverge Converge
6 Diverge Diverge Diverge Converge
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Fig. 2. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical methods
when d = 0.09, with initial conditions (S(0), I(0)) = (9900, 100). � = 0.01 (upper plots), � = 4 (lower plots).

Table 6. Results obtained by different numerical methods for different initial conditions when d = 0.07 and � = 1. The disease free
equilibrium is given by (S∗, I∗) = (10000, 0).

S(0) I(0) ode45 RK4 NSFDM-I NSFDM-II

9950 50 Converge Converge Converge Converge
9900 100 Converge Converge Converge Converge
9850 150 Converge Converge Diverge Converge
9800 200 Diverge Diverge Diverge Converge
7000 3000 Diverge Diverge Diverge Converge
2000 8000 Diverge Diverge Diverge Converge

Table 7. Results obtained by different numerical methods for different initial conditions when d = 0.11 and � = 1. The disease free
equilibrium is given by (S∗, I∗) = (9324, 135).

S(0) I(0) ode45 RK4 NSFDM-I NSFDM-II

9318 141 Converge Converge Converge Converge
9314 145 Converge Converge Converge Converge
9267 192 Diverge Diverge Diverge Converge
8275 1184 Diverge Diverge Diverge Converge
6280 3179 Diverge Diverge Diverge Converge
3324 6135 Diverge Diverge Diverge Converge
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Fig. 3. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical me-
thods when d = 0.07 and � = 1. (S(0), I(0)) = (9950, 50) (upper plots), (S(0), I(0)) = (5000, 5000) (middle plots),
(S(0), I(0)) = (2000, 8000) (lower plots).

the tables converge for small step-sizes. However, when
the step-sizes are larger, then only NSFDMs converge
to the correct endemic equilibrium. This is shown in
Tables 8–10. Furthermore, Figs. 9–11 show how the
different numerical methods converge to the equilibrium
in each case when the step-size is 1. While all these
methods converge, we see that convergence is oscillatory
in the case of ode45 (see Fig. 11). NSFDM-II also

oscillates in the transient face but converges much before
the other methods. However, NSFDM-I has the best
performance.

5. Discussion and concluding remarks

In this paper, an unconditionally stable nonstandard finite
difference method is proposed for solving a mathematical
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Fig. 4. Profiles of solutions for infectious individuals (I(t)) obtained by NSFDM-I and the Euler method when d = 0.05, μ2 = 0.45,
with initial conditions (S(0), I(0)) = (9900, 100). � = 3 (a), � = 4 (b).
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Fig. 5. Profiles of solutions (susceptibles (S(t)) and infectious individuals (I(t))) obtained by using different numerical methods when
d = 0.11, with initial conditions S(0), I(0)) = (9314, 145). � = 0.01 (upper plots), � = 4 (lower plots).

model of HIV represented by a nonlinear system of
ordinary differential equations. The proposed method is
very competitive. It is qualitatively stable, that is, it
produces results which are dynamically consistent with
those of the continuous system.

Numerical results presented in Section 4 confirm
further applicability of the proposed NSFDMs for
biological systems. These methods preserve the positivity
of solutions and the stability properties of the equilibria
for arbitrary step-sizes, while the solutions obtained
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Fig. 6. Profiles of solutions (susceptibles (S(t)) and infectious individuals (I(t))) obtained by using different numerical methods when
d = 0.7, with initial conditions S(0), I(0)) = (2000, 1496). � = 0.01 (upper plots), � = 4 (lower plots).

Table 8. Results obtained by different numerical methods for k = 2 with initial conditions (S(0), I(0)) = (1324, 1700) and different
step-sizes. In this case, the endemic equilibrium is given by (S∗, I∗) = (1280, 1744).

� ode45 RK4 NSFDM-I NSFDM-II

0.01 Converge Converge Converge Converge
1 Converge Converge Converge Converge
4 Converge Converge Converge Converge
8 Converge Converge Converge Converge
12 Failed Converge Converge Converge
15 Failed Diverge Converge Converge
20 Failed Diverge Converge Converge

Table 9. Results obtained by different numerical methods for k = 5 with initial conditions (S(0), I(0)) = (810, 1800) and different
step-sizes. In this case, the endemic equilibrium is given by (S∗, I∗) = (763, 1847).

� ode45 RK4 NSFDM-I NSFDM-II

0.01 Converge Converge Converge Converge
1 Converge Converge Converge Converge
3 Converge Converge Converge Converge
4 Failed Converge Converge Converge
6 Failed Converge Converge Converge
10 Failed Diverge Converge Converge
15 Failed Diverge Converge Converge
20 Failed Diverge Converge Converge
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Fig. 7. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical methods
when d = 0.11, with � = 1. (S(0), I(0)) = (9267, 192) (upper plots), (S(0), I(0)) = (3324, 6135) (lower plots).
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Fig. 8. Profiles of solutions (susceptibles (S(t) (a) and infectious individuals (I(t)) (b)) obtained by NSFDM-I and the Euler method
when d = 0.7, μ2 = 0.3, with initial conditions (S(0), I(0)) = (965, 2096). � = 4.

by other numerical methods experience difficulties in
either preserving the positivity of the solutions or in
converging to the correct equilibria. Furthermore, since

large step-sizes can be used, these methods save the
computation time and memory.

It should be noted that, when numerical simulations
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Fig. 9. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical methods
when k = 2, with initial conditions (S(0), I(0)) = (1324, 1700). � = 1.
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Fig. 10. Profiles of solutions (susceptibles (S(t)) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical me-
thods when k = 5, with initial conditions (S(0), I(0)) = (810, 1800). � = 1.

Table 10. Results obtained by different numerical methods for
k = 10 with initial conditions (S(0), I(0)) =
(500, 1918) and different step-sizes. In this case,
the endemic equilibrium is given by (S∗, I∗) =
(523, 1895).

� ode45 RK4 NSFDM-I NSFDM-II
0.01 Converge Converge Converge Converge
1 Converge Converge Converge Converge
3 Failed Converge Converge Converge
4 Failed Converge Converge Converge
6 Failed Diverge Converge Converge
10 Failed Diverge Converge Converge
15 Failed Diverge Converge Converge
20 Failed Diverge Converge Converge

using a particular method are performed for a set of
parameters that usually fit the model well, then the

method normally tends to converge. However, a slight
change in the values of these parameters can make some
methods unreliable. In reality, one might expect (with
a very little probability) some situations, for example,
disease outbreaks in a community, when at a particular
time there may be more infectious individuals than
susceptibles. To test whether the numerical methods
capture these dynamics, we have provided some more
numerical simulations (see Tables 6, 7 and Figs. 3 and 7. It
is clear from these results that NSFDMs could mimic the
relevant dynamics whereas the other numerical methods
failed to do so.

Currently, we are investigating the applicability of
the proposed method to solve mathematical models of
HIV-TB co-infections.
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Fig. 11. Profiles of solutions (susceptibles (S(t) (a) and infectious individuals (I(t)) (b)) obtained by using different numerical methods
when k = 10, with initial conditions (S(0), I(0)) = (500, 1918). � = 1.
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