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This paper addresses a vehicle sequencing problem for adjacent intersections under the framework of Autonomous Inter-
section Management (AIM). In the context of AIM, autonomous vehicles are considered to be independent individuals and
the traffic control aims at deciding on an efficient vehicle passing sequence. Since there are considerable vehicle passing
combinations, how to find an efficient vehicle passing sequence in a short time becomes a big challenge, especially for more
than one intersection. In this paper, we present a technique for combining certain vehicles into some basic groups with ref-
erence to some properties discussed in our earlier works. A genetic algorithm based on these basic groups is designed to
find an optimal or a near-optimal vehicle passing sequence for each intersection. Computational experiments verify that
the proposed genetic algorithms can response quickly for several intersections. Simulations with continuous vehicles are
carried out with application of the proposed algorithm or existing traffic control methods. The results show that the traffic
condition can be significantly improved by our algorithm.
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1. Introduction

Transportation has always been a crucial aspect of human
civilization, but it is only since the second half of the
20th century that the phenomenon of traffic congestion
has become predominant due to the rapid increase in the
number of vehicles and in the transportation demand (Hall
and Papageorgiou, 1999). Especially over the last decade,
traffic congestion attracted extensive attention because of
the worldwide energy crisis and environmental concerns.

The conventional method of preventing or reducing
congestions in modern cities is based on the traffic
signal at intersections. The traffic signal assigns the
right-of-way to a stream of vehicles and pedestrians in
order to guarantee their safe crossings. The specification
of the signal setting (traffic control strategy) has a major
impact on intersection capacity and efficiency. Traffic
control strategies at intersections generally fall into two
basic categories: pre-timed control, which is also called
fixed-time control, and semi/fully traffic actuated control.
The first category uses the historical data of traffic demand

to calculate the signal setting, e.g., the TRANSYT (traffic
network study tool) system (Robertson, 1969). The
second strategy, the traffic actuated control, which is
also known as the traffic-responsive strategy, has been
attracting more and more attention since the 1980s. This
control strategy makes use of real-time measurement like
the traffic flow rate, which is detected by loop detectors,
to specify the signal setting in real time. The most
notable system of this kind is SCOOT (Split Cycle Offset
Optimization Technique) (Hunt, 1982). However, both
control strategies are based on the estimation of traffic
flow rates.

Since the flow rate is a continuous variable that
needs a period of time to be estimated, there are always
big deviations between the last computed value and the
actual one. Besides, the traffic signal is assigned to
a stream of vehicles for a period of time. The traffic
control command cannot adapt to the fluctuation of the
traffic state quickly. Hence, traffic control at intersections
based on traffic signals limits the potential of improving
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intersection capacity.
Since the early 1990s, the development in

information systems has provided us with an opportunity
to overcome these drawbacks. The technology of
wireless communication like WiFi, WiMax and 3G
enabled Vehicle to Vehicle (V2V) communication
and Vehicle Infrastructure Integration (VII), which
enforce the link between vehicles, infrastructure and
the driving environment (Kato et al., 2002; Gradinescu
et al., 2007; Chisalita and Shahmehri, 2002). Besides,
advances in the fields of computation and sensor
technologies lead to the emergence of fully autonomous
vehicles, which take complete control of vehicle
operations and eliminate the driver from the control loop,
at least in a specific area (Dresner and Stone, 2004; 2006).
Various applications of autonomous vehicles have been
demonstrated in Europe (Bertolazzi et al., 2010), Japan
(Aotani et al., 2002) and the United States (Shladover
et al., 1991; Shladover, 2007). Under this background,
the concept of Autonomous Intersection Management
(AIM) has attracted great interests over the last decade.

In the framework of AIM, autonomous vehicles
communicate with each other or with roadside
infrastructures to exchange the information of their
states for ensuring driver safety and improving travel
efficiency. More specifically, based on the VII technology,
the roadside infrastructure at intersections, which can be
seen as a controller, can communicate with approaching
vehicles continuously. Vital vehicle data such as vehicle
speed, position and destination are collected by advanced
sensors and sent to the controller in real time. Hence,
it is possible to elaborate a traffic control strategy with
considering vehicles to be independent individuals.
In other words, the right-of-way is assigned to each
vehicle according to its state and the state of the whole
intersection. Only vehicles that have received the
right-of-way can get through the intersection. Traffic
control aims at determining the vehicle passing sequence,
which is a sequence of distributing the right-of-way.

However, to implement this new control method, we
mainly face two difficulties:

• First, how to exchange the information among
vehicles or between vehicles and roadside
infrastructure.

• Second, less studied, how to find an efficient vehicle
passing sequence to maximize the traffic throughput
at intersections while maintaining driver safety.

For the first difficulty, research on wireless protocols
and advanced devices used in autonomous vehicles has
been well studied (see, e.g., Dresner and Stone, 2004;
Huang and Miller, 2003; Nadeem et al., 2004). The
second one deserves more attention. Most research
determines the vehicle passing sequence based on a

simple control policy “First In First Out” (FIFO) (Dresner
and Stone, 2004; 2006; Lachner, 1997). Although
this policy requires very low computational cost, it
limits the potential of maximizing the capacity of
intersection. Recently, researchers have been paying
more attention to optimize vehicle passing sequences. Li
and Wang (2006) enumerated all feasible vehicle passing
sequences and used trajectory planning algorithms to
find the most efficient one. However, they admitted
that the algorithms were not efficient enough because
the complexity increases exponentially with the number
of vehicles and lanes. Wu et al. (2009) presented
a dynamic programming algorithm to get an optimal
solution based on AIM, but they only considered a
simple isolated intersection with two lanes. Indeed, an
intersection consists of a number of approaches and each
approach may have one or more lanes, which will render
considerable combinations of the passing sequence. Thus,
how to reach a satisfactory passing sequence at a relative
low computational cost becomes a big challenge.

Besides, another common concern about the strategy
based on VII is that it increases the cost of building and
maintaining infrastructures at each isolated intersection
(Li and Wang, 2006). In fact, since congestion in modern
cities is usually caused by several adjacent intersections
located in dense street networks, it is natural to extend
the control strategy to several adjacent intersections with
only one controller, but this change will increase the
computational cost.

To solve these difficulties, in our earlier works (Yan
et al., 2009; 2010) we presented some useful structural
properties of the proposed new control strategy at an
isolated intersection. A branch-and-bound algorithm was
designed to find an optimal passing sequence for all
detected vehicles for the isolated intersection. However,
if we extend the control strategy to several adjacent
intersections with only one controller, an exact algorithm
like branch and bound cannot be fast enough for all
intersections in the sense of computational times. Thus,
in this paper we propose a genetic algorithm to solve
the sequencing problem efficiently. We also present a
technique for combining certain vehicles into some basic
groups taking into consideration the proposed properties.
This will help us to reduce the search space.

The rest of this paper is arranged as follows. In
Section 2, detailed assumptions of the studied problem are
described, along with some basic notions of traffic control
at intersections. Section 3 presents the technique for
partitioning certain vehicles to fundamental mini-groups.
A genetic algorithm is presented in Section 4 to solve the
problem efficiently. A dynamic programming algorithm is
also devised to evaluate the solution quality of the genetic
algorithm. In Section 5, computational experiments show
that the proposed genetic algorithm can decide on a
vehicle passing sequence in less than 0.5 seconds for 100
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Fig. 1. Scheme of the vehicles sequencing problem at adjacent
intersections.

vehicles with small deviations from optimal solutions.
Simulations with a continuous traffic flow are carried out
at four adjacent intersections. The results indicate that
the proposed algorithm can efficiently improve the traffic
condition. Conclusions are drawn in Section 6.

2. Problem description and formulation

2.1. Problem description. The studied intersection
network consists of several adjacent intersections that
may have different layouts. An illustration is given in
Fig. 1. There are four isolated intersections covered
by a center controller. The information of each
vehicle is gathered by the center controller in real
time and vehicle passing sequences are decided on by
the controller. Since the layout between two adjacent
intersections is fixed (the number of lanes, the distance,
etc.), we can easily decentralize the adjacent intersections
control problem to several vehicle sequencing problems at
isolated intersections. This will reduce the complexity of
the decision making process.

In the sequel we focus on the vehicle sequencing
problem at an isolated intersection. First, some basic
notions should be introduced. Typically, an intersection
consists of a number of approaches and a crossing area.
Each approach may be used by several traffic streams.
For example, for intersection I1 in Fig. 2, the approach
from west to east consists of two traffic streams (stream 1
and 2). Each stream has its own lane and an independent
vehicle queue. We suppose that overtaking is not allowed,
which indicates that vehicles on each lane need to pass
an intersection in the first-in first-out way. The path used
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Fig. 2. Illustration of compatible and incompatible vehicle
streams.

by a traffic stream to traverse the intersection is called the
trajectory. A trajectory connects an approach on which
vehicles enter the intersection to the intersection leg on
which these vehicles leave the intersection. Vehicles
belonging to some streams may have more than one
trajectory (e.g., streams 2 and 8). The objective of traffic
control at an intersection is to transform input traffic flows
into output ones while preventing traffic conflicts and
satisfying a specific criterion.

In order to prevent the conflicts of vehicle streams,
frequently used traffic conventions provide the notion of
compatible streams and incompatible streams. Obviously,
when trajectories of two traffic streams do not cross,
these streams can simultaneously get the right-of-way,
and we call these two streams compatible streams. The
lanes on which the two streams are moving are called
compatible lanes. For example, streams 1 and 5 are
compatible streams. On the other hand, when trajectories
of two traffic streams do cross, the streams are in conflict
(e.g., streams 1 and 7), and their simultaneous movement
through the intersection should not be permitted. When
several streams are compatible with each other, we call the
set of these streams a Compatible Stream Group (CSG).
In this example, we can partition the eight streams into
four compatible stream groups: CSG 1 (streams 1 and 5),
CSG 2 (streams 2 and 6), CSG 3 (streams 3 and 7)
and CSG 4 (streams 4 and 8). One should note that the
division of these groups is not constant when the traffic
flow of a specific stream is much greater during peak time
(e.g., morning peak time or evening peak time). However,



186 F. Yan et al.

this division usually remains the same during a specific
period.

Besides, for security reasons, there is always lost
time (similar as the integral red time in traffic signal
control) at the beginning of a vehicle passing sequence
and when we switch the right-of-way between two
vehicles of different CSGs to avoid interference of
incompatible streams. During lost time, no vehicle
waiting for traverse the intersection is allowed to pass.
The traffic control process is to decide a sequence of
assigning the right-of-way to specific vehicles of each
CSG to make these vehicles get through the intersection
while satisfying a specific objective.

Suppose that at a start time t0 = 0 there are n
vehicles in the control range approaching an intersection
from different approaches; the vital data of all vehicles in
this range can be gathered by the controller immediately.
At a basic level, the information from each vehicle
contains the following parts:

1. Vehicle Identification (ID): used to identify an
individual vehicle.

2. Stream number: which stream the vehicle belongs to,
i.e., which lane it is moving on.

3. Precise vehicle arrival time: the precise time a
vehicle arrives at the stop line from t0 without
interference.

4. Vehicle passing time: the time interval a vehicle
needs to get through the intersection.

Remark that the vehicle passing time is actually the
time interval in which a vehicle can accelerate from the
waiting position until it reaches a safe distance with its
follower on the same lane, i.e., in the same stream. We
assume this time duration is a constant for each vehicle
and only depends on the type of vehicle. For example,
trucks are slower than small vehicles, they need more time
to change the speed and therefore more time to accelerate
until they can reach a safe distance for the following
vehicle to move.

Typically, the most often used measure for evaluating
the performance of a traffic control algorithm at an
isolated intersection is the throughput. Under the
environment of VII, maximizing the throughput can
be viewed as minimizing the evacuation time of all
approaching vehicles in each decision. Therefore, our
objective is to minimize the Overall Evacuation Time
(OET ) of vehicles that are approaching an isolated
intersection, i.e., the time that the last vehicle has passed
the intersection.

2.2. Useful notation and formulation. Suppose there
are overall n vehicles approaching the intersection and

all vehicles are partitioned into m CSGs based on
compatible streams. In each CSG, vehicles are separated
on different lanes. Some notation that will be used is as
follows:

• CSGi, the i-th CSG, where 1 ≤ i ≤ m.

• ni, the number of vehicles in CSGi.

• si, the lost time when changing the right-of-way
from other CSGs to vehicles in CSGi.

• li, the number of lanes in CSGi.

• l(i,l), the l-th lane in CSGi, where 1 ≤ l ≤ li.

• n(i,l), the number of vehicles on lane l(i,l).

• v(i,l,j), the j-th vehicle on lane l(i,l); j is indexed
according to the arrival order of vehicles on lane
l(i,l).

• a(i,l,j), the arrival time of v(i,l,j), i.e., the time v(i,l,j)

needs to arrive at the stop lane (or the waiting queue)
from time t0.

• s(i,l,j), the time vehicle v(i,l,j) starts to pass the
intersection.

• p(i,l,j), the passing time of v(i,l,j), i.e., the time
v(i,l,j) needs to accelerate from the waiting position
until it reaches a safe distance with its follower on
the same lane.

• C(i,l,j), the completion time of v(i,l,j), i.e., the time
that vehicle v(i,l,j) is already a safe distance from the
vehicle following it on the same lane.

Thus, for n vehicles detected at time t0, the objective
can be described as

min{max{C(i,l,j)}},
1 ≤ i ≤ m, 1 ≤ l ≤ li, 1 ≤ j ≤ n(i,l) (1)

subject to
s(i,l,j) ≥ a(i,l,j), (2)

C(i,l,j) = s(i,l,j) + p(i,l,j), (3)

s(i,l,j+1) ≥ C(i,l,j), (4)

C(i,l,j) − C(i′,l′,j′) ≥ si + p(i,l,j),

if i �= i′ and C(i,l,j) ≥ C(i′,l′,j′). (5)

The inequality (2) ensures that each vehicle starts to
cross an intersection after its arrival. The equality (3)
describes the vehicle completion time equals its real start
time plus its passing time. The inequality (4) assures
that a vehicle cannot start to traverse the intersection
before its preceding vehicle on the same lane has finished
the traversing process. The inequality (5) indicates
that vehicles do not have the right-of-way to cross an
intersection during lost time even if they have arrived.
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3. Structural properties and fundamental
mini-groups

Since we assume that each vehicle is an independent
individual, there may be a great number of combinations
of the vehicle passing sequence, especially when there are
many vehicles approaching an intersection and the layout
of the intersection is complex (e.g., many parallel lanes,
many CSGs). In our earlier work, some useful structural
properties were proposed based on the analysis of the
optimal solutions of this problem (Yan et al., 2009; 2010).
In order to use these properties to simplify the search
procedure, we briefly recall them and provide some useful
notations.

3.1. Structural properties. In fact, from the
description above, we can view the studied vehicle
sequencing problem as a passing group sequencing
problem. A vehicle Passing Group (PG) can be defined
as a set of vehicles from the same CSG that pass
intersection without the interruption of vehicles in other
CSGs. Specifically, in a vehicle passing group sequence,
a PG has the following properties:

1. Each CSG contains at least one PG.

2. Each vehicle should be in one and only one PG.

3. During the passing process of vehicles in one PG,
there may be idle time waiting for some vehicles to
arrive, but there is no lost time of any other CSG s.

The completion time of a vehicle passing group is defined
as the maximum vehicle completion time in this passing
group, i.e.,

CPG = max{C(i,l,j)}, where v(i,l,j) ∈ PG.

Thus, the studied issue changes to a problem containing
two main tasks: (i) partitioning vehicles into different
vehicle passing groups and (ii) finding an efficient vehicle
passing group sequence to optimize the overall vehicle
evacuation time. This vehicle Passing Group Sequence
(PGS) can be described as

PGS = (PG1, PG2, . . . , PGb), b ≥ m.

Since there may be several lanes in each CSG and
vehicles on each lane should pass the intersection in an
FIFO way, the vehicle arrival order on each lane should
be taken into account. We can then have the following
property easily.

Property 1. Consider there are two vehicles v(i,l,j) and
v(i,l,j′) on lane l(i,l) with v(i,l,j′) arriving at the stop line
after v(i,l,j), i.e., j < j′. Then we have

1. a(i,l,j) < a(i,l,j′), and C(i,l,j) < C(i,l,j′).

2. In a final passing group sequence, v(i,l,j) and v(i,l,j′)
have the following properties:

(a) If v(i,l,j) and v(i,l,j′) are contained in the same
vehicle passing group PG, there is {v(i,l,k),
j < k < j′} ∈ PG.

(b) If v(i,l,j) and v(i,l,j′) are contained in two
different passing groups PG and PG′,
respectively, there must be a PG traversing the
intersection before PG′ in the passing group
sequence.

Suppose there is a partial vehicle passing group
sequence, in which some passing groups are already
partitioned, but no decision has been taken yet on how
to partition the remaining ‘un-partitioned’ vehicles. Some
extra notation is given:

• CPGr , the completion time of the partial vehicle
passing group sequence, i.e., the completion time of
the last passing group PGr in the partial sequence,
where 1 ≤ r < b.

• v(i,l,y), the first ‘un-partitioned’ vehicle on lane l(i,l)
of CSGi after CPGr .

• P(i,l), the sum of passing time of all ‘un-partitioned’
vehicles on lane l(i,l) of CSGi, i.e.,

P(i,l) =
n(i,l)∑

j=y

p(i,l,j). (6)

Each time after a passing group is formed, we re-index the
lane that has the maximum P(i,l) of all lanes in CSGi as
lane 1, i.e., l(i,1), and P(i,1) is the sum of the passing time
of all ‘un-partitioned’ vehicles on this lane after CPGr .

Then we can have the following property.

Property 2. There exists an optimal vehicle passing
group sequence, in which any vehicle passing group PGx

from CSGi (1 ≤ x ≤ b) has at least one vehicle belonging
to lane l(i,1).

Assume we are going to partition vehicles in CSGi

after a partial passing group sequence, and the completion
time of this partial sequence is CPGr . We can have the
following properties.

Property 3. Suppose that PGx (1 ≤ x ≤ b) is a vehicle
passing group containing vehicles in CSGi. If

1. C(i,l,y′) ≤ C(i,1,y) or

2. 0 < C(i,l,y′) −C(i,1,y) ≤ P(i,l) − (P(i,1) − p(i,1,y)),

there exists an optimal group sequence in which vehicles
v(i,1,y) and v(i,l,y′) are both contained in PGx.
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Property 4. There exists an optimal sequence, in which
a vehicle passing group PGx contains all ‘un-partitioned’
vehicles in CSGi after time CPGr if 2si ≥ CPGx −
CPGr − P(i,1).

The proofs of these properties can be found in our
earlier works, which focused on the exact algorithm for
the vehicle sequencing problem at an isolated intersection
(Yan et al., 2009; 2012).

3.2. Fundamental mini-groups. Based on the
properties above, we can combine some vehicles together
and let them pass the intersection without the interference
of vehicles in any other CSGs. Since the properties are
obtained from optimal solutions, the combination will
not jeopardize the optimality of the studied problem.
Thus, by using the proposed properties, we can produce
some basic groups by combining specific vehicles of
the same CSG together. We define these basic groups
as fundamental mini-groups (FGs). These FGs can be
used as the minimum units in each CSG instead of the
individual vehicles. A step by step procedure is described
in Algorithm FG.

Algorithm 1. FG.
Step 1. Find the lane that has maximum P(i,l) of all lanes
from time t0 = 0, re-index it as l(i,1).

Step 2. Partition the first ‘un-partitioned’ vehicle v(i,1,y)

of the first lane l(i,1) into a new empty FG. If the other
vehicles in CSGi fit in Property 4, put these vehicles into
the new FG and the partition of this CSG is finished;
otherwise continue Step 3.

Step 3. If the first ‘un-partitioned’ vehicle on each lane
l(i,l) (1 < l ≤ li) can be partitioned into the same FG
according to Property 3, add this vehicle to the FG (i.e.,
the FG that contains v(i,1,y)), continue Step 4.

Step 4. Recount P(i,l) of all lanes with eliminating the
vehicles already partitioned, repeat Steps 2–3 until all
vehicles are partitioned into fundamental mini-groups.

An example is given in Fig. 3. There are three lanes
in a CSG and six vehicles approaching an intersection at
time t0. The data of vehicles are given in Table 1.

Table 1. Vehicle arrival time and passing time in the FG parti-
tion example.

Vehicles Arrival time Passing time

v(i,1,1) 1 3
v(i,1,2) 5 3
v(i,1,3) 23 4
v(i,2,1) 2 4
v(i,2,2) 15 2
v(i,3,1) 7 3

On the lane l(i,1), v(i,1,1) is firstly partitioned into a
new FG, then v(i,2,1) and v(i,3,1) should be examined as
to whether they should be contained in same FG. The
result is that v(i,1,1) will form an FG by itself. For the
second FG, the lane that has maximum P(i,l) should be
recounted. Finally, all vehicles are partitioned into three
FGs.

Fig. 3. Example of the fundamental mini-group partition proce-
dure.

Clearly, this procedure can be done in polynomial
time. Note that, after the FG partition, FGs in the
same CSG also have a sequence because of the vehicle
arrival order. Moreover, because of the fundamental
mini-group partition procedure, the vehicle arrival order
on different lanes of the same CSG are reduced to only
one sequence, i.e., the sequence of FGs. We can observe
that the sequencing of vehicles based on fundamental
mini-groups is much easier than the original vehicle
sequencing problem.

4. Proposed genetic algorithm and
a dynamic programming algorithm

Genetic Algorithms (GAs), which mimic the evolutionary
process in nature, have shown many successful
applications to many fields, for example, to solve
optimization problems (Akpinar and Bayhan, 2010; Xing
et al., 2008), control problems (Witkowska
et al., 2007; Belter and Skrzypczyński, 2010), operational
problems (Aytug et al., 2003; Hart et al., 2005; Kashan
et al., 2008; Wang et al., 1999) and transportation
problems (Dridi and Kacem, 2004), etc.

Like creatures in nature evolve to adapt to the
environment, solutions in the GA evolve to adapt to the
target problem. Solutions in GAs are usually encoded
into a compact form to facilitate the use of reproduction
operators including crossover and mutation. The encoded
solution is usually referred to as an individual, and a group
of individuals is referred to as a population. Starting
from an initial population, some individuals are selected
as parents and then produce new individuals through
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crossover and mutation. Among the original and new
individuals, some survive and others die. The surviving
individuals form a new population, and we call the
transition from one population to another a generation.
Individuals whose corresponding solutions have better
objective values usually have higher probability to be
selected as parents and survivors. It is expected that
optimal or near-optimal solutions will be obtained by
evolving the population after a number of generations.

In this paper, we develop a genetic algorithm to
guide the autonomous vehicles through several adjacent
intersections. Two encoding schemes are designed based
on fundamental mini-groups. A heuristic named Smallest
Extra Time (SET) is also proposed for decoding the
chromosome and obtaining complete solutions that can
be evaluated by a fitness function. Besides, crossover
and mutation operators suitable for each encoding scheme
are also devised. As already mentioned in Section 3.1,
solving the target problem is usually achieved by two
types of decisions—vehicle passing group forming and
vehicle passing group sequencing. The proposed GA
will search for good vehicle passing group formation and
the sequence of these vehicle passing groups by different
ways corresponding to different encoding schemes.

Initialization of the GA involves generating the initial
population randomly with our chromosome encoding
scheme and also including the solution obtained by SET.
After the initialization phase, genetic operators are used to
improve the solution quality. The proposed GA is outlined
step by step as follows:

Step 1: Apply the algorithm FG to form all vehicles into
different FGs.

Step 2: Generate a random initial population that contains
NPOP individuals with a chromosome encoding scheme,
and also include the individual obtained by SET.

Step 3: Decode randomly generated individuals and
evaluate them by a fitness function. Record the lowest
OET obtained by individuals in the initial population by
OET ∗.

Step 4: Determine the pairs that define which
chromosomes will undergo the crossover operation.

Step 5: Apply the crossover operator to the selected pairs
in order to obtain new pairs of offspring with a probability
Pc.

Step 6: Perform mutation on the produced offspring with
probability Pm.

Step 7: Decode and evaluate the two offspring. The best
two individuals among the two parents and two offspring
will replace the parents.

Step 8: If any of the stopping criteria are reached, stop.
Otherwise, go to Step 4.

Fig. 4. Relation between binary bits and FGs for the GA.

4.1. Chromosome encoding. Based on fundamental
mini-groups, we propose two encoding methods for
genetic algorithms: a binary encoding scheme and a
permutation encoding scheme. Comparisons between two
schemes are presented in the next section.

4.1.1. Binary encoding scheme. Firstly, we adopt the
primary binary encoding scheme for the proposed GA.
Suppose that there are overall η fundamental mini-groups
and the number of FGs in CSGi is ηi. Certainly, we have

η =
m∑

i=1

ηi, i = 1, 2, . . . , m. (7)

Define η0 = 0 and ηi (i = 1, 2, . . . , m) as

ηi =
i∑

k=1

ηk. (8)

Then we can label the FGs of each CSG as follows:
CSG1: FG1, FG2, . . . , FGη1

,
CSG2: FGη1+1, FGη1+2, . . . , FGη2

;
...

CSGm: FGηm−1+1, FGηm−1+2, . . . , FGη;
In this binary encoding scheme for the GA, we need

to decide whether to combine two adjacent FGs in the
same CSG together to form a vehicle passing group.
Since there are ηi fundamental mini-groups in CSGi, i =
1, 2, . . . , m, there will be ηi − 1 bits for CSGi and the
length of the binary string for chromosome is

L =
m∑

i=1

{ηi − 1} = η −m.

Then, if FGi−1 and FGi belong to the same compatible
stream group CSGk , we define the binary bits between the
two FGs as follows:

bi−k =

{
1 if FGi−1 and FGi are combined,

0 otherwise.
(9)

The relationship between bi−k and FGi−1, FGi is shown
in Fig. 4.

A numerical example is given as follows. Suppose
there are four CSGs that contain 24 vehicles and the data
of the vehicles are given in Table 2.
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After the fundamental mini-group formation
procedure, vehicles in four CSGs can form 5 FGs, 2
FGs, 3 FGs and 3 FGs, respectively. Then the length
of the chromosome for the GA is 4 + 1 + 2 + 2 = 9
bits, as shown in Fig. 5. For example, individual 1 in
Fig. 5 represents the solution in which we let FG1 and
FG2 in CSG1 pass the intersection together without
interruption, i.e., they form a vehicle passing group, then
FG3 and FG4 pass together, and FG5 will form a PG
by itself at last. During the passing procedure of CSG1,
the right-of-way is changed two times to other CSGs,
once after FG2 and once after FG4. Other CSGs can be
deduced similarly.

After the chromosome encoding procedure, it
is necessary to check whether a chromosome is
feasible since in the chromosome we only consider the
combination of fundamental mini-groups. For example,
Fig. 6 shows an impossible individual.

With the formation of vehicle passing groups in
Fig. 6, It is impossible to keep the 5 FGs in CSG1

Table 2. Data of vehicles in four CSGs. Each vehicle has an
integer arrival time a and an integer passing time p.
Vehicles in each CSG are distributed on two or three
lanes.

Vehicles CSG1 CSG2 CSG3 CSG4

a p a p a p a p

v(i,1,1) 1 3 4 2 2 1 14 4
v(i,1,2) 5 3 18 2 19 2 32 3
v(i,1,3) 14 4 × × 25 1 × ×
v(i,1,4) 23 4 × × × × × ×
v(i,1,5) 32 3 × × × × × ×
v(i,2,1) 2 4 5 2 2 2 27 3
v(i,2,2) 15 2 17 2 20 2 × ×
v(i,2,3) 22 3 × × × × × ×
v(i,3,1) 7 3 × × × × 18 2
v(i,3,2) 33 3 × × × × 25 2

as 5 vehicle passing groups because the number of gaps
among the 5 vehicle passing groups is smaller than the
sum of vehicle passing groups in other CSGS. For any
CSGi, i = 1, . . . , m, let NPGi denote the number of
vehicle passing groups contained in CSGi according to
a chromosome. We can have the following relation to
make sure an individual is feasible. For all CSGi, i =
1, 2, . . . , m there holds

NPGi − 1 ≤
m∑

i′=1

NPGi′ i′ �= i.

If this relation can be satisfied, the corresponding
individual is ready to be used. If not, it is necessary to
generate another feasible individual.

4.1.2. Permutation encoding scheme. To test
the computational performance (convergence speed and

Individual 2:

Individual 1:

Corresponding vehicle groups in each :

Corresponding vehicle groups in each :

Fig. 5. Example of a binary encoding scheme of the GA.

Corresponding vehicle groups in each :

Fig. 6. Impossible individual generated by the proposed binary
encoding scheme of the GA.

accuracy), we give another chromosome encoding scheme
for comparison. It adopts the permutation structure
by encoding the combination and the sequence of
FGs simultaneously in the chromosome. For example,
as shown in Fig. 7, individual 1 represents the
solution in which we let FG1 pass the intersection
first, then change the right-of-way to CSG3 making
FG8 pass, . . . , and finally FG4, FG5 in CSG1.
Different chromosomes represent different combinations
of fundamental mini-groups and their sequences. We can
observe that the binary encoding scheme only considers
the combination of fundamental mini-groups in each
CSG, and covers a sub-search space each time while
the permutation encoding scheme indicates a specific
solution. Besides, in order to get high-quality results, we
need to carefully design the remaining components of the
GA, which will be detailed in the following subsections.
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Individual 1:

Individual 2:

Corresponding vehicle groups in each :

Corresponding vehicle groups in each :

Fig. 7. Example of a permutation encoding scheme of the GA.

4.2. Chromosome decoding (SET heuristic). For
a chromosome with a binary encoding scheme, the
decoding scheme is responsible for constructing its
corresponding schedule in order to calculate the
concerned objective function. Since, in the encoding
procedure, the vehicle passing groups of each CSG have
already been formed, the remaining task is to decide on a
passing group sequence. We propose the heuristic SET to
achieve that end.

Suppose that PGr (from CSGj) is the last group
of the partial vehicle passing group sequence already
formed. In the group sequencing procedure, each time
a new vehicle passing group PGx (from CSGi, i �=
j) is formed and appended to the partial sequence, the
obtained new partial sequence will certainly have bigger
completion time. Ideally, this increment will equal the
sum of the passing time of all vehicles contained on the
first lane l(i,1) of PGx. However, the vehicle arrival time
will probably introduce some extra time to the completion
time of the partial sequence. Let qi denote this extra time;
it can be computed by following equation:

qi = CPGx − (si + CPGr)− PPGx , (10)

where PPGx is the sum of the passing time of vehicles on
the first lane l(i,1) of PGx. An example is given in Fig. 8.

Similarly, if we add some new vehicles (consider
these vehicles are contained in a passing group called
PG′

x) of the same CSG, i.e., CSGj , into the last passing
group PGr of a partial sequence, i.e., i = j of the case
in Eqn. (10), the extra time caused by this PG′

x can be

Fig. 8. Example of the extra time for SET : Case 1.

defined as

qj = CPG′
x
− CPGr − PPG′

x
. (11)

An example is given in Fig. 9.

Fig. 9. Example of the extra time for SET : Case 2.

Note that, in this case, the first lane l(i,1) should be
decided by the vehicle passing time that actually occurred
after CPGr on and PPG′

x
indicates the sum of the vehicle

passing time in PG′
x after CPGr . The pseudocode of this

heuristic is also given.

Algorithm 2. Smallest Extra Time (SET).
1: while there are ‘un-partitioned’ vehicles do
2: CPGr ← 0
3: for CSGi, i from 1 to m do
4: Re-index the lane l(i,1) in each CSGi;
5: Form a passing group PGx in each CSGi by

virtue of Properties 2–4; Count qi by considering
the PGx as the last passing group;

6: end for
7: Append the PGx with min{qi} to the end of the

partial sequence;
8: CPGr ← CPGx ;
9: end while

For the permutation encoding scheme, since it can
already decide on a complete solution, the decoding
procedure will be unnecessary.
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4.3. Fitness evaluation and the selection strategy. In
the proposed GA, the fitness of an individual is defined by
the reciprocal of OET obtained by the decoding scheme.
Mating selection is achieved through the roulette wheel.
Crossover will be applied to produce two offspring and
mutation will be applied probabilistically to the offspring.
Among the parents and the offspring, two individuals with
the highest fitness will replace the parents.

4.4. Crossover and mutation. Given two parents,
the task of crossover is to generate the offspring through
inheriting features (gene structures) from the parents.
Since different encoding schemes have different gene
structures and constraints, each encoding scheme has its
own suitable crossover operators. For the binary encoding
scheme, since a chromosome only contains binary bits,
the two-point crossover is applicable, as shown in Fig.
10. Feasibility should also be checked after crossover.
For the permutation encoding scheme, we apply linear

Parent 1:

Parent 2:

O�spring 1:

O�spring 2:

2-point crossover

Feasibility check

O�spring 1:

O�spring 2:

Fig. 10. Two-point crossover operation of a binary encoding
scheme.

order crossover to the chosen parents. An example is
given in Fig. 11. One should note that, after the crossover
of chromosome with permutation encoding scheme, the
sequence of FGs in each CSG may be changed, the FGs
may not follow the FIFO order. Thus, another FIFO
checking and adjustment procedure should be performed
after the crossover. For example, in Fig. 11, the five FGs
in CSG1 should pass the intersection from FG1 to FG5.
However, after the crossover, the FG2 in the first offspring
should pass the intersection after FG3, FG4 and FG5.
Thus, we shift FG2 before the three FGs and next to the
FG of the same CSG. If the FG we need to shift is the
first FG in a CSG, we change its position to the beginning
of the sequence.

For the binary encoding scheme, mutation is applied
probabilistically. When a mutation is involved, we first

1 Standard linear order
crossover procedure

2 FIFO checking and adjustment

Parent 1:

Parent 2:

O�spring 1:

O�spring 2:

O�spring 1:

O�spring 2:

Fig. 11. Linear order crossover and checking of a permutation
encoding scheme.

choose a random bit in the chromosome and then change
the value of the bit form 0/1 to 1/0. Feasibility of the
new individual should also be checked. In a permutation
encoding scheme, we randomly choose two bits in the
chromosome and change their position to generate a new
individual. An illustration of mutation is shown in Fig. 12.

2 FIFO checking and adjustment

1 Two points order change mutation 

Mutation for binary encoding:

Mutation for permutation encoding:

One point binary mutation

Fig. 12. Mutation operation of the GA.

One should note that each time after a crossover or a
mutation operation the new individuals should be checked
for their possibility. Only feasible offspring can be used
for next operations. If any individual is not feasible, a
crossover or a mutation operator should be applied again
until feasible offspring are generated.

4.5. Generation of the initial population and the stop-
ping criterion. The initial population of the proposed
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GA is generated randomly according to the chromosome
encoding schemes. Each individual under the framework
of a binary encoding scheme should be checked after the
generation, crossover and mutation. The initial population
should also include the solution obtained by SET; this
individual is encoded and placed as the first individual.

The algorithm will stop if the best solution is not
updated after NNOBETTER continuous generations or
when a predefined maximum number of generations
(NMAXGEN) is reached.

4.6. Dynamic programming approach. In order to
analyze errors of the proposed genetic algorithm, we
also present a Dynamic Programming (DP) approach to
find an optimal solution. This algorithm also uses the
mini-groups as the minimum units of each CSG.

For the studied problem, suppose that the
fundamental mini-group partition procedure has already
been finished. Vehicles in each CSG are pre-partitioned
into several FGs. Each CSG can be viewed as a sequence
of FGs:

CSGi = {FG1, FG2, . . . , FGd},

where 1 ≤ d ≤ ni. Vehicles in FGi with 1 ≤ i ≤ d
are also enumerated according to their arrival order. For
example, let v(i,j−1) and v(i,j) be respectively the (j −
1)-th and j-th vehicle in CSGi (lanes of vehicles are not
considered here); then a(i,j−1) will not be greater than
a(i,j).

For a nonnegative integer x, where x = |FG1| +
|FG2|+ · · ·+ |FGi|, 1 ≤ i ≤ d, define

CSG
(x)
i =

{
v(i,j), 1 ≤ j ≤ x

}
, 1 ≤ i ≤ m.

For m integers x1, x2, . . . , xm, where 0 ≤ xi ≤ ni

and 1 ≤ i ≤ m, let

fi(x1, x2, . . . , xi, . . . , xm)

denote the minimum evacuation time of the studied
problem restricted to the m sub CSGs,

CSG
(x1)
1 , CSG

(x2)
2 , . . . , CSG(xm)

m ,

with the last FGr in the partial sequence being from
CSGi, 1 ≤ i ≤ m. Then the finial minimum evacuation
time of the studied problem is

f∗ = min
1≤i≤m

{fi(n1, n2, . . . , nm)}.

Define aFG as the arrival time of FG, i.e., aFG =
minj∈FG{aj}, pFG is the time for making all vehicles in
FG pass the intersection. The recursion of our dynamic

programming can be expressed as

fi(x1, x2, . . . , xm)

= min

⎧
⎪⎪⎨

⎪⎪⎩

min
1≤i′≤m

{max{fi′ + si, aFGr}+ pFGr},
i′ �= i;

max
1≤l≤li

{Cl(i,l)}.

In the formula,

fi′ = fi′(x1, . . . , xi − |FGr|, . . . , xm), i′ �= i,

and aFGr is the arrival time of the last mini-group
FGr already considered, pFGr is the time used for
making all vehicles in the FG pass after the time
max{fi′(x1, . . . , xi−|FGr|, . . . , xm)+si, aFGr}, where
1 ≤ i′ ≤ m, i′ �= i; Cl(i,l) is the completion time
of the last vehicle considered on lane l(i,l) after we add
all the vehicles in FGr (i′ = i in this case) into the
partial sequence which corresponds to fi(x1, . . . , xi −
|FGr|, . . . , xm). The initial condition is given by

fi(0, . . . , 0, |FG1|, . . . , 0) = si + pFG1 ,

where FG1 is the first FG of CSGi and pFG1 is the time
used for making all vehicles pass in FG1 after si.

Define NFG i as the number of fundamental
mini-groups in CSGi, 1 ≤ i ≤ m, and

NFG =
m∑

i=1

NMGi.

The dynamic programming function has at most

m(NFG1 + 1)(NFG2 + 1) · · · (NFGm + 1)

≤ m
(NFG

m
+ 1

)m

states. The complexity of this dynamic programming is
O(m(NFG/m + 1)m).

Clearly, by using the fundamental mini-group
partition procedure, the complexity of the dynamic
programming algorithm can be dramatically reduced
compared to the use of individual vehicles, especially
when there are many lanes.

As we have mentioned before, the division of the
compatible stream groups can be different in real-world
traffic control, but it can be seen as constant for
a specific duration of each day. This means, for
real-world applications, that the problem usually needs
less computational resources for finding an optimal
vehicle passing sequence each time. For example, at
the intersection I1 in Fig. 2, there are four compatible
groups waiting to pass the intersection. With the proposed
dynamic programming algorithm, we can get an optimal
sequence in O(NFG4) time for evacuating all detected
vehicles, which can surely meet the needs of a real-time
traffic control system.
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4.7. Algorithm applications. Since at real-world
intersections vehicles keep entering the control range of
the center controller, the algorithm should be executed
separately to each isolated intersection whenever there
are new vehicles detected. However, if a vehicle
passing group has the right-of-way to pass an intersection,
the recalculation process should be postponed until all
vehicles in that PG have passed through the intersection.

In the shared space between two neighbor
intersections, for example, considering the lanes (from
west to east) between intersection I1 and intersection
I2 in Fig. 1, the output traffic streams of intersection I1

is also the input traffic stream of intersection I2. The
vehicles that have already traversed Intersection I1 (from
west to east) can be seen as the new incoming vehicles
for intersection I2, and vice versa.

Moreover, since the layout between two adjacent
intersections is fixed in both the number of lanes and the
distance, we suppose that vehicles will use the same time
to traverse from an upstream intersection to a downstream
intersection. Therefore, when some vehicles are grouped
together to pass the upstream intersection according to
their arrival time and passing time, they can also be
scheduled in the same passing group if their intentions are
still the same (see Fig. 13). The computational time will
also be reduced this way.

Center Controller

I1 I2V1
V2

V1

V2

Fig. 13. Same vehicle passing group from an upstream to a
downstream intersection.

5. Performance evaluation

The algorithm performance of the GA is evaluated
for both computational efficiency and accuracy. In a
real-world traffic flow, new vehicles keep entering the
control range of the controller, algorithms should be
applied to each isolated intersection whenever a new
vehicle enters the control range. For this reason,
the computation time of the control algorithm should
be short enough to satisfy the need of the real-time
system. Since there are no existing benchmarks for this
autonomous vehicle sequencing problem, we compare
the computational performance of the proposed GA
with different encoding schemes, the heuristic SET, the

proposed DP and the branch and bound algorithm from
our earlier work at an isolated intersection. We also
evaluate the errors (average deviations) of the genetic
algorithm with the optimal solution obtained by the
proposed exact algorithms.

5.1. Computational results. The computation
experiments are implemented at an isolated four-approach
intersection that has four CSGs. Parameters of the
experiments are summarized in Table 3.

Table 3. Parameters of computational instances.
Problem parameter Values used

Number of CSG 4
Number of lanes in CSG 2, 3, 4
Number of vehicles 10, 25, 50, 75, 100
Vehicle passing time Integers from 2 to 8
Lost time of CSG Integers from 3 to 8
Population size 10, 25, 100
NNOBETTER/NMAXGEN 10/30

The number of vehicles approaching this intersection
is varied from 10 to 100. Vehicles are equally distributed
among the approaching lanes. Without loss of generality,
we assume that there are 2 lanes (small intersection), 3
lanes (medium intersection) or 4 lanes (big intersection)
in each of the four CSGs separately. For example, when
number of lanes in each CSG is 2, there are overall 4×2 =
8 lanes leading to this intersection. Vehicles (50 vehicles,
for instance) are equally distributed among the 8 lanes,
i.e., around 6 vehicles on each lane: 8 × 6 = 48 ≈ 50.
This way, the test average number of vehicles on each lane
is varied from 1 to 8. Besides, according to the usually
used data of isolated intersections, we set the lost time
of each CSG as randomly generated integers varied from
3 to 8 seconds, and the passing time of each vehicle as
randomly generated integers varied from 2 to 8 seconds.
Adjacent vehicles on the same lane should follow the “2
seconds rules” (at least 2 seconds between the arrival time
of two adjacent vehicles). Population size (NPOP ) is
varied from 10 to 100. Different probabilities of crossover
(Pc) and mutation (Pm) are also tested. Computational
results are presented in Tables 4–6. In the tables, the
average CPU time (AV E) in seconds is given as well as
its error (ERR) in percentage comparing with the optimal
value. All approaches are coded in C++ and run on a
desktop computer with a Linux system (kernel 2.6.32).

The results illustrate the following facts:

• The proposed GA can handle 100 vehicles in its
control range in a very short time.

• For the same number of vehicles, the more lanes
one approach has, the less time the GA uses. This
is because more vehicles can be formed as one
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Table 4. Computational performance of the proposed GA with NPOP = 10, Pc = 0.9 and Pm = 0.10.

Lanes Vehicles Permutation encoding Binary encoding Branch and Bound Dynamic Programming Heuristic SET

AVE ERR AVE ERR AVE MAX AVE MAX ERR

10 0.009 4.3% 0.023 4.3% 0.021 0.060 0.033 0.057 4.2%

25 0.024 10.5% 0.048 8.2% 0.878 2.500 0.224 2.148 10.5%

2 50 0.047 14.9% 0.109 11.3% 2.896 10.08 2.746 7.546 16.3%

75 0.081 15.6% 0.165 13.8% 4.961 11.24 4.512 10.370 26.6%

100 0.119 16.9% 0.244 14.2% 7.845 14.520 6.246 12.140 36.5%

10 0.006 0.0% 0.014 0.0% 0.061 0.198 0.113 0.475 4.1%

25 0.018 5.1% 0.039 6.4% 0.241 1.104 0.388 0.966 6.4%

3 50 0.027 9.6% 0.082 7.8% 0.260 0.963 0.912 2.105 10.4%

75 0.033 10.7% 0.125 8.2% 0.398 1.612 1.390 3.503 20.1%

100 0.060 13.6% 0.231 10.6% 0.580 3.186 2.221 6.829 27.8%

10 0.008 0.0% 0.014 0.0% 0.010 0.018 0.028 0.054 0.0%

25 0.014 5.5% 0.033 0.0% 0.025 0.221 0.077 0.072 6.8%

4 50 0.020 9.2% 0.076 6.1% 0.036 0.436 0.188 0.167 8.2%

75 0.023 9.9% 0.128 7.8% 0.197 0.640 0.785 1.490 16.3%

100 0.057 11.2% 0.194 8.7% 0.368 1.845 1.593 3.967 23.6%

Table 5. Computational performance of the proposed GA with NPOP = 25, Pc = 0.7 and Pm = 0.2.

Lanes Vehicles Permutation encoding Binary encoding Branch and Bound Dynamic Programming Heuristic SET

AVE ERR AVE ERR AVE MAX AVE MAX ERR

10 0.039 0.0% 0.066 0.0% 0.021 0.060 0.033 0.057 4.2%

25 0.088 7.4% 0.151 0.0% 0.878 2.500 0.224 2.148 10.5%

2 50 0.174 9.2% 0.247 6.4% 2.896 10.08 2.746 7.546 16.3%

75 0.298 11.9% 0.380 7.8% 4.961 11.24 4.512 10.370 26.6%

100 0.475 13.5% 0.594 9.3% 7.845 14.520 6.246 12.140 31.1%

10 0.022 0.0% 0.049 0.0% 0.061 0.198 0.113 0.475 4.1%

25 0.053 3.8% 0.114 0.0% 0.241 1.104 0.388 0.966 6.4%

3 50 0.115 8.7% 0.213 5.2% 0.260 0.963 0.912 2.105 10.4%

75 0.190 10.7% 0.309 7.5% 0.398 1.612 1.390 3.503 20.1%

100 0.402 13.1% 0.442 9.6% 0.580 3.186 2.221 6.829 27.8%

10 0.017 0.0% 0.041 0.0% 0.010 0.018 0.028 0.054 0.0%

25 0.044 0.0% 0.097 0.0% 0.025 0.221 0.077 0.072 6.8%

4 50 0.106 6.1% 0.198 0.0% 0.036 0.436 0.188 0.167 8.2%

75 0.164 9.9% 0.288 7.1% 0.197 0.640 0.785 1.490 16.3%

100 0.331 12.4% 0.465 8.7% 0.368 1.845 1.593 3.967 23.6%

fundamental mini-group before the search procedure,
and the computational time reduces in consequence.

• For most cases, the binary encoding scheme
outperforms the permutation encoding scheme in the
sense of accuracy. It achieves a better solution than
the permutation encoding scheme. However, it needs
more computational time because of the decoding
procedure.

• With the population size increase, the computational
time of the genetic algorithm increases quickly, but

the the errors do not decrease significantly as the
calculation time does. Since a real traffic control
system needs the decision process be very fast, we
can choose the population size with a different traffic
situation.

5.2. Simulations with a continuous traffic flow. To
test the performance of the proposed control strategy for
a continuous traffic flow, simulations are implemented at
a 4-intersection network. The overall evacuation time
of these adjacent intersections is examined by using the
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Table 6. Computational performance of the proposed GA with NPOP = 100, Pc = 0.9 and Pm = 0.1.

Lanes Vehicles Permutation encoding Binary encoding Branch and Bound Dynamic Programming Heuristic SET

AVE ERR AVE ERR AVE MAX AVE MAX ERR

10 0.075 0.0% 0.114 0.0% 0.021 0.060 0.033 0.057 4.2%

25 0.149 5.3% 0.190 0.0% 0.878 2.500 0.224 2.148 10.5%

2 50 0.363 7.1% 0.531 5.6% 2.896 10.08 2.746 7.546 16.3%

75 0.612 8.7% 1.152 6.9% 4.961 11.24 4.512 10.370 26.6%

100 1.243 10.0% 2.314 7.6% 7.845 14.520 6.246 12.140 31.1%

10 0.060 0.0% 0.087 0.0% 0.061 0.198 0.113 0.475 4.1%

25 0.122 0.0% 0.153 0.0% 0.241 1.104 0.388 0.966 6.4%

3 50 0.298 7.0% 0.441 3.5% 0.260 0.963 0.912 2.105 10.4%

75 0.467 8.8% 1.032 6.9% 0.398 1.612 1.390 3.503 20.1%

100 0.904 10.6% 1.876 7.6% 0.580 3.186 2.221 6.829 27.8%

10 0.048 0.0% 0.059 0.0% 0.010 0.018 0.028 0.054 0.0%

25 0.091 0.0% 0.104 0.0% 0.025 0.221 0.077 0.072 6.8%

4 50 0.188 5.1% 0.312 0.0% 0.036 0.436 0.188 0.167 8.2%

75 0.379 7.1% 0.753 4.3% 0.197 0.640 0.785 1.490 16.3%

100 0.642 10.6% 1.142 6.2% 0.368 1.845 1.593 3.967 23.6%

proposed genetic algorithms. We also test the influence
of using the proposed GA on two other frequently used
measures. One is the average vehicle waiting time, which
indicates the average waiting time of vehicles before
traversing an intersection; another is the average queue
length, which means the average number of vehicles
waiting to cross an intersection. These two measures are
evaluated separately at four intersections and we take the
average value from four intersections as the value of these
intersections.

Suppose the distance between any two adjacent
intersections is the same and all vehicles need 7 s to
travel from an upstream intersection to a downstream
intersection. Each intersection has four approaches and
each approach contains two lanes for incoming vehicles.
The cover range of the controller for each approach is
50 meters. Vehicles approaching the intersection are
partitioned into four CSGs. According to statistics, we
assume that the maximum traffic load for each of the four
approaches is 1800 vehicles/h (about one vehicle every
2 seconds). Other configurations like vehicle passing
time and lost time are the same as in the computational
experiments. Each data point is obtained by taking the
average over three separate simulations. Each simulation
runs 60 minutes of the traffic flow.

The proposed genetic algorithms were applied with
the population size 100. The performances of the GA,
the dynamic programming algorithm, the heuristic and our
earlier branch and bound algorithm are compared together
with the following two control strategies:

1. The traditional fix-cycle time, in which the famous
Webster formula (Webster, 1958) is applied to

calculate the cycle length and the green time
according to the estimated traffic volume.

2. Adaptive control system: a traditional traffic control
method which is proven efficient in the current traffic
system. Here, the method presented by Fang and
Elefteriadou (2006) is used for comparison.

Simulation results of evacuation time are presented
in Fig. 14. The effect for average queue size and average
vehicle waiting time after applying different algorithms is
presented in Figs. 15 and 16, respectively.

In the results, we can note that the two
exact algorithms (branch and bound and dynamic
programming) have different values for some traffic flow
rate. The reason is that, for several adjacent intersections,
the exact algorithms may be not fast enough to get an
optimal solution for all intersections at some traffic
load. The passing sequence may not be uploaded in
consequence.

However, the proposed genetic algorithms performed
well for several adjacent intersections. We can observe
that the proposed GA can reduce the overall evacuation
time for nearly 60 s (from 3691 s to 3632 s) with a high
traffic flow rate (0.5 vehicle/s). One should note that
the evacuation time is bounded by the simulation time,
i.e., 3600 s. This means the improvement obtained by
using the new control strategy and proposed algorithms
is (3691− 3632)/(3691− 3600) ≈ 65%.

For the average queue size, we can find that the
proposed GA reduces the average queue length for more
than 75% for certain traffic flow rates. Meanwhile,
the average vehicle waiting time is also decreased
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Fig. 14. Overall evacuation time of simulated adjacent intersections.

significantly from 35.7 s to 8.2 s, which means vehicles
will spend 77% less time before traversing this area.

We can also note that the proposed GA can response
quickly for new detected vehicles with different traffic
flow rates. Passing sequences can be uploaded in
time. Moreover, the binary encoding scheme performs
a little better than the permutation encoding scheme.
The heuristic SET also performs better than traditional
adaptive control with traffic lights in the sense of different
measures.

6. Conclusions

In this paper, we studied the autonomous vehicle
sequencing problem at adjacent intersections under the
framework of AIM. The VII technology was used
to obtain each vehicle’s information. The several
intersections considered were decentralized to several
isolated intersections and at each isolated intersection;
vehicles were treated as discrete individuals. Our
objective was to minimize the overall evacuation time at
each decision.

In order to obtain an optimal or a near-optimal
vehicle passing sequence, a fundamental mini-group
algorithm based on the properties our earlier work
was devised to combine certain vehicles of the same
compatible stream group together as the minimum unit.
Then we designed a genetic algorithm which adopts
the binary encoding scheme or permutation encoding
scheme to decide on the vehicle passing sequence each
time. A heuristic SET was also proposed to decode the
chromosome obtained by the binary encoding scheme. It
can also be used independently to find a vehicle passing
sequence. A dynamic programming algorithm was also

presented for finding an optimal solution.
Two encoding schemes of the GA, the heuristic

SET, dynamic programming and the branch and bound
algorithm in our earlier work, were compared in
computational experiments. The results showed that
the proposed genetic algorithm can decide on a vehicle
passing sequence in less than 0.5 seconds for 100 vehicles
with small deviations from optimal solutions. Simulations
with a continuous traffic flow at a four-intersection
network were also implemented. The results indicated
that the proposed algorithm can efficiently improve the
traffic condition.

In future work, differences between normal vehicles
and special used vehicles such as ambulances or police
cars will be considered. Special use vehicles should
have the privileges to pass through intersection. Each
vehicle will have a weight of priority and we need to make
vehicles with high weights pass the intersection as quickly
as possible while satisfying certain objectives. More
constraints and rules will be considered in the next stage
of our work to make the control strategy more suitable for
real applications.
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