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The research on incomplete soft sets is an integral part of the research on soft sets and has been initiated recently. However,
the existing approach for dealing with incomplete soft sets is only applicable to decision making and has low forecasting
accuracy. In order to solve these problems, in this paper we propose a novel data filling approach for incomplete soft sets.
The missing data are filled in terms of the association degree between the parameters when a stronger association exists
between the parameters or in terms of the distribution of other available objects when no stronger association exists between
the parameters. Data filling converts an incomplete soft set into a complete soft set, which makes the soft set applicable not
only to decision making but also to other areas. The comparison results elaborated between the two approaches through
UCI benchmark datasets illustrate that our approach outperforms the existing one with respect to the forecasting accuracy.
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1. Introduction

A lot of practical and complicated problems in many fields
involve uncertain, fuzzy, not clearly defined data. A wide
variety of theories are applicable to modeling vagueness
as diverse as probability theory, fuzzy sets (Zadeh, 1965;
Li and Chiang, 2011), rough sets (Pawlak, 1982; Zhong
and Skowron, 2001), intuitionistic fuzzy sets (Atanassov,
1986), vague sets (Gau and Buehrer, 1993) and interval
mathematics (Gorzalzany, 1987), each of which has
its inherent difficulties as pointed out by Molodtsov
(2004). To overcome these difficulties, Molodtsov (1999)
proposed soft set theory as a new mathematical tool for
dealing with vagueness and uncertainties. A soft set
is a parameterized family of the subsets of a universal
set. It can be said that soft sets are neighborhood
systems and a special case of context-dependent fuzzy
sets. In contrast to all these theories, soft set theory is
free from the above limitations and has no problem of
setting the membership function, which makes it very
convenient and easy to apply in practice. Therefore, it has
a rich potential for applications in several directions, some
of which had already been demonstrated by Molodtsov
(1999), such as the smoothness of functions, game

theory, operations research, Riemann integration, Perron
integration, probability theory, and measure theory.

Presently, research on the soft set theory is
progressing rapidly. Maji et al. (2003) firstly introduced
some definitions of the related operations on soft sets.
Ali et al. (2009) took into account some errors of former
studies and put forward some new operations on soft
sets. Maji and Roy (2002) employed soft sets to solve
the decision-making problem. Chen et al. (2005) pointed
out that the conclusion of soft set reduction offered by
Maji and Roy (2002) was incorrect, and then presented
a new notion of parameterization reduction in soft sets in
comparison with the definition to the related concept of
attribute reduction in rough set theory. The concept of
normal parameter reduction is introduced by Kong et al.
(2008), who overcame the problem of suboptimal choice
and added a parameter set of soft sets. An algorithm for
normal parameter reduction was also presented. However,
the algorithm is hard to understand and involves a great
amount of computation. To improve this algorithm, Ma
et al. (2011) proposed a new efficient normal parameter
reduction algorithm of soft sets. Soft set theory can also
be applied to data mining. An alternative approach to
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mining regular association rules and maximal association
rules from a transactional dataset using soft set theory was
presented by Herawan and Mat Deris (2011).

Furthermore, the soft set model can also be combined
with other mathematical models. Therefore the definitions
of soft groups (Aktas and Cagman, 2007), soft ideals
and idealistic soft BCK/BCI-algebras (Jun and Park,
2008), soft semirings, soft subsemirings, soft ideals
and idealistic soft semirings (Feng et al., 2008) have
been given. Çağman and Enginoğlu (2010) defined soft
matrices and their operations and described products of
soft matrices and their properties. Qin and Kong (2010)
introduced the concept of soft equality and derived some
related properties. Several extension models including
vague soft sets (Xu et al., 2010), fuzzy soft sets (Maji
et al., 2001a; Majumdar and Samanta, 2010), intuitionistic
fuzzy soft sets (Maji, 2009; Maji et al., 2001b; 2004),
interval-valued fuzzy soft sets (Yang et al., 2009) and
interval-valued intuitionistic fuzzy soft sets (Jiang et al.,
2010) are proposed in succession. It could be shown that
soft set theory is closely associated with rough sets (Pei
and Miao, 2005; Herawan and Mat Deris, 2009; Feng
et al., 2009; Feng, 2009). Based on these extension
models, some applications to decision making (Maji and
Roy, 2007; Kong et al., 2009; Feng, 2010a; 2010b; Jiang
et al., 2011; Qin et al., 2011a; 2011b) and the combined
forecasting approach (Xiao et al., 2009) were shown.

The soft sets mentioned above, either in theoretical
studies or practical applications, are based on complete
information. However, incomplete information widely
exists in practical problems. For example, an applicant
perhaps misses age when he/she fills out an application
form. Missing or unclear data (Nowicki, 2010) often
appear in questionnaires due to the fact that attendees give
up some questions or may not understand the meaning
of questions correctly. In addition, other reasons like
mistakes in the process of measuring and collecting data
or restriction of data collecting can also result in unknown
or missing data. Hence, soft sets under incomplete
information become incomplete soft sets.

There are some traditional approaches for dealing
with incomplete information. The simplest approach
is to directly delete unknown or missing data from
incomplete information systems, which will, however,
lead to the missing of some valuable information. Data
filling is another approach for dealing with incomplete
information, which can predict inexistent or missing
data by evidence theory, expert experience, average and
Bayesian models, and so on. However, it is necessary
for evidence theory and Bayesian models to learn the
evidence function and the probability distribution in
advance. Also, experts’ experience is not objective.
Data analysis approaches to rough sets in an incomplete
information system are also described by Thiesson (1995),
Zhang and Li (2006), as well as Quinlan (1989). It is

known that the value domain of a soft set is a set of subsets
of all objects in an initial finite universe. This particularity
of value domains of mapping functions in soft sets
makes all of these traditional methods mentioned above
inapplicable directly applied to dealing with incomplete
soft sets. In order to handle incomplete soft sets, new data
processing methods are required.

Zou and Xiao (2008) initiated the study on soft
sets under incomplete information. They put forward
improved data analysis approaches for standard soft
sets and fuzzy soft sets under incomplete information.
For crisp soft sets, the decision value of an object
with incomplete information is calculated by the
weighted-average of all possible choice values of the
object, and the weight of each possible choice value is
decided by the distribution of other available objects.
Incomplete data in fuzzy soft sets is predicted based on
the method of average probability. However, there are
two inherent deficiencies in their method. Firstly, for
crisp soft sets, directly calculating the decision value of
an object with incomplete information makes the method
only applicable to decision making problems. During the
process of data analysis, soft sets remain invariable; in
other words, the missing data are still missing. Therefore,
soft sets cannot be used in other fields but decision
making. Secondly, in the decision making problem,
all of objects are competitive and each choice value of
objects is independent of that of other objects. Thus the
distribution of other available objects deciding the weight
of each possible choice value is inappropriate to deal with
incomplete soft sets, which makes this method of a low
accuracy.

In order to overcome the two inherent deficiencies
of Zou and Xiao (2008), in this paper we propose a
novel data filling approach for incomplete soft sets (called
DFIS). We firstly define the notion of the association
degree to measure the relations between the parameters,
which is more reliable than the distribution of other
available objects. The missing data are filled in terms
of the association degree between the parameters when
a stronger association exists between the parameters or in
terms of the probability of other available objects when no
stronger association exists between the parameters. There
are two main contributions in this work. First, we present
the applicability of the data filling method to handle
incomplete soft sets. Data filling converts an incomplete
soft set into a complete soft set, which makes the soft set
more useful. Second, we introduce the association degree
between parameters to fill the missing data, which can
improve the accuracy compared with the method of Zou
and Xiao (2008).

The remainder of this paper is organized as follows.
The following section presents the notions of soft sets and
incomplete soft sets. Section 3 studies the data analysis
approaches of soft sets under incomplete information
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put forward by Zou and Xiao (2008). Section 4
defines the notion of the association degree between the
parameters and presents a novel data filling approach
for incomplete soft sets. In Section 5, a comparison
between two approaches is elaborated through a Boolean
data set, and then the experimental results are analyzed
and comparisons are done based on five UCI benchmark
datasets. Finally, conclusions are given in Section 6.

2. Preliminaries

In this section, we review some definitions and properties
regarding soft sets. Let U be a non-empty initial universe
of objects, E be a set of parameters in relation to objects
in U , P (U) be the power set of U , and A ⊂ E. The
definition of a soft set is given as follows.

Definition 1. (Molodtsov, 2004) A pair (F, A) is called a
soft set over U , where F is a mapping given by F : A →
P (U). That is, a soft set over U is a parameterized family
of subsets of the universe U .

Definition 2. An information system is a quadruple
S = (U, A, V, f), where U = {u1, u2, . . . , u|U|} is a
non-empty finite set of objects, A = {a1, a2, . . . , a|A|}
is a non-empty finite set of attributes, V =

⋃
a∈A Va, Va

is the domain (value set) of the attribute a, f : U×A → V
is an information function such that f(u, a) ∈ Va, for
every (u, a) ∈ U × A, called an information (knowledge)
function.

An information system is also called a knowledge
representation system or an attribute-valued system and
can be intuitively expressed in terms of an information
table. In an information system S = (U, A, V, f), if
Va = {0, 1} for every a ∈ A, then S is called a Boolean-
valued information system.

Proposition 1. (Thiesson, 1995) If (F, E) is a soft set
over the universe U , then (F, E) is a Boolean valued in-
formation system S = (U, A, V{0,1}, f).

Obviously, for the reverse process, an information
system of Boolean-value can be represented as a soft set.
As an illustration, let us consider the following example
quoted directly after Molodtsov (2004).

Example 1. Let a soft set (F, E) describe the
“attractiveness of houses” that Mr. X is going to purchase.
Suppose that U = {h1, h2, h3, h4, h5, h6} and E =
{e1, e2, e3, e4, e5}, where there are six houses in the
universe U and E is a set of parameters, ei = (i =
1, 2, 3, 4, 5) standing for the parameters “expensive”,
“beautiful”, “wooden”, “cheap”, and “in the green
surroundings”, respectively.

Suppose that we have F (e1) = {h2, h4}, F (e2) =
{h1, h3}, F (e3) = φ, F (e4) = {h1, h3, h5}, and

F (e5) = {h1}, where F (ei) means a subset of U whose
elements match the parameter ei. Then we can view
the soft set (F, E) as that consisting of the following
collection of approximations:

(F, E) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

expensive houses = {h2, h4}
beautiful houses = {h1, h3}
wooden houses = φ

cheap houses = {h1, h3, h5}
in the green
surrounding = {h1}

houses

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Each approximation has two parts, a predicate p
and an approximate value set v. For example, for the
approximation “expensive houses={h2, h4}”, we have the
predicate name of expensive houses and the approximate
value set or value set is {h2, h4}. Thus, a soft set (F, E)
can be viewed as a collection of approximations below:

(F, E) = {p1 = v1, p2 = v2, p3 = v3, . . . , pn = vn} .

�
The soft set is a mapping from a parameter to

the crisp subset of universe. From such a case, we
can see that the structure of a soft set can classify
the objects into two classes (yes/1 or no/0). Thus
we can make a one-to-one correspondence between a
Boolean-valued information system and a soft set, as
stated in Proposition 1. A soft set (F, E) as in Example 1,
can be represented as in Table 1.

Table 1. Tabular representation of the soft set (F, E).
U e1 e2 e3 e4 e5

h1 0 1 0 1 1
h2 1 0 0 0 0
h3 0 1 0 1 0
h4 1 0 0 0 0
h5 0 0 0 1 0
h6 0 0 0 0 0

Definition 3. A pair is called an incomplete soft set
over U if there exists xi ∈ U(i = 1, 2, . . . , n) and
ej ∈ E(j = 1, 2, . . . , m), making xi ∈ F (ej) unknown,
that is, F (ej)(xi) = null. In a tabular representation, null
is represented by “*”.

Example 2. Assume a community college is
recruiting some new teachers and there are eight persons
applying for the job. Let us consider a soft set (F, E)
which describes the “capability of the candidates”. The
universe U = {c1, c2, c3, c4, c5, c6, c7, c8} and E =
{e1, e2, e3, e4, e5, e6} is the parameter set, where ei(i =
1, 2, 3, 4, 5, 6) stands for the parameters “experienced”,
“young age”, “married”, “the highest academic degree
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is Doctor”, “the highest academic degree is Master” and
“studied abroad”, respectively. Suppose several applicants
miss some information. As a result, the soft set (F, E)
becomes an incomplete soft set. Table 2 is the tabular
representation of the incomplete soft set (F, E). If cj ∈
F (ei) is unknown, F (ei)(cj) = “*”, where F (ei)(cj) are
the entries in Table 2. �

Table 2. Tabular representation of the incomplete soft set
(F, E).

U e1 e2 e3 e4 e5 e6

c1 1 0 1 0 1 0
c2 1 0 0 1 0 0
c3 0 1 0 0 1 0
c4 0 1 * 1 0 *
c5 1 0 1 1 0 0
c6 0 1 0 0 * 0
c7 1 * 1 0 1 0
c8 0 0 1 1 0 0

3. Data analysis approaches of soft sets
under incomplete information

In this section, we briefly discuss data analysis approaches
of soft sets under incomplete information (DASI), which
were presented by Zou and Xiao (2008).

Suppose that U = {h1, h2, . . . , hn}, E =
{e1, e2, . . . , ey}, (F, E) is an incomplete soft set with
tabular representation. Suppose that for the object hi there
are some incomplete data. Let ci be the possible choice
value of the object hi, ci =

∑y
j=1 hij , where hij are

the entries in the table of (F, E) and y is the number of
parameters, ci be a set of all possible choice values of the
object hi, so the decision value di =

∑m
i=1 kici, where

ki is the weight of the choice value ci. The weight of the
possible choice value is defined as

k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏

e∈E∗
0

qe, x = 0,

∑

Cx
d

[(
∏

[ei∈E∗
1 ]

pei)(
∏

[ej∈E∗
0 ]

qej )], 0 < x < d,

∏

e∈E∗
1

pe, x = d,

(1)
where d is the number of parameter columns having
incomplete information, that is, there are d cells with “*”
in the corresponding row in the tabular representation.

For a given choice value of the object h, let x be the
number of cells with the value of 1 in this row, and d − x
be the number of cells with the value of 0 in this row, E∗

1

and E∗
0 be the sets of parameters with the value of 1 and

0 for the object h, respectively. Here pe and qe stand for
probabilities that an object belongs to and does not belong

to F (e), respectively, defined by

pe =
n1

n1 + n0
, qe =

n0

n1 + n0
, e ∈ E, (2)

where n1 and n0 stand for the number of objects that
belong to and do not belong to F (e), respectively.

Based on the above formulas, Zou and Xiao (2008)
presented data analysis approaches of soft sets under
incomplete information as shown in Fig. 1. From the
above approach, we should know that the decision value
of an object with incomplete information is calculated
by the weighted-average of all possible choice values of
the object, and the weight of each possible choice value
is decided by the distribution of other available objects
for the crisp soft sets. It is clear that we only get the
decision value for decision making, while the missing
data are not still filled. Accordingly the method is only
applicable to a decision making system rather than others.
It should be found that each choice value of objects is
independent of that of other objects. Consequently, the
distribution of other available objects deciding the weight
of each possible choice value is not reasonable, which
makes this method of low accuracy. In order to overcome
these problems, we propose a novel data filling approach
for incomplete soft sets (DFIS).

4. Novel data filling approach for
incomplete soft sets

In this section, we firstly introduce the definition of
association degrees between parameters. Furthermore, the
related heuristic algorithms are presented based on the
association degrees.

4.1. Association degree between parameters. So far,
little research has focused on the associations between
parameters in soft sets. Actually, for one object, there
always exist some obvious or hidden associations between
parameters. This is just like for a person: as we

(1) Input the incomplete soft set
(F, E) and the parameter set E;

(2) Calculate all possible choice
values ci for each
object, respectively;

(3) Calculate the weight ki of
the each possible choice value
for each object according to
formula (1), respectively;

(4) Compute the decision value
di =

∑m
d=1 kici for each object.

Fig. 1. Data analysis approach of soft sets under incomplete in-
formation of Zou and Xiao (2008).
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know, the attribute “weight” has some relation with the
attribute “height”. Let us reconsider Examples 1 and
2. There are many obvious associations in the two
examples. In Example 1, it is easy to find that if a
house is expensive, the house is not cheap and vice
versa. There is an inconsistent association between
the parameter “expensive” and the parameter “cheap”.
Generally speaking, if a house is beautiful or is in
green surroundings, the house is expensive. There is a
consistent association between the parameter “beautiful”
and the parameter “expensive” or between “in the green
surroundings” and “expensive”. Similarly, in Example 2,
there is an obvious inconsistent association between the
parameter “the highest academic degree is Doctor” and
the parameter “the highest academic degree is Master”.
A candidate has only one highest academic degree. We
can also find that if a candidate is experienced or has
been married, in general, he/she is not young. There
is an inconsistent association between the parameter
“experienced” and parameter “young age” or between
“married” and “young age”.

These associations reveal the interior relations
among objects. In a soft set, these associations between
parameters will be very useful for filling incomplete data.
If we have already found that parameter ei is associated
with parameter ej and there are missing data in F (ei), we
can fill in the missing data according to the corresponding
data in F (ej) based on the association between ei and ej .
To measure these associations, we define the notion of the
association degree and some relative concepts.

Let U be a universe set and E be a set of parameters.
Uij denotes the set of objects that have specified values 0
or 1 both on parameter ei and parameter ej such that

Uij = {x|F (ei)(x) �= ‘*’ and F (ej)(x) �= ‘*’, x ∈ U} .
(3)

In other words, Uij stands for the set of objects that have
known data both on ei and ej . Based on Uij , we have the
following definitions.

Definition 4. Let E be a set of parameters and ei, ej ∈
E, (i, j = 1, 2, . . . , m). The consistent association num-
ber between parameter ei and parameter ej is denoted by
CN ij and defined as

CN ij = |{x|F (ei)(x) = F (ej)(x), x ∈ Uij}| , (4)

where m denotes the number of parameters and |·| denotes
the cardinality of its set argument.

Example 3. Assume that there exists an incomplete
soft set (F, E) with the tabular representation displayed
as in Table 2. According to Definition 4, we get that the
consistent association number CN 12 between parameter
e1 and parameter e2 is 1. Similarly, CN 13 = 5, CN 14 =
4, CN 15 = 4, CN 16 = 3, CN 23 = 1, CN 24 = 2,

CN 25 = 4, CN 26 = 4, CN 34 = 4, CN 35 = 3,
CN 36 == 3, CN 45 = 0, CN 46 = 4, CN 56 = 3. �

Definition 5. Let E be a set of parameters and ei, ej ∈
E, (i, j = 1, 2, . . . , m). The consistent association de-
gree between parameter ei and parameter ej is denoted by
CD ij and defined as

CD ij =
CN ij

|Uij | . (5)

Obviously, the value of CDij is in the interval [0, 1].
The consistent association degree measures the extent to
which the value of parameter ei is consistent with that of
parameter ej over Uij .

Example 4. Assume that there exists an incomplete
soft set (F, E) with the tabular representation displayed
as in Table 2. According to Definition 5, we can get
the Consistent Association Degree for (F, E) as follows:
CD12 = 1/7, CD13 = 5/7, CD14 = 4/8, CD15 = 4/7,
CD16 = 3/7, CD23 = 1/6, CD24 = 2/7, CD25 = 4/6,
CD26 = 4/6, CD34 = 4/7, CD35 = 3/6, CD36 = 3/7,
CD45 = 0/7, CD46 = 4/7, CD56 = 3/6. �

Similarly, we can define the inconsistent association
number and the inconsistent association degree as follows.

Definition 6. Let E be a set of parameters and ei, ej ∈
E, (i, j = 1, 2, . . . , m). The inconsistent association
number between parameter ei and parameter ej is denoted
by IN ij and is defined as

IN ij = |{x|F (ei)(x) �= F (ej)(x), x ∈ Uij}| . (6)

Definition 7. Let E be a set of parameters and ei, ej ∈
E(i, j = 1, 2, . . . , m). The inconsistent association de-
gree between parameter ei and parameter ej is denoted by
ID ij and is defined as

ID ij =
IN ij

|Uij | . (7)

Obviously, the value of ID ij is also in [0, 1]. The
inconsistent association degree measures the extent to
which parameters ei and ej are inconsistent.

Example 5. Consider incomplete soft set (F, E) with the
tabular representation displayed as in Table 2. According
to Definition 6, we can get that the consistent association
number IN 12 between parameter ei and parameter ej

is 6. Similarly, IN 13 = 2, IN 14 = 4, IN 15 = 3,
IN 16 = 4, IN 23 = 5, IN 24 = 5, IN 25 = 2, IN 26 = 2,
IN 34 = 3, IN 35 = 3, IN 36 = 4, IN 45 = 7, IN 46 = 3,
IN56 = 3. According to Definition 7, naturally, we
can get the inconsistent association degree for (F, E) as
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follows: CD12 = 6/7, CD13 = 2/7, CD14 = 4/8,
CD15 = 3/7, CD16 = 4/7, CD23 = 5/6, CD24 = 5/7,
CD25 = 2/6, CD26 = 2/6,CD34 = 3/7, CD35 = 3/6,
CD36 = 4/7, CD45 = 7/7, CD46 = 3/7, CD56 = 3/6.

�

Definition 8. Let E be a set of parameters and ei, ej ∈
E(i, j = 1, 2, . . . , m). The association degree between
parameter ei and parameter ej is denoted by Dij and
defined as

Dij = max {CD ij , ID ij} . (8)

If CD ij > ID ij , then Dij = CD ij , which means
that most of objects over Uij have consistent values of
parameters ei and ej . If CD ij < ID ij , then Dij =
ID ij , which means that most of objects over Uij have
inconsistent values of parameters ei and ej . If CD ij =
ID ij , we get the lowest association degree between
parameters ei and ej .

Example 6. Based on Definition 8, association degrees
for the incomplete soft set (F, E) are easily obtained as
shown in Table 3. Note that “I” means the association

Table 3. Association degree table for the incomplete soft set
(F, E).
e1 e2 e3 e4 e5 e6

e2 0.86I – 0.83I 0.71I 0.67C 0.67C
e3 0.71C 0.83I – 0.57C 0.5C 0.57I
e5 0.57C 0.67C 0.5C 1I – 0.5C
e6 0.57I 0.67C 0.57I 0.57C 0.5C –

degree value is decided by an inconsistent association
degree, while “C” means the association degree value is
decided by the consistent association degree in Table 3.

�
Property 1. For any parameters ei and ej , Dij ≥
0.5 (i, j = 1, 2, . . . , m).

Proof. For any parameters ei and ej , from the definitions
of CD ij and ID ij , we have

CD ij + ID ij = 1.

Therefore, at least one of CD ij and ID ij is greater than
0.5, namely, Dij = max {CD ij , ID ij} ≥ 0.5. �

It is obvious that the lowest association degree in
Table 3 is 0.5.

Definition 9. Let E be a set of parameters and ei, ej ∈
E(i, j = 1, 2, . . . , m). The maximal association degree
of parameter ei is denoted by Di and defined as

Di = max Dij , j = 1, 2, . . . , m. (9)

where m is the number of parameters.

4.2. Proposed algorithm for data filling. Below,
we provide an algorithm to illustrate how to fill the
incomplete data for an incomplete soft set. In our

(1) Input the incomplete
soft set (F, E).

(2) Find ei, which includes
missing data F (ei)(x)

(3) ComputeDij , j = 1, 2, . . . , m wherem
is the number of parameters in E.

(4) Compute the maximal association
degree Di.

(5) If Di ≥ λ, find the parameter ej

which has the maximal association
degree Di with parameter ei.

(6) If there is a consistent association
between ei and ej , F (ei)(x) = F (ej)(x);
otherwise there is an inconsistent
association between
ei and ej , F (ei)(x) = 1 − F (ej)(x).

(7) If Di < λ, compute the probabilities
P1 and P0 that object x
belongs to and does not belong to
F (ei), respectively,
P1 = n1

n1+n0
, P0 = n0

n1+n0
,

where n1 and n0 stand for the numbers
of objects that belong to and
do not belong to F (ei),
respectively.

(8) If P1 > P0, F (ei)(x) = 1. If P1 > P0,
F (ei)(x) = 0. If P1 = P0, 0 or 1 may be
assigned to F (ei)(x).

(9) If all of the missing data are
filled, the algorithm ends. Otherwise,
go to Step 2.

Fig. 2. Proposed algorithm for data filling.

method, first, we calculate association degrees between
the parameter ei and each of the other parameters,
respectively, over the existing complete information, and
then we find the parameter ej which has the maximal
association degree with parameter ei. Finally, the missing
data in F (ei) will be filled according to the corresponding
data in the mapping set F (ej) based on association
degrees. However, sometimes a parameter may have a
lower maximal association degree, that is, the parameter
has a weaker association with other parameters. In
this case, the association is not reliable any more and
we have to find other methods. Inspired by the data
analysis approach by Zou and Xiao (2008), we can use
the probability of objects appearing in F (ei) to fill the
missing data. In any case, in our method we give
priority to the association between the parameters instead
of the probability of objects appearing in F (ei) to fill
the missing data due to the fact that the relation between
the parameters is more reliable than that between the
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objects in a soft set. Therefore, we can set a threshold
λ if the maximal association degree equals or exceeds
the predefined threshold, the missing data in F (ei) will
be filled according to the corresponding data in F (ej)
based on the association degree, or otherwise, the missing
data will be filled in terms of the probability of objects
appearing in F (ei). Figure 2 shows the details of the
algorithm.

From Figs. 1 and 2, we can observe some differences
between DFIS and DASI as follows:

• DASI calculates the decision value of an object
with missing data. DFSI calculates the maximal
association degree of a parameter with missing data.

• DFSI fills the missing data in an incomplete soft set;
however, DASI cannot fill them.

• DASI is only applicable to decision making because
it directly calculates the decision value of an object
with missing data; however, DFSI converts an
incomplete soft set into a complete soft set, which
makes the soft set not only applicable to decision
making but also useful for other applications.

• The computation of the decision value in DASI
completely depends on the probability distribution
of other available objects. DFSI gives priority to
the association between the parameters instead when
filling the missing data, which is more reliable than
the distribution of other available objects.

5. Experimental results

In this section, we compare DFIS with DASI. Firstly, a
comparison is elaborated through a Boolean data set as
shown in Table 2. Both the algorithms are implemented
as C++ programs. They are executed sequentially on
Intel Core 2 Duo CPUs. Then, the experimental results
are analyzed and comparisons are made based on five
UCI benchmark datasets. Mainly, we compare two
approaches in terms of predictive accuracy. Due to
the decision value for decision making in DASI, the
predictive accuracy is described by the Mean Absolute
Percentage Error (MAPE), which is the most commonly
used error measure in business, employed to evaluate
forecast models (Hyndman and Koehler, 2006).

5.1. Comparison results for Table 2.

Example 7. Let (F, E) be a soft set with the tabular
representation displayed in Table 4, which is the original
version of Table 2. Due to the missing of some data,
there is an incomplete soft set shown as in Table 2.
Suppose that U = {c1, c2, c3, c4, c5, c5, c6, c7, c8}, and
E = {e1, e2, e3, e4, e5, e6}.

5.1.1. Results from DASI.
Step 1. Calculate all possible choice values ci for each
object having the missing data. For object c4, the possible
choice values are 4, 3, 2; for object c6, the possible choice
values are 2, 1; for object c7, the possible choice values
are 4, 3.

Table 4. Tabular representation of the soft set (F, E) (original
version of Table 2).

U e1 e2 e3 e4 e5 e6 di

c1 1 0 1 0 1 0 3
c2 1 0 0 1 0 0 2
c3 0 1 0 0 1 0 2
c4 0 1 1 1 0 0 3
c5 1 0 1 1 0 0 3
c6 0 1 0 0 1 0 2
c7 1 0 1 0 1 0 3
c8 0 0 1 1 0 0 2

Step 2. Calculate the weight ki of the each possible
choice value for each object according to the formula
(1). For object c4, there are two cells with “*” in
parameter columns e3 and e6, respectively. Thus we
can get pe3 = 4/7,qe3 = 3/7, pe6 = 0, qe6 = 1.
According to (1), the weight of the choice value of 4 is
k1 = pe3pe6 = 0, the weight of the choice value of 3
is k2 = pe3qe6 + qe3pe6 = 4/7, and the weight of the
choice value of 2 is k3 = qe3qe6 = 3/7. For the object c6,
there is one cell with “*” in the parameter column e5. So
we can get pe5 = 3/7, qe5 = 4/7. According to (1), the
weight of the choice value of 2 is k1 = pe5 = 3/7, the
weight of the choice value of 1 is k2 = qe5 = 4/7. For
the object e7, there is one cell with “*” in the parameter
column e2. Thus we can get pe2 = 3/7,qe2 = 4/7.
According (1), the weight of the choice value of 4 is
k1 = pe5 = 3/7, the weight of the choice value of 3 is
k2 = qe5 = 4/7.

Step 3. Compute the decision value di =
∑m

i=1 kici for
each object. Therefore, d4 = k1 × 4 + k2 × 3 + k3 × 2 =
18/7; similarly, d6 = k1 × 2 + k2 × 1 = 10/7, d7 =
k1 × 4 + k2 × 3 = 24/7.

5.1.2. Results from DFIS. Suppose that the threshold
is λ = 0.8.

Step 1. Find the missing data. Here F (e2)(c7), F (e3)(c4),
F (e5)(c6) and F (e6)(c4) need to be filled.

Step 2. Compute the association degrees Dij , j =
1, 2, . . . , m, which is shown as in Table 3.

Step 3. Compute the maximal association degree Di for
missing data, if Di ≥ λ, and then fill them according to
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the association degree. For parameter e2, from Table 3 we
can see the association degree D21 = 0.86, D23 = 0.83,
D24 = 0.71, D25 = 0.67, D26 = 0.67, where D21,D23

and D24 are from the inconsistent association degree, D25

and D26 are from the consistent association degree. The
maximal association degree D2 = 0.86. We set the
threshold λ = 0.8. Therefore, in terms of the proposed
algorithm, we can fill F (e2)(e7) according to F (e1)(e7).
Because F (e2)(e7) = 1 and there is an inconsistent
association between parameters e2 and e1, we fill 0 into
F (e2)(e7). Similarly, we can fill 0, 1 into F (e3)(e4) and
F (e5)(e6), respectively.

Step 4. If Di < λ, compute the probabilities P1 and P0

and fill the missing data according to the probabilities. For
parameter e6, we have the maximal association degree
D6 = 0.67 < λ. That means there is no reliable
association between parameter e6 and other parameters.
So we can fill the data F (e6)(c4) according to the
probabilities of other available objects. Here, we have
P0 = 1,P1 = 0. Therefore, we fill 0 into F (e6)(c4).
Table 5 shows the tabular representation of the filled soft
set of Table 2.

Table 5. Tabular representation of the filled soft set of Table 2.
U e1 e2 e3 e4 e5 e6 di

c1 1 0 1 0 1 0 3
c2 1 0 0 1 0 0 2
c3 0 1 0 0 1 0 2
c4 0 1 0 1 0 0 2
c5 1 0 1 1 0 0 3
c6 0 1 0 0 1 0 2
c7 1 0 1 0 1 0 3
c8 0 0 1 1 0 0 2

We compare two approaches in terms of the
predictive accuracy, which is described by the mean
absolute percentage error. The mean absolute percentage
error is defined as

M =
1
n

n∑

t=1

∣
∣
∣
∣
At − Ft

At

∣
∣
∣
∣ , (10)

where At is the actual decision value and Ft is the forecast
decision value.

We denote by M1 the MAPE of DASI and by M2 the
MAPE of DFIS. Thus,

M1 =
1
3

(∣
∣
∣
∣
3 − 18/7

3

∣
∣
∣
∣ +

∣
∣
∣
∣
2 − 10/7

2

∣
∣
∣
∣ +

∣
∣
∣
∣
3 − 24/7

3

∣
∣
∣
∣

)

= 0.1905.

Similarly, M2 = 0.1111. It is obvious that our approach
has a smaller MAPE compared with DASI, and thus it
improves the forecasting accuracy. �

5.2. Comparison results for UCI benchmark datasets.
This section discusses the experiment that was made
using DFIS and DASI on five UCI benchmark datasets
(UCI, 2012), i.e, Zoo, SPECT Heart, Congressional
Votes, Acute Inflammations, and Flag. Here the given
association degree threshold λ = 0.8. Since the soft set
is a Boolean-valued information system, we only need
Boolean parameters to be tested for these datasets. On
each dataset, we randomly delete 10 entries, 20 entries,
30 entries, 40 entries, 50 entries, 60 entries, 70 entries
and 80 entries as the missing data, respectively. Given
the number of missing data, we run the program 100
times and compute the average MAPE as the final one.
Running DFIS and DASI with a different number of
missing data, two vectors of MAPE finally are obtained on
each dataset. To determine whether the means of the two
vectors are statistically different from each other, a t-test
is also performed. The t-test is implemented by using the
function h = ttest2(x, y) in Matlab Statistics Toolbox,
where x and y denote the vectors of the MAPE obtained
by DFIS and DASI, respectively. The result h = 1
means that we can reject the hypothesis that the means are
equal at the 0.05 significance level and h = 0 otherwise.
Experimental results are shown in what follows.

5.2.1. Zoo dataset. The Zoo dataset consists of 101
instances of animals with 18 features. The names of
the animals constitute the first attribute. There are 15
Boolean features in terms of the presence of hair, feathers,
backbone, eggs, fins, eggs, tail, and of whether the animals
are airborne, aquatic, predator, toothed, catsize, domestic,
breathes, venomous. Since the soft set is a Boolean-valued
information system, we only need Boolean parameters to
be tested. Using DFIS and DASI, we get two groups of
MAPE values when the number of missing data varies
from 10 to 80, namely, vectors x and y. Here

x = [0.036, 0.032, 0.033, 0.034, 0.033, 0.031,

0.057, 0.053],

y = [0.069, 0.068, 0.069, 0.069, 0.07, 0.068,
0.063, 0.059].

Figure 3 shows the MAPE values obtained by two
approaches to the Zoo dataset. It is obvious that
our approach has a lower MAPE value compared with
DASI, and thus it improves the forecasting accuracy.
DFSI improves the forecasting accuracy of DASI up to
on 42.2% average. Especially, when the number of
missing values ranges from 10 to 60, DFSI improves the
forecasting accuracy of DASI up to 52.2% on the average.
Further, a t-test is performed on vectors x and y, namely,
h = ttest2(x, y). The result is h = 1, which indicates the
means of vectors x and y are statistically different. The
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Fig. 3. MAPE of two approaches for the Zoo dataset.

mean of x is less than that of y, that is, the forecasting
accuracy of DFIS is higher than that of DASI on the Zoo
dataset.

5.2.2. SPECT Heart dataset. The dataset describes
the diagnosing of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Here we use
the SPECT Heart training data set which contains 80
patients with 22 categorical attributes. This dataset is
originally a Boolean dataset. Using DFIS and DASI, we
get MAPE vectors x and y. Here

x = [0.038, 0.031, 0.034, 0.032, 0.035, 0.036,
0.033, 0.034],

y = [0.095, 0.095, 0.094, 0.095, 0.094, 0.094,
0.094, 0.094].

Figure 4 illustrates the MAPE values obtained by two
approaches to the SPECT Heart dataset.

In this case, DFIS improves the forecasting accuracy
of DASI up to 63.8% on the average. Further, a t-test h =
ttest2(x, y) is performed on vectors x and y. The result
is h = 1, which indicates the means of vectors x and y are
statistically different. The mean of x is less than that of
y, that is, the forecasting accuracy of DFIS is higher than
that of DASI for the SPECT Heart dataset.

5.2.3. Congressional Votes. This example concerns
the United States Congressional Voting Records in 1984.
Each record represents one congressman’s votes regarding
16 issues. All attributes are Boolean with yes and no
values. Originally, the dataset contains 435 objects,
including 203 objects having the missing data. In order
to reveal the MAPE of two approaches, we only reserve
232 objects having complete data. Using DFIS and DASI,
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Fig. 4. MAPE of two approaches for the SPECT Heart dataset.

we get MAPE vectors x and y. Here

x = [0.026, 0.027, 0.026, 0.026, 0.025, 0.027,
0.026, 0.027],

y = [0.059, 0.059, 0.059, 0.059, 0.059, 0.059,

0.059, 0.059].

Figure 5 illustrates the MAPE values obtained by
the two approaches for the Congressional Votes dataset.
In this case, DFIS improves the forecasting accuracy of
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Fig. 5. MAPE of two approaches for the Congressional Votes
dataset.

DASI up to 55.9% on the average. Further, a t-test h =
ttest2(x, y) is performed on vectors x and y. The result
is h = 1, which indicates the means of vectors x and y are
statistically different. The mean of x is less than that of
y, that is, the forecasting accuracy of DFIS is higher than
that of DASI on the Congressional Votes dataset.

5.2.4. Acute Inflammations dataset. This dataset
was created by a medical expert as a data set to test
the expert system which will perform the presumptive
diagnosis of two diseases of the urinary system. There
are 120 instances and 6 parameters. However, one of the
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parameters is non-Boolean. So we choose 5 parameters to
be tested. Using DFIS and DASI, we get MAPE vectors x
and y. Here

x = [0.174, 0.173, 0.175, 0.178, 0.183, 0.174,
0.178, 0.173],

y = [0.237, 0.227, 0.231, 0.229, 0.232, 0.23,
0.232, 0.23].

Figure 6 illustrates the MAPE values obtained by
the two approaches for the Acute Inflammations dataset.
In this case, DFIS improves the forecasting accuracy of
DASI up to 23.8% on the average. Further, a t-test h =
ttest2(x, y) is performed on vectors x and y. The result
is h = 1, which indicates the means of vectors x and y are
statistically different. The mean of x is less than that of
y, that is, the forecasting accuracy of DFIS is higher than
that of DASI for the Acute Inflammations dataset.
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Fig. 6. MAPE of two approaches for the Acute Inflammations
dataset.

5.2.5. Flag database. This dataset contains details
of various nations and their flags. Originally, there are
194 instances and 28 parameters. Due to a Boolean
information system, 12 parameters are chosen to be tested.
Using DFIS and DASI, we get MAPE vectors x and y.
Here

x = [0.062, 0.065, 0.066, 0.069, 0.067, 0.069,
0.065, 0.068],

y = [0.095, 0.092, 0.092, 0.094, 0.093, 0.093,

0.092, 0.093].

Figure 7 illustrates the MAPE values obtained by the
two approaches for the Flag dataset. In this case, DFIS
improves the forecasting accuracy of DASI up to 29.0%
on the average. Further, a t-test h = ttest2(x, y) is
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Fig. 7. MAPE of two approaches for the Flag dataset.

performed on vectors x and y. The result is h = 1, which
indicates the means of vectors x and y are statistically
different. The mean of x is less than that of y, that is, the
forecasting accuracy of DFIS is higher than that of DASI
for the Flag dataset. We summarize the aforementioned
experimental results as follows:

• DFIS improves the forecasting accuracy of DASI on
all five UCI datasets. The forecasting accuracy of
DASI is improved up to 42.9% on the average for
these five datasets.

• The results of the t-test on five datasets are the
same, namely, h = 1. This result shows that the
means of MAPE vectors obtained by DFIS and DASI
are statistically different, which provides a statistical
rigor to the improved accuracy by DFIS.

6. Conclusions

Data filling for an incomplete soft set is rarely studied
in the soft set literature. The paper aims to introduce
a novel data filling approach for incomplete soft sets
(DFIS), which is based on the association degree among
parameters. DFIS can overcome the two inherent
deficiencies in DASI. Data filling converts an incomplete
soft set into a complete soft set, which makes the soft set
not only applicable to decision making but also useful for
other applications, while the approach of DASI is only
applicable to decision making. The comparison results
elaborated between the two approaches through five UCI
benchmark datasets illustrate that DFIS outperforms the
approach of DASI regarding the forecasting accuracy.
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