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In the reliability modeling field, we sometimes encounter systems with uncertain structures, and the use of fault trees and
reliability diagrams is not possible. To overcome this problem, Bayesian approaches offer a considerable efficiency in this
context. This paper introduces recent contributions in the field of reliability modeling with the Bayesian network approach.
Bayesian reliability models are applied to systems with Weibull distribution of failure. To achieve the formulation of the
reliability model, Bayesian estimation of Weibull parameters and the model’s goodness-of-fit are evoked. The advantages
of this modelling approach are presented in the case of systems with an unknown reliability structure, those with a common
cause of failures and redundant ones. Finally, we raise the issue of the use of BNs in the fault diagnosis area.
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1. Introduction

Reliability analysis of industrial systems is one of the most
dynamic branches of research. However, safety critical
systems analysis such as in electrical production energy
power stations and aeronautic systems requires suitable
knowledge on the reliability of a system’s components.
The evolution of statistical methods of modeling gave a
considerable contribution in this context.

Empirical statistical methods are replaced in several
applications by hierarchical Bayesian ones. The Bayesian
modeling framework is based on incorporation of different
sources of quantitative and qualitative data in the model.
These data are considered prior information on the sys-
tem. The analyses presented in this paper are simple il-
lustrations of the power of the Bayesian Networks (BNs)
approach in the domains of reliability analysis and fault
diagnosis.

Furthermore, this paper shows how to assess the
parameters of the reliability model by the hierarchical
Bayesian approach. It is emphasized here that he Weibull
probability density function (pdf) is a more general failure
density than the classical exponential one (i.e., it permits
the modeling of different regions of the bathtub curve in

the lifecycle of a great number of components).

Bayesian networks (Pearl, 1988), also known as
probabilistic networks or belief networks, have been
known in the artificial intelligence community and ex-
ploited in different expert systems to model complex and
uncertain interactions among causes and consequences.
In probabilistic reasoning, random variables are used to
represent events and/or objects in the world. Bayesian
reasoning and inference procedures have only recently
gained popularity in the fusion of information obtained
from different sources. A BN, as a graphical approach,
has become the best suited way of representing our be-
liefs about the elements of several systems and the rela-
tionships that exist between these various elements. Con-
sider the simple directed acyclic graph of Fig. 1. Suppose
A and B are two objects, each one associated to an event
which can be observed or not. This causal representation
is the most intuitive representation of the influence of an
event/situation on another event/situation. This can be in-
terpreted as follows: The knowledge that we have on A
determines what we can have on B and, conversely, any
information on B will modify our knowledge on A.

Indeed, a Bayesian network is a directed acyclic
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Fig. 1. Simple directed acyclic graph.

graph (DAG) G = G(N,A), where N is the set of nodes
of G and A the set of arcs connecting the nodes. The set
of stochastic variables X = {X1, X2, . . . , Xn} are asso-
ciated with the nodes of the graph G which is governed by
a set of Conditional Probability Distribution (CPDs) for
every node,

P (X1, X2, . . . , Xn) =
n∏

i=0

P (Xi|Par (Xi)), (1)

where Par (Xi) is the set of the causes (parents) of Xi in
the graph G. We could say that BNs operate by propagat-
ing beliefs throughout the network, once some evidence
about the existence of certain entities can be asserted. We
are able to learn probabilities of all parts in the system,
given our knowledge of the existence of a few of them
and the conditional probability distributions. These con-
ditional probabilities do not have to be known a priori and
can be learned using statistical sampling techniques or su-
pervised learning approaches.

We refer to the work of Langseth and Portinale
(2007) for details on building BN models as well as dif-
ferent conditional independence statements and inference.
Here we must note that our work can be considered a
non-exhaustive application to Bayesian reliability model-
ing with the Weibull pdf, and also an introduction to the
use of BNs in the fault diagnosis area.

As stated by Langseth and Portinale (2007), the his-
tory of BNs in reliability started in the beginning of the
1990s. The first true test is the work of Almond (1992),
who proposed the use of the Graphic Belief tool for cal-
culating reliability from measurements of a pressure of an
injection coolant system in a nuclear reactor (a problem
originally addressed by Martz and Waller (1990)).

In this field, several papers have been published.
Portinale et al. (2005) showed a comparison between the
Fault Tree Analysis (FTA) approach and the BN in the
field of reliability and dependability analysis of industrial
systems. According to Bobbio et al. (2001), it is possible
to convert the static gates of a Fault Tree (FT) into a BN.
Torres-Toledano and Sucar (1998) demonstrated that the

same conversion is possible between the Reliability Dia-
gram (RD) and the BN.

With the BN formalism, one can perform not only all
dependence analyses led by FT and RD approaches, but
also the modeling of several non-classic operation modes.
Portinale et al. (2005) used the same approach to model
the reliability of systems with an unknown structure, a
Common Cause of Failure (CCF) and redundant systems
with imperfection of the recovery mechanism. The au-
thors also studied the modeling of degraded states and se-
quentially dependent failures. This reference treated the
problem of parameter uncertainty and sensitivity analysis
by insertion of nodes associated to a stochastic variable
uniformly distributed between minimal and maximal val-
ues of the reliability parameter.

Boudali and Dugan (2006) introduced Continuous
Time Bayesian Networks (CTBNs) for reliability mod-
eling of dynamic systems. The suggested approach tar-
gets complex systems where it is not only necessary to
take into account the combination of the failure events
but also their order of succession. The CTBN formal-
ism also allows the analysis of the sensitivity and uncer-
tainties of parameters. The authors showed the limits of
Markov chains, which are considered a low level approach
and must be derived from a high level one such as Dy-
namic Fault Trees (DFTs). The most significant limita-
tion of Markovian processes is having exponentially dis-
tributed states, and the increase in the size of the system
causes an explosion of the state space, and, consequently,
an exponential increase in the differential equations to be
solved. A comparison between the DFT and the BN was
presented, showing that the latter is more general, i.e., it is
possible to convert a DFT to a BN, and the reverse is not
always possible.

The problem of inference in BNs for reliability anal-
ysis is an active subject in the literature. However, sev-
eral algorithms are proposed. In the BN literature, the ap-
proach of a Temporal BN (TBN) is widespread. In the re-
liability context, these networks introduce the possibility
of order analysing of the failures. Generally, there are two
categories: the approach based on events (event-based or
interval-based) and the one based on time-slices (instant-
based).

Within the TBN framework with the event-based ap-
proach Boudali and Dugan (2005) showed how to trans-
late a DFT into a Discrete Temporal BN (DTBN). Ac-
cording to them, the study of dependence in Probabilistic
Risk Assessment (PRA) must evoke three types of anal-
yses: (i) the time of occurrence of the event, (ii) the or-
der of the events (iii), and the dependence of the occur-
rence time of the event with the temporal evolution of the
system’s variables. The proposed discretization algorithm
consists in dividing time into (n + 1) intervals so that a
random variable has a finite number of (n + 1) possible
states. The n first states divide the interval time ]0, T ] (T
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is the mission time) in n equal intervals. The state (n + 1)
represents the interval ]T, +∞[. The authors showed on
an example that discretization over a well defined order
n does not improve the precision of the result, whereas
the computing time becomes more considerable. In the
same reference, there is shown the possibility of carry-
ing out, with the same approach, several other analyses
such as the importance factor of Birnbaum (Andrews and
Moss, 1993). This type of static discretization is imple-
mented in the software Hugin (Hugin, 2011) and Netica
(Netica, 2011).

In the event-based approach the period of time is
subpartitioned into a finite number of disjoint time in-
tervals. A random variable can appear in a certain time
interval. The event-based approach assumes that each
event happens at most once. In fact, this assumption con-
cerns non-repairable systems where the failure of a com-
ponent (i.e., the event) happens only once during the mis-
sion time. Temporal Nodes Bayesian Networks (TNBNs)
(Arroyo-Figueroa and Sucar, 1999), the Net of Irreversible
Events in Discrete Time (NIEDT) (Galan and Diez, 2000)
and Networks of Probabilistic Events in Discrete Time
(NPEDTs) (Galan and Diez, 2002) are classified as event-
based approaches. Nodelman et al. (2002) propose Con-
ditional Markovian Processes (CMPs) for the modeling of
Markovian processes by the BN formalism; it represents
the equivalent of CPD in a BN.

Marquez et al. (2007) elicited Hybrid BNs (HBNs)
for reliability modeling of complex dynamic systems. The
model contains random continuous nodes representing the
times to a failure of the system’s components. The dis-
crete random variables represent the state of the system
or the subsystem at one well defined moment (faulty or
healthy). This approach has the advantage of using not
only exponential distributions but also data failure infor-
mation or prior information provided from experts. The
inference procedure is carried out by a dynamic discretiza-
tion, an approach introduced by Kozlov and Koller (1997),
as well as Koller et al. (1999). The criterion of discretiza-
tion uses the error of entropy. This approach does not re-
quire a numerical integration or a stochastic simulation
and can treat censured data. As an application, this dis-
cretization algorithm was implemented in the AgenaRisk
software (Agena, 2011). It is described in detail by Neil
et al. (2007). Moral et al. (2001) proposed the Mixture of
Truncated Exponentials (MTE) algorithm for HBN infer-
ence. This approach defines for each discrete variable of
the network, a potential function through continuous vari-
ables in the form of a weighted sum of the exponential of
these variables.

According to Neil et al. (2008), the discretization
approach presented by Boudali and Dugan (2005) has
some disadvantages. The user must define in advance dis-
cretization the intervals independently of any information
arriving thereafter. In the presence of observations, the

inference may lead to errors. The refinement of the dis-
cretization can be expensive from the computational time
point of view, whereas in the method suggested by the au-
thors this precision can be required only for well defined
areas of the marginal posterior distribution. Moreover, the
discretization is adjusted each time there are new observa-
tions to obtain better precision.

In the time-slice approach, a BN is associated with
one specific moment. The same network is generally used
to describe the model for the next sampling slices, and
consequently one finds arcs connecting the various net-
works to form a Dynamic Bayesian Network (DBN). The
concept of 2-TBN is most often used in this approach
(Ben Salem et al., 2006; Weber and Jouffe, 2003). We-
ber and Jouffe (2003) show how to use a 2-time-slice
DBN to model temporal dependencies between compo-
nents for reliability calculations. The authors also demon-
strate the equivalence between their DBN model and a
Markov chain, i.e., they both possess the Markov prop-
erty. Thus, the model is applicable exclusively to Marko-
vian processes.

Ben Salem et al. (2006) highlight the importance of
the DBN for the modeling of various types of degradation
in a dynamic system. Stochastic models such as Markov
Chains (MCs), Hidden Markov Models (HMMs), Input-
Output Hidden Markov Models (IOHMMs) and Markov
Switching Models (MSMs) (same as CMPs) can be rep-
resented in the form of interconnections of a DBN, which
shows the richness of this representation to model most
complicated types of failures by taking into account the in-
fluence of time as well as the exogenous variables (abrupt
changes in the functioning modes) and environmental
conditions (e.g., humidity, temperature). A new applica-
tion is illustrated by Weber et al. (2006) regarding the use
of a DBN to increase the performance of the decision-
making in the field of model based diagnosis. This ap-
proach will be highlighted in Section 4.

Portinale et al. (2007) presented the RADYBAN
software implementation of the DBN as a solution for re-
liability analysis of dynamic systems. The software al-
lows reliability modeling of complex systems by two ap-
proaches, DBNs and DFTs. The DBN model is a 2-
TBN one. This tool lets the user choose among two
possible tasks: filtering/prediction or outputs smooth-
ing. The inference used is either the Junction Tree (JT)
(Jensen, 2001; Murphy, 2002), or the Boyen–Koller algo-
rithm (Boyen and Koller, 1998), and it is emphasized that
the discretization step must be chosen suitably compared
to the time of mission. A comparison was made between
the use of the RADYBAN and Galileo sofware by Sullivan
et al. (1999).

An interesting approach regarding Bayesian reliabil-
ity modeling of complex systems is the inference by the
Markov Chain Monte Carlo (MCMC) method which is
proposed by Wilson et al. (2006), Reese et al. (2005), and
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Johnson et al. (2003). Wilson and Huzurbazar (2007) use
BNs to model systems with an unknown reliability struc-
ture, which cannot be modelled by the FT approach. The
authors studied various cases of available data for the re-
liability analysis of global systems and their components.
As a modular fashion approach, Dynamic Object Oriented
Bayesian Networks (DOOBNs) are proposed by Weber
and Jouffe (2006) for repetitive structures in the process.

Although TBN approaches are attractive, their appli-
cation and contribution in the field of reliability analysis
is a difficult task; this difficulty lies in (i) the definition of
the structure, which represents correctly the interactions
of components within the system and (ii) specification of
the prior distributions of the random variables and the con-
ditional probability tables.

In Section 2, hierarchical Bayesian approach for esti-
mating the reliability parameters is presented. As an illus-
tration example, the Weibull model is treated. Section 3
describes reliability modeling with BNs and the study of
different cases of structures. Section 4 is dedicated to the
application of BN reliability modeling to the Fault Detec-
tion and Isolation (FDI) field, and Section 5 concludes the
paper.

2. Reliability estimation with the Bayesian
approach

2.1. Introduction. The Bayesian approach is based
on the concept of a prior distribution of parameters. With
Bayesian inference, one can obtain a posterior distribution
in the presence of observations (this one is proportional to
the likelihood function multiplied by the prior distribution
of the parameters). The calculation of the marginal den-
sity requires integration over all possible ranges of the pa-
rameter variation. A Bayesian estimator can integrate sev-
eral types of prior knowledge: opinions of experts, tests,
failure data, etc.

Bayesian techniques of data analysis are grouped into
two main families: hierarchical methods and empirical
ones. The foundation of the empirical methods dates back
to the 1940s. In the literature, there is a significant number
of papers explaining this theory and the logic of its use as
well as the relationships to the other statistical techniques
(Casella, 1985; Deely and Lindley, 1981; Morris, 1983).
Essentially, empirical Bayesian methods are an approxi-
mation of Bayesian true analysis. They do not represent
true analyzes of data because they use a traditional sta-
tistical approach to estimate the prior distribution of the
parameters such as frequential analysis. The hierarchical
Bayes idea has become very important in recent years. It
allows dealing with a much richer class of models that can
better capture our statistical understanding of the problem.
With the advent of MCMC, it has become possible to per-
form calculations on these much more complex models,
thus rendering this approach more practical.

The basic idea in a hierarchical model is that when
you look at the likelihood function and decide on the right
priors, it may be appropriate to use priors that themselves
depend on other parameters not mentioned in the likeli-
hood. These parameters themselves will require priors
and can depend on the new ones. This can continue in
a hierarchical framework until there are no more param-
eters to incorporate in the model. Several papers focused
on the effectiveness of this approach compared with the
traditional empirical methods (Robinson, 2001).

2.2. Weibull probability density function. The
Weibull distribution of failure, with its two parameters
(shape and scale), permits the modeling of different re-
gions of the bathtub curve in the lifecycle of a great num-
ber of components. For more details on this distribution
and its applications, see the work of Rinne (2008).

The Weibull pdf is defined by

f(t|a, b, τ) =
(a

b

)( t − τ

b

)a−1

exp

[
−

( t − τ

b

)a
]

,

(2)
where a is the parameter of shape, b is the parameter of
scale, and τ is the parameter of location (delay). One can
notice that, if a = 1, the distribution becomes exponential.

The hazard rate (instantaneous failure rate) is

h(t) =
(a

b

)( t − τ

b

)a−1

, (3)

where b is homogeneous with t and a do not have dimen-
sion. This last parameter reflects the behavior of the haz-
ard function:

• a > 1: the hazard function is increasing, which
makes it possible to model aging failures;

• a < 1: the hazard function is decreasing, which
makes it possible to model youth failures (infant mor-
tality defects);

• a = 1: the hazard function is constant; it is equiva-
lent to the exponential distribution, which can model
accidental failures.

In practice and for physical reasons, the shape pa-
rameter a is bounded (Bousquet, 2006). The reliability is
determined by the relation

R(t) =
∫ ∞

t

f(u) du = exp

[
−

( t − τ

b

)a
]
. (4)

2.3. Bayesian estimation of parameters. Let us sup-
pose that one has n i.i.d. samples D = (x1, . . . , xn)
from a density fθ, with an unknown vector of parameters
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θ = (θ1, θ2, . . . , θk), and the associated likelihood func-
tion

L(θ|D) =
n∏

i=1

fθ(xi). (5)

This quantity represents the fundamental entity for
the analysis of observation data about θ through D, and
the Bayesian inference will be based on this function. The
posterior distribution of the parameter θ is given by

p(θ|D) =
L(θ|D)π(θ)∫
L(θ|D)π(θ) dθ

∝ L(θ|D)π(θ), (6)

where π(θ) is the prior distribution of the parameter θ.
For the Weibull(a, b) distribution, the likelihood is

L(a, b|D) =
l∏

i=1

a

b

(xi

b

)a−1

exp
[
−

(xi

b

)a]
, (7)

and the posterior density of parameters is defined by

p(a, b|D) ∝ L(a, b|D)π(a, b). (8)

Thereafter, this model is applied to the Weibull(a, b)
distribution with informative and non-informative prior
distributions of the parameters.

2.3.1. Estimate with improper non-informative prior
distributions. Consider the Weibull model with two pa-
rameters ((2), τ = 0). We suppose to have uncensured
data t = {t1, t2, . . . , tn} characterizing the failure times
of n identical components whose distribution of failure
follows the Weibull pdf. With the reparametrisation λ =
ba, one can deduce the new expression of the Weibull pdf,

f(t|λ, a) = λat
a−1 exp[−λta]. (9)

The likelihood function is written as

L(λ, a|t) =
n∏

i=1

λata−1
i exp[−λtai ]

= (λa)n
n∏

i=1

ta−1
i exp[−λ

n∑

i=1

tai ]. (10)

The log- likelihood is

L(λ, a|t)

= n ln(λa) + (a − 1)
n∑

i=1

ln(ti) − λ

n∑

i=1

tai . (11)

The choice of the prior non-informative distribution
will be, according to Jeffery’s relation,

π(λ, a) ∝
√
|I(λ, a)|. (12)

For the determination of this prior distribution, one
will need to calculate the Fisher information matrix
(Jeffreys, 1961),

|I(λ, a)| =

− E

∣∣∣∣
∂2 ln f(t|λ, a)/∂λ

2
∂2 ln f(t|λ, a)/∂λ∂a

∂2 ln f(t|λ, a)/∂λ∂a ∂2 ln f(t|λ, a)/∂a
2

∣∣∣∣ ,

(13)

which is proportional to (1/λa)2. This yields

π(λ, a) ∝ 1
λa

. (14)

Using (8), one can deduce the join posterior distribu-
tion of parameters λ and a from (10) and (14),

p(λ, a|t) ∝ (λa)n−1
n∏

i=1

ta−1
i exp

[
− λ

n∑

i=1

tai

]
. (15)

The posterior distributions of parameters are

p(λ|t, a) ∝ λn−1 exp[−λ

n∑

i=1

tai ]

∝ Gamma(n,

n∑

i=1

tai ), (16)

p(a|t, λ) ∝ an−1
n∏

i=1

ta−1
i exp[−λ

n∑

i=1

tai ]. (17)

The Gamma distribution is defined by

f(t|α, λ) =
λα

Γ(α)
tα−1 exp(−λt) ,

t > 0, α > 0, λ > 0. (18)

It is clear that the second density (17) is not triv-
ial to calculate. This can take expensive computational
time; it would be interesting to take into account the rec-
ommendation present in several references regarding the
equivalence of the Bayesian estimator and the Maximum
Likelihood (ML) one in the case of non-informative prior
(Rinne, 2008; Lynch, 2007). The use of the Bayesian in-
ference method requires an effective method of sampling
for p(a|t, λ), which is a log-concave function. Most of-
ten, if the inverse method is not possible for generation
of random samples, the rejection sampling method can be
applied (Gilks and Wild, 1992).

2.3.2. Estimate with informative conjugated prior
distributions. When prior conjugated distributions are
used, the Gamma density is a suitable choice. Let us sup-
pose that the parameters λ and a are distributed as follows:

λ ∼ Gamma(α, β),
a ∼ Gamma(γ, η).
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The most current hierarchical model used in this case
is the one with two stages. Hyperparameters α, β, γ and η
are assumed to be known; thus, the posterior distribution
of λ follows also the Gamma density,

p(λ|t, a) ∝ λα+n−1 exp[−λ(β +
n∑

i=1

tai )]

∝ Gamma(α + n, β +
n∑

i=1

tai ). (19)

The posterior distribution of a is written as

p(a|t, λ) ∝ aγ+n−1
n∏

i=1

ta−1
i exp[−ηa − λ

n∑

i=1

tai ]. (20)

2.4. Model’s goodness-of-fit. Two families of tests are
evoked in this context. The first one consists in checking
if there is a discrepancy between the data and the model.
In this case, the p-value is used; it is determined from
the Prior Predictive Distribution (PPD). The distribution
of yrep (replicated data) conditionally to the current state
of knowledge is described by the PPD,

p(yrep |y) =
∫

p(yrep |θ)p(θ|y) dθ. (21)

The checking procedure consists in generating repli-
cated data from p(yrep|y) called yrep

i for (i = 1, . . . , N )
with N being the total number of the replications, and
comparing them with the observation data. Generally, it
is necessary to use thereafter a test function T (·). T (y) is
a statistical test using the observation data and T (yrep) is
the same test for the replicated data. Then, the p-value is
deduced as

p-value = P (T (yrep ) > T (y)|θ). (22)

The p-value measures the statistical significance of
the model and not the practical significance. Conse-
quently, an interval of [0.05, 0.95] is reasonable for the
p-value. When the p-value is close to 0.5, this indicates
a good agreement between the data and the model (Kelly
and Smith, 2009).

The second family uses the concept of the Bayes fac-
tor (Lynch, 2007), which allows choosing from among
several models. For hierarchical models, one can use the
Deviance Information Criterion (DIC) score. This uses, to
compare models, a criterion based on a trade-off between
the fit of the data to the model and the corresponding com-
plexity of the model. The DIC score is defined by

DIC = D̄ + pD, (23)

where
D̄ = Eθ[D(θ)] (24)

is the posterior mean deviance calculated from the poste-
rior distribution of deviance:

D(θ) = −2 log[p(y|θ)], (25)

and pD measures the complexity of the model (related to
the effective number of parameters) knowing the deviance
evaluated at the posterior mean of the parameters D(θ̂):

pD = D̄ − D(θ̂). (26)

The model is preferable for low values of the DIC.
To compare two models, a difference more than 10 in the
DIC score is supposed to be significant.

2.5. Reliability estimation. The Bayesian estimator
permits to determine the posterior densities of the param-
eters. Consequently, the mean, the median and the per-
centile values will have to be calculated. The expected
value of reliability for an operating time T is determined
by the formula

E[R(T |Data)] =
∫

R(T )p(θ|Data) dθ. (27)
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Fig. 2. MCMC simulation of the two Weibull parameters: with
non-informative priors (a), with informative priors (b).

The two sided Credibility Interval (CI) for reliability
is defined by

CI =
∫ Ru(T )

Rl(T )

f(R|Data, T ) dR, (28)
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[Rl, Ru] is the variation interval of reliability.

Example 1. Consider the example regarding LCD lamp
projector failure times discussed by Hamada et al. (2008).

Data failures (in hours of projection) are (387, 182,
244, 600, 627, 332, 418, 300,798, 584, 660, 39, 274, 174,
50,34, 1895, 158, 974, 345, 1755, 1752, 473, 81,954,
1407, 230, 464, 380, 131, 1205), N=31.

The corresponding Winbugs (David et al., 2000)
script of the Weibull model is as follows:

model
{
for (i in 1:N) {
duration[i] ˜dweib(alpha, lambda)
}
# non-informative priors
alpha ˜dgamma (0.5, 0.0001) # alpha is parameter a
lambda ˜dgamma (0.5, 0.0001) # lamda is bˆa
# informative priors
# alpha ˜dgamma (1, 1)
# lambda ˜dgamma (2.5, 2350)
}
The simulation was carried out with three chains

whose initial values are dispersed (Fig. 2).
The p-value for the Weibull models with two priors:

informative and non-informative, using the statistical
Watson test, is presented in Table 1. The script of the
program is (Kelly and Smith, 2009)

model
{
for (i in 1:N)
{
time[i] ˜dweib (alpha, lambda) # alpha is parameter a
time.rep[i] ˜dweib(alpha, lambda) # lamda is bˆa
time.ranked[i] < - ranked(time[], i)
time.rep.ranked[i] <- ranked(time.rep[], i)
F.obs[i] <- 1-exp(-lambda*pow(time.ranked[i], alpha))
F.rep[i] <- 1-exp(-lambda*pow(time.rep.ranked[i], alpha))
diff.obs[i] <- pow(F.obs[i]-(2*i-1)/(2*N) , 2)
diff.rep[i] <- pow(F.rep[i]-(2*i-1)/(2*N) , 2)
}
CVM.obs <- sum(diff.obs[])
CVM.rep <- sum(diff.rep[])
p.value <- step(CVM.rep-CVM.obs)
alpha ˜dgamma (0.5, 0.0001)#priori non-informative
lambda˜dgamma (0.5, 0.0001)
# alpha˜dgamma (1, 1)#priori informative
# lambda˜dgamma (2.5, 2350)
}
The DIC score is calculated by the Winbugs soft-

ware. Results of analysis for a Weibull model and an ex-
ponential model built around the same data are presented
in Table 1.

As can be observed, the Weibull model with non-
informative prior gave the p-value closest to 0.5. Although
the differences between the various computed values of

the DIC are not too significant, one can notice that the
same model gave the lowest value of the DIC. Clearly,
according to these results, the Weibull model with non-
informative prior is most representative for this set of data.

For the drawing of reliability (Fig. 3.), the simulated
chains of alpha and lambda are exported to the R language
environment (CoreTeam, 2008) using the Brugs package.
The script allowing calculating the reliability with a
credibility interval of 90% is

t=seq(1,18000)
p5=0*t; p50=0*t ; p95=0*t
for(j in 1:18000)
{
R=exp(-lambda*(t[j])ˆalpha) # Reliability
q=quantile(R,c(.05,.5,.95))
p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]
} �

Table 1. p-value and DIC for Weibull and exponential models.
Model Prior distribution p-value DIC

Weibull Non-informative 0.607 452.416
Informative 0.700 452.623

Exponential Non-informative 0.667 458.243
Informative 0.686 458.185

3. Bayesian network approach for reliability
modeling

3.1. Introduction. Contrary to the fault tree and relia-
bility diagram models, the graphic BN reliability model
can have an identical form for two different structures
such as parallel or series. But the distinction consists in
the expression of the conditional probabilities. To distin-
guish between the two structures, it is possible to mention
‘AND’ or ‘OR’ close to the global reliability node.

3.2. Serial reliability model. The representation of
this serial reliability form between two components A and
B is portrayed by the BN of Fig. 4. We assume that
value 1 indicates success and 0 stands for failure. The
joint probability of the network is expressed as follows:

P (S, A, B) = P (A)P (B)P (S|A, B). (29)

The marginalisation of the probability of success or
failure for the total system S is

P (S) =
∑

A,B

P (A)P (B)P (S|A, B). (30)

The probability of success of the whole system
P (S = 1) can be calculated knowing the properties of
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Fig. 3. Reliability curves median and 90% quantiles.

a serial system resumed by the conditional probabilities

P (S=1|A = 0, B = 0) = 0,
P (S=1|A = 0, B = 1) = 0,
P (S=1|A = 1, B = 0) = 0,
P (S=1|A = 1, B = 1) = 1.

This yields

P (S = 1) = P (A = 1)P (B = 1). (31)

Example 2. Consider the global serial system made up of
three components, A, B and C, and the following failure
data:

• Component A: (35, 38, 42, 56, 58, 61, 63, 76, 81, 83,
86, 90, 99, 104, 113, 114, 117, 119, 141, 183), N =
20.

• Component B: (450, 460, 1150, 1150, 1560, 1600,
1660, 1850, 1850, 1850, 1850, 1850, 2030, 2030,
2030, 2070, 2070,2080, 2200, 3000, 3000, 3000,
3000, 3100, 3200, 3450, 3750, 3750, 4150, 4150,
4150, 4150, 4300, 4300, 4300, 4300, 4600, 4850,
4850, 4850, 4850, 5000, 5000, 5000, 6100, 6100,
6100, 6100, 6300, 6450, 6450, 6700, 7450, 7800,
7800, 8100,8100, 8200, 8500, 8500, 8500, 8750,
8750, 8750, 9400, 9900, 10100, 10100, 10100,
11500), N = 70.

• Component C: (657, 384, 142, 54, 42, 102, 110, 37,
16, 87, 100, 17), N = 12.

All the components are supposed to have a Weibull
pdf. The corresponding BN reliability model involving
uncertain parameters is shown in Fig. 5. To determine
the different reliabilities, simulated chains for the three
components are created independently, and the following
script provides the reliability of the global system:

t=seq(1,9000)
p5=0*t; p50=0*t ; p95=0*t

(a) (b)

B

S

A

A

S

B

AND

Fig. 4. Serial form of reliability: FT (a), BN (b).

for(j in 1:9000)
{
Rs=exp(-lambda A*(t[j])ˆalpha A)
*exp(-lambda B*(t[j])ˆalpha B)
*exp(-lambda C*(t[j])ˆalpha C)
q=quantile(Rs,c(.05,.5,.95))
p5[j]=q[1]; p50[j]=q[2]; p95[j]=q[3]
}

The reliability curves are displayed in Fig. 6. �

A B

S

C
RS

RBRA RC

a2 b2a1 b1 a3 b3

(a) (b)

Fig. 5. Serial form of reliability of a three components system:
FT (a), BN (b).

3.3. Parallel reliability model. The representation of
the parallel structure between two components A and B is
portrayed by the BN of Fig. 7.

However, according to the definition of a parallel sys-
tem, the only true conditional probability is

P (S = 0|A = 0, B = 0) = 1.

The probability of failure of the whole system
P (S = 0) is calculated by

P (S = 0) = P (A = 0)P (B = 0). (32)

3.4. Modeling with the covering factor. For the mod-
eling of redundant systems, it is interesting to take into
account the covering factor (Portinale et al., 2005). It is
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Fig. 6. Reliability curves with 90% quantiles.

(a) (b)

B

S

A

A

S

B

OR

Fig. 7. Parallel form of reliability: FT (a), BN (b).

defined as the probability that a failure in the recovery
mechanism of a redundant system can cause the failure
of the global structure. However, this mechanism can be
imperfect, which makes the redundancy inactive. The BN
equivalent model is just like the serial one, but the condi-
tional probabilities are defined as follows:

P (S=1|A = 1, B = 1) =1,

P (S=1|A = 1, B = 0) =1 − c,

P (S=1|A = 0, B = 1) =1 − c,

P (S=1|A = 0, B = 0) =0,

where c is the covering factor.

Example 3. Let us take the example of a redundant sys-
tem composed of two identical units with the Weibull pdf.
The parameters a and b are supposed to be respectively
1.1 and 100 000. Figure 8 illustrates a comparison of re-
liability curves corresponding to a system without redun-
dancy, redundancy with c = 0.2 and redundancy without
the covering factor (c = 0). Clearly, taking into account
this factor affects the reliability of the global system. �

3.5. Systems with a common cause of failure. Gen-
erally, systems with a common cause of failure are rep-
resented by the FT of Fig. 9. According to Bobbio et al.
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Fig. 8. Reliability curves.

(2001), the BN reliability representation of this structure
does not change from the last presented model, but con-
ditional probabilities will depend on a factor αCCF rep-
resenting the probability of the common cause of failure.
Therefore, the conditional probabilities will be defined as
follows:

P (S=1|A = 1, B = 1) = 1,
P (S=1|A = 1, B = 0) =αCCF ,

P (S=1|A = 0, B = 1) =αCCF ,

P (S=1|A = 0, B = 0) =αCCF .

The probability of success of the system S will be

P (S = 1) = αCCF (1 − πAπB) + πAπB, (33)

where πA and πB are the reliabilities of components A
and B.

A B

S

CCF CCF

Fig. 9. FT model for a two components system with a CCF.

3.6. Systems with an unknown structure. When the
global system has a complex structure which can be rep-
resented neither by a reliability diagram nor by an FT,
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the BN approach will be an efficient framework for relia-
bility modelling (Wilson and Huzurbazar, 2007; Hamada
et al., 2008). This recent approach is used not only in
this context, but also for design of reliable systems. Let
us study the independence of the operation of two com-
ponents A and B in a global system S via an example.
The BN approach allows capturing the interaction of the
two components to produce a totally faulty, healthy or de-
graded system. The conditional probabilities for such a
structure are given by the following expressions:

P (S = 1|A = i, B = j) ∼ αk. (34)

The variables i and j correspond to the two cases of
success or failure (1 or 0), αk are probability parameters
which can be estimated. It is possible to associate prior
distributions for these parameters. If αk varies in bounded
intervals, one can use the uniform density for the condi-
tional probabilities with additional parameters βk,

P (S = 1|A = i, B = j) ∼ Uniform(αk, βk). (35)

It is important here to note that the studied uncerti-
tude concerns only the structure of the system. When we
deal with uncertain parameters of reliability, this will ap-
pear in reliabilities πA and πB (Eqn. (27)).
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Fig. 10. Reliability of a global system with an unknown struc-
ture with 90% quantiles.

Example 4. Let us take the same data as in Example
2. Writing the conditional probabilities for this structure
can be performed using (34) applied to three components,
which yields

P (S=1|A = 1, B = 1, C = 1) = α1,

P (S=1|A = 0, B = 1, C = 1) = α2,

P (S=1|A = 1, B = 0, C = 1) = α3,

P (S=1|A = 1, B = 1, C = 0) = α4,

P (S=1|A = 0, B = 0, C = 1) = α5,

P (S=1|A = 1, B = 0, C = 0) = α6,

P (S=1|A = 0, B = 1, C = 0) = α7,

P (S=1|A = 0, B = 0, C = 0) = α8.

The probability of success of the global system S is cal-
culated by the relation

p(S = 1)
= α1πA(t)πB(t)πC(t)
+ α2(1 − πA(t))πB(t)πC(t)
+ α3πA(t)(1 − πB(t))πC(t)
+ α4πA(t)πB(t)(1 − πC(t))
+ α5(1 − πA(t))(1 − πB(t))πC (t)
+ α6πA(t)(1 − πB(t))(1 − πC(t))
+ α7(1 − πA(t))πB(t)(1 − πC(t))
+ α8(1 − πA(t))(1 − πB(t))(1 − πC(t)), (36)

where πA, πB and πC are the reliabilities of com-
ponents A, B and C. As an application, the pa-
rameters α{i=1,...,8} are supposed to be respectively
{0.98, 0.8, 0.7, 0.75, 0.55, 0.5, 0.45, 0.03}. The reliability
curves of the global system (with 90% quantiles) are dis-
played in Fig. 10. As can be observed, the reliability of
this structure is 0.2 at the beginning of the operation time.
Consequently, given the parameters above, a system with
this structure is not reliable. �

4. Bayesian networks and fault diagnosis

4.1. Introduction. In the last decade, there has been
growing a common area between BNs and FDI. Mehran-
bod et al. (2005) a method for sensor fault detection and
identification. It consists in using a multi-stage BN to
detect different sensor fault types (bias, drift and noise).
This paper also aims to reduce the size of required condi-
tional probability data. Improving decision making in An-
alytical Redundancy Relations (ARRs) based approaches
using BNs and reliability data is treated by Weber et al.
(2006). In ARR based approaches, a binary Fault Signa-
ture Matrix (FSM) is systematically generated, but mak-
ing the final binary decision is not always feasible because
of the problems revealed by such a method (unknown and
identical failure signatures). The authors proposed a DBN
(a 2-TBN model with two time slices: (t − 1) and (t))
incorporating nodes with exponential failure distributions
for the components. The approach supposes that ARRs
are already generated, and it is not proposed for a specific
generation method. The given approach is applied only
for components whose distribution of failure is exponen-
tial.

The structure of the network becomes more complex
if the number of components increases since we need two
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time slices for every component. Zaidi et al. (2010) pro-
posed the same method with application of an ARR Bond
Graph (BG) based approach. The BG is a unified mul-
tidisciplinary graphical tool widely used not only for dy-
namic modelling but also for FDI because of its structural
and causal proprieties. This diagnostic approach consists
in associating the evaluated residuals and the components
reliability data to build a hybrid Bayesian network. This
network is used in two distinct inference procedures: one
for the continuous part and the other for the discrete part.
The continuous nodes of the network are the prior prob-
abilities of the components failures, which are used by
the inference procedure on the discrete part to compute
the posterior probabilities of the failures. This approach
can be employed for large-scale systems with components
having all types of failure distributions (the one applied is
Weibull’s).

Koller and Lerner (2000) elicited dynamic Bayesian
networks for monitoring dynamic systems. It is pointed
out that hidden Markov model processes and Kalman fil-
ters are particular cases of DBNs. The structure of the
BN is deduced from the temporal causal graph, which is
a representation deduced from the BG model. Anderson
et al. (2004) studied the comparison between different fil-
tering algorithms with the DBN and noted the interest of
the particle filtering approach with a proposal distribution
generated by an Unscented Kalman Filter (UKF) for net-
works of large size. Roychoudhury et al. (2006) proposed
a Bayesian approach for the monitoring of model parame-
ter deviations. The elicited FDI architecture is an observer
based on a DBN modeling the nominal operation of the
system. The structure of the network is also deduced from
the BG model. The inference algorithm is the Extended
Kalman Filter (EKF) to treat the system non-linearities.
The authors used a qualitative reasoning from the TCG to
generate the possible hypotheses of the failure. To achieve
the isolation, a DBN incorporating discrete nodes is used
to indicate the possible failures of the continuous parame-
ters.

Cholewa et al. (2010) proposed a belief-network-
based diagnostic model. This model incorporates model-
based and symptom-based diagnostics. It consists
of a parallel multi-stage Belief-Network Based Model
(BNBM). The first stage incorporates transformation
blocks carrying out data preprocessing tasks. The sec-
ond stage comprises mapping blocks and the third one
includes belief networks, post processing and result visu-
alisation. This strategy of diagnosis may use approaches
such as One-Class Classifiers (OCCs) and memetic algo-
rithms for model tuning and optimization of output data.
Zhang and Hoo (2011) address FDI in complex plants by
using a hierarchical strategy involving different modeling
approaches. The BG tool is used as a first physical domain
layer. Thereafter, Principle Component Analysis (PCA) to
reduce the data dimension and a Discrete Wavelet Trans-

form (DWT) is applied to abstract the dynamics of the
plant at different scales. Finally, in the last layer, BNs
are used to describe the conditional dependence between
faulty domains and fault signatures.

4.2. Application to reliability modeling and fault di-
agnosis. In the concept of Bayesian fault diagnosis, pro-
viding continuous decision variables in the form of poste-
rior probabilities of failures is of great interest for moni-
toring the degradation of components. These variables can
be used for further intelligent supervision tasks; program-
ming preventive maintenance, analysis of the failure cost
by using utility nodes, risk based reconfiguration of the
faulty system by controlling its global or partial reliability
(prognosis tasks). To ensure high availability and system
safety for today’s industry, it is convenient to introduce
the notion of fault tolerant control. A number of recent
studies have attempted to link, for autonomous systems,
the control performance requirements and overall system
reliability. This is perhaps the great challenge of mod-
ern automation. In this field we can mention the works of
Hongbin et al. (2007) and Khelassi et al. (2011).

4.2.1. Bayesian fault diagnosis model. Here we shall
introduce an approach providing these posterior probabil-
ities in model based diagnosis. It consists in linking resid-
uals deduced from the physical model constraints and the
reliabilities of different components in the process to be
monitored (Weber et al., 2006; Zaidi et al., 2010).

Suppose our system is composed of n components
C = {Ci; 1 ≤ i ≤ n} with Weibull distributions of fail-
ures. The Bayesian model of decision contains random
variables associated to the residuals r = {rj ; 1 ≤ j ≤
p}, to the components as well as the Bayesian reliabil-
ity model of these components. The proposed Bayesian
decision-making model is displayed in Fig. 11. An arc
that joins node Ci to node rj (we really join associated
random variables) indicates that rj is sensitive to the fail-
ure of the component Ci. For a residual rj there are two
states {D(Detected), ND(NotDetected)}, and we have
also two states {F (Faulty), S(Safe)} for a component
Ci. Every component Ci is associated with its reliability
Ri.

As can be observed, this structure is hybrid: there are
discrete and continuous nodes. A hybrid BN represents
a probability distribution over a set of random variables
where some are discrete and others are continuous. In the
literature, the most widely used subclass of hybrid BNs is
the Conditional Linear Gaussian (CLG) model (Lauritzen
and Jensen, 1999). This model involves discrete parents
and continuous leaves. Many kinds of inference algo-
rithms can be stated: exact inference (Lerner et al., 2001),
approximate inference (Koller et al., 1999), dynamic dis-
cretisation (Kozlov and Koller, 1997), truncated exponen-
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tial mixtures (Moral et al., 2001).

r1 r2 rp

C1 C2 Cn

R1 R2 Rn

a1 b1 a2 b2 an bn

(a)

(b)

Fig. 11. BN diagnostic model: continuous part (a), discrete
part (b).

The network displayed in Fig. 11 can be treated as an
association of a discrete BN and a Continuous BN (CBN).
The CBN permits to prepare the prior information on the
failure of the component. Thus when a residual is detected
at instant t, the component Ci has the prior probabilities:
P (Ci = Faulty) = Fi(t) = 1 − Ri(t). (The function Fi

signifies the Cumulative Distribution Function (CDF).)
The discrete part possesses a structure that depends

on the failure signatures (i.e., the FSM); when a residual
rj is not sensitive to the failure of a component Ci, no arc
is pulled from node Ci toward node rj . The inference of
the two parts can be performed separately. After the detec-
tion of residuals, the posterior probabilities of the failures
p(Ci|r1, . . . , rp) can be determined by inference on the
discrete part of the network.

4.2.2. Application example. The approach is simu-
lated on a system (Fig. 12) made of two tanks T1 and T2,
two valves V1 and V2, two level sensors L1 (De1) and L2

(De2), a pump P , a proportional-integral controller (PI)
and a bang bang controller K (On-Off). Figure 13 sum-
marizes the FSM of the monitored system. As can be ob-
served, faults on V2 and T2 are not isolable.

The reliability parameters are supposed to be certain
and follow a Weibull pdf. The failure rates are displayed
in Fig. 14. For the inference of the discrete part of the
diagnostic model, we used the free software Genie 2.0
(http://genie.sis.pitt.edu) after introducing
the prior probabilities of false alarms and non-detection
(Pfaij and Pnd ij) which are supposed to be identical for
all components (Pfa=0.05, Pnd=0.02).

We suppose, as a simulation scenario, to have the
residual [r1, r2, r3, r4, r5] = [0, 0, 0, 0, 1] after 20 000 op-
erating hours. Normally, this corresponds to the failure of
both V2 and T2. Figure 15. shows the results of analysis
for isolation. The classic method gives the same proba-
bility of failure for both components. We can notice the
posterior probabilities of failures (0.74 and 0.51) for valve

PI

On-Off

Pump

Tank1 Tank2

Valve1

Valve2

User

Environment

Tank1 leakage Tank2 leakage

Qp

De1 De2

Fig. 12. Example of a two tank system.

V2 and tank T2. The global reliability of the system is
Rs = 0.006255. One can deduce that V2 is the most prob-
able defective component for this simulation scenario.

4.2.3. Diagnosis with dynamic Bayesian networks.
As stated in the first section of this paper, DBNs are used
with two main approaches: event based and time-sliced.
The latter is known with the concept of TBNs which is
widespread in the field of fault diagnosis. In this part we
will introduce this concept applied to fault diagnosis and
decision in supervision tasks. First, we can simply say that
a DBN is a graphical description of systems evolving over
time, and this is more general than static Bayesian net-
works used in previous sections. This model will enable
users to monitor and update the system as time proceeds,
and even predict, for some applications, further behaviour
of the system. A DBN can be described by a probability
distribution function on the sequence of T hidden-state
variables X = {X0, . . . , XT−1} and the sequence of T
observable variables Y = {Y0, . . . , YT−1}, where T is
the time boundary for the given event we are investigat-
ing. This can be expressed by the following term:

P (X, Y ) =
T−1∏

t=1

P (Xt|Xt−1)
T−1∏

t=0

P (Yt|Xt)P (X0).

(37)
In order to completely specify a DBN, we need to

define three sets of parameters:

• State transition pdfs P (Xt|Xt−1), specifying time
dependencies between the states.

L1 L2 P K V1 V2 T1 T2 PI 
r1 0 1 0 1 0 0 0 0 0 
r2 1 1 0 0 1 0 1 0 0 
r3 0 0 1 0 0 0 0 0 0 
r4 1 0 0 0 0 0 0 0 1 
r5 1 1 0 0 1 1 0 1 0 

Fig. 13. Fault signature matrix of the two-tank system.
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L1 L2 P K V1 V2 T1 T2 PI 
(1/b)1 2 2 1.5 1 5 5 3 3 2.5 

a 0.8 0.8 1.1 1 1.2 1.2 1.15 1.15 0.9 
1(10-5hour-1)

Fig. 14. Failure parameters of the two-tank system.

Fig. 15. Probabilities of failures for the simulated scenario.

• Observation pdfs P (Yt|Xt), specifying dependen-
cies of observation nodes regarding the other nodes
at time slice t.

• Initial state distribution P (X0), bringing initial prob-
ability distribution in the beginning of the process.

Knowing that we deal with a 2-TBN model, the tran-
sition probabilities for any variable are determined com-
pletely by the value of the variables in the current and the
previous time step—this is what we call the Markov prop-
erty. First order stationarity is ensured for systems with
an exponential pdf of failure. On the other hand, for the
Weibull pdf, this stationarity is not ensured for the whole
life cycle of the component. To overcome this problem,
we will suppose to have stationarity for a certain sequence
of time. This assumption is possible especially for real
time diagnostics, where the sampling period is extremely
small to depict the dynamics of residuals. Here, as an ap-
plication for diagnosis of the two tank system, we use the
concept of IOHMM modeled by a DBN (for more details,
Ben Salem et al., 2006; Murphy, 2002). The diagnostic
model is illustrated in Fig. 16.

The DBN diagnosis model whose static form is pre-
sented in the previous subsection works as follows:

• The inputs U
(i)
t−1are the results of the inference by the

continuous part of the diagnosis model (Fig. 11(a)),
which represents the reliabilities of components sup-
posed to be constant during the sequence T of time
slices where we invertigate. The variable i is used to
differ sequences.

• The states X
(i)
t−1are the component states; they are

determined with the CPD p(X(i)
t−1|U (i)

t−1).

• The states Y
(i)
t−1are the results of the evaluations of

residuals rj ; the associated CPD is p(Y (i)
t−1|X(i)

t−1).

• The current states X
(i)
t are calculated by the follow-

ing conditional probabilities:

p(X(i)
t = Faulty|X(i)

t−1 = Faulty) = 1, (38)

p(X(i)
t = Faulty|X(i)

t−1 = Safe) = 0,

p(X(i)
t = Safe|X(i)

t−1 = Faulty) = 1 − R
(i)
C (T ),

p(X(i)
t = Safe|X(i)

t−1 = Safe) = R
(i)
C (T ),

where R
(i)
C (T ) are the reliabilities of components esti-

mated during the sequence T . The DBN model in the
compact form using the same sofware is displayed in
Fig. 17.

Here we must note that inputs are not shown because,
as we mentioned before, the model is hybrid and the in-
ference of the continuous part can be made independently
knowing that we deal here with certain Weibull parame-
ters, so there is no problem of reliability estimation. We
suppose, as a simulated scenario, to have an active resid-
ual r5 for one slice time, and it persists after that until the
end of the sequence. As can be observed in Fig. 18, there
is no action of diagnosis for that slice, and this can be ex-
plained as a robustness advantage of the DBN against false
alarms.When the residual persists, the simulation shows a
posterior probability of the component V2 failure slightly
greater than the one corresponding to T2.

Fig. 16. IOHMM represented by a DBN.

5. Conclusions

A Bayesian approach to reliability modeling has been
introduced. First, we presented Bayesian estimation of
pdf parameters with the hierarchical Bayesian approach.
Thereafter, the estimation of the reliability was evoked
and the incorporation of this model in a BN framework
for the modeling of different types of reliability struc-
tures (serial, parallel, active redundancy, systems with a
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Fig. 17. DBN model (in compact form) of the diagnosis mod-
ule.
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Fig. 18. Simulation results for the DBN structure.

common cause of failures, an unknown structure). It was
shown how this approach permits the modelling of non-
traditional operating modes and the most complex systems
which cannot be modelled with the FT and the RD. There-
after, the use of BN in the fault detection and isolation area
was pointed out by the monitoring of a two-tank system.

We notice the interest of the DBN framework in sev-
eral stated diagnosis approaches, and especially when we
aim to reduce false alarms. The approaches presented here
were illustrated with systems having the Weibull pdf as a
general case of the exponential one. Clearly, as a final
conclusion, one can deduce the great richness of the BN
contribution in the reliability and diagnosis fields.
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