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Two description forms of a linear fractional-order discrete system are considered. The first one is by a fractional-order
difference equation, whereas the second by a fractional-order state-space equation. In relation to the two above-mentioned
description forms, stability domains are evaluated. Several simulations of stable, marginally stable and unstable unit step
responses of fractional-order systems due to different values of system parameters are presented.
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1. Introduction

Fractional calculus (Oldham and Spanier, 1974; Miller
and Ross, 1993; Samko and Marichev, 1993; Oustaloup,
1995; Podlubny, 1999; Ostalczyk, 2008; Kaczorek, 2011)
has become a recognized mathematical tool in many sci-
entific areas. One can mention some successful applica-
tions in dynamic system identification (Ostalczyk, 2008)
and the synthesis of PID (Podlubny, 1999; Valério and
Costa, 2006) or CRONE (Oustaloup, 1991; 1995; 1999)
controllers in closed-loop dynamical systems. A main ad-
vantage of such controllers is that they have additional
parameters, i.e., differentiation and integration orders,
to reshape the transient characteristics of the designed
closed-loop system. The closed-loop system stability is
the first requirement of a synthesis (Dzieliński and Sie-
rociuk, 2008; Guermah et al., 2010). Thus a simple and
readable criterion may be helpful.

There are equivalent (under some assumptions) def-
initions of the Fractional-Order (FO) derivative. The so-
called Riemann–Liouville left-sided derivative of order α
of a real function f(t) having n continuous derivatives for
t ≤ t0 is defined as the following integral:
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where n = [α]+1, [α] is the integer part of α, [t0, t] is the
differentiation range, Γ is the Euler gamma function.

One can prove that (1) is equivalent to the
Grünwald–Letnikov form
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]
, (2)

where
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a
(α)
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y(kh + k0h − ih) (3)

is the Grünwald–Letnikov backward difference, [t0, t] =
[k0h, kh] is the differentiation range, h is the differentia-
tion step.
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(4)

In the numerical evaluation of the FO derivative (2),
h is finite and constant. To simplify the notation, one can
assume h = 1 and omit it in the formula. Here one should
emphasise that left (k0) and right (k) subscripts in the dif-
ference sign Δ denote a differentiation range (a fixed sum-
mation range), whereas (k) in the function y denotes its
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discrete variable. Here, one should care about notation
because, in general,

k0
Δ(α)

k y(kh) �= k0
Δ(α)

k+1y(kh) (5)

�= k0
Δ(α)

k y[(k + 1)h].

It will be further assumed that

k0 = 0, (6)

and all the fractional orders considered are rational num-
bers, i.e., they can be expressed as a ratio of positive inte-
gers

α =
1
d
n = νn (d, n ∈ Z+, α, ν ∈ R+), (7)

with

0 <
1
d

= ν < 1. (8)

Greek letters are reserved for non-integer numbers.

2. Equivalent descriptions of the FO linear
dynamical system

In this section the FO commensurate state-space descrip-
tion of the FO linear single-input single-output discrete-
time system is discussed. A relationship between this de-
scription and the FO difference equation is established.

2.1. Commensurate FO state-space description.
Any linear time-invariant FO Differential Equation
(FODE) with orders satisfying the condition (7) can be
represented by the commensurate state-space equations

0Δ
(ν)
k+1x[(k + 1)h] = Ax(kh) + bu(kh), (9)

and

y(kh) = cx(kh), (10)

where
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It is well-known that there exists a similarity transforma-
tion matrix TF transforming the state matrix A in (9) to

the Frobenius canonical form AF (Kailath, 1980),
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, cF = [B0 · · ·Bm0 · · · 0]. (12)

Another similarity transformation of the state vector
(11) represented by a matrix TD transforms a state matrix
in the formula (9) to the diagonal form AD ,

0Δ
(ν)
k+1x[(k + 1)h] = ADx(kh) + BDu(kh), (13)

y(kh) = cDx(kh), (14)

where
x(kh) = Tx̄(kh), (15)

AD =

⎡
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p̄1 0 · · · 0
0 p̄2 · · · 0
...

...
...

0 0 · · · p̄n

⎤
⎥⎥⎥⎦ . (16)

Here, without loss of generality, one may assume that
all eigenvalues are distinct. Because the Jordan canonical
forms of the state matrix of the system (9) with different
configurations of Jordan blocks of one multiple eigenvalue
lead to the same characteristic polynomial, in the system
stability analysis the multieigenvalue case may be consid-
ered similarly.

2.2. FO difference equation description. From equa-
tions derived from the state-space description (9) with (12)
we obtain

0Δ
(ν)
k+1xi−1[(k + 1)h] = xi(kh)

for i = 2, . . . , n, (17)

and

0Δ
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k+1 xi[(k + 1)h]

for i = 2, . . . , n, (18)
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and, after simple rearrangements,

n∑
i=0

Ai0Δ
(iν)
k+iyi−1[(k + i)h]

=
m∑

i=0

Bi0Δ
(iν)
k+iui−1[(k + i)h], (19)

where An = 1.
One should note that this FO difference equation con-

tains shifted functions and the shift coincides with the dif-
ferentiation order. Also the differentiation range is the
same as the function shift. This remark essentially sim-
plifies stability analysis.

3. Stability domains of systems described
by the FO difference equation and state-
space form

Here the stability of FO discrete linear systems is con-
sidered (Dzieliński and Sierociuk, 2008; Kaczorek, 2011;
Matignon, 1996). The stability of the system described
by the FO difference equation (15) is analysed in Subsec-
tion 3.1. The stability domains are evaluated in Subsec-
tion 3.2.

3.1. FO linear difference equation and state-space
form Z-transforms. Application of the one-sided Z-
transform to Eqn. (19) under the assumption of zero initial
conditions yields

n∑
i=0

Aiz
i(1 − z−1)νiY (z)

=
m∑

i=0

Biz
i(1 − z−1)νiU(z). (20)

From the state-space equations (14) and (15), after the Z-
transform, we obtain

n∏
i=0

[
z(1 − z−1)ν − p̄i

]
Y (z)

= Bm

m∏
i=0

[
z(1 − z−1)ν − ri

]
U(z). (21)

An analogous procedure performed on Eqn. (14)
gives

X(z) = diag

{
1

z(1 − z−1)ν − p̄i

}

i=1,...,n

bDU(z).

(22)
The equalities (21) and (22) form the system character-
istic polynomial containing information about the system
stability. Thus

z(1 − z−1)ν − p̄i = 0 (23)

may be expressed as

z1−ν(z − 1)ν − p̄i = 0 (24)

and further ∞∏
j=1

(z − bj) = 0. (25)

The characteristic polynomial (26) is stable if and only
if bj are settled in the interior of a unit circle defined by
|z| = 1 (Ogata, 1987).

3.2. Stability domains of the system described by FO
state-space equations. Defining the one-to-one trans-
formation

pd(θ) = ejθ
(
1 − e−jθ

) 1
d for θ ∈ [0, 2π), (26)

we obtain system stability regions in the space of param-
eters p̄j . For different orders (8) defined by the integer
d = 1, 2, . . . , 10, the corresponding stability domains are
plotted in Fig. 1. As d → ∞, stability domains tend to
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Fig. 1. Stability domains for increasing values of d.

a unit circle except for a real positive axis. This domain
(evaluated for d = 100) is presented in Fig.2.

On the other hand, for ν = 1 (the case of a classical
integer order system) from (23) we get

z − (1 + p̄i) = 0, (27)

which explains the left shift of the unit circle present in
Fig. 1. The formula (26) can be also expressed in the form

pd(θ)

=
(

2 sin
(θ

2

)) 1
d

ejθ+ π−θ
2d for θ ∈ [0, 2π). (28)

Then
lim

d→∞
pd(θ) = ejθ. (29)
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Fig. 2. Stability domains for d = 100.

4. FO discrete linear system unit step
response

Now several unit step responses of FO discrete linear sys-
tems are numerically evaluated. All the presented FO sys-
tems are characterised by the same FO ν = 0.5. First, the
system

0Δ
( 2

2 )
k+2 y(k + 2) + A1 0Δ

( 1
2 )

k+1 y(k + 1)

+ A0y(k) = A01(k), (30)

where 1(k) denotes a discrete unit step function, and the
condition B0 = A0 preserve the steady-state response
level equal to 1. In the following figures black dots in-
dicate response values which are connected by thin lines
to provide better clarity of the response shape. In Figs. 3
and 4, critically stable responses are presented. The first
one is characterised by

p̄1 = p̄2 = −
√

2 (31)

or, equivalently, by

A1 = 2
√

2, A0 = 4. (32)

The second system is characterised by

p̄1 = j, p̄2 = −j (33)

or
A1 = 0, A1 = 2. (34)

One should note that in both the cases considered the
poles (31) and (33) lie precisely on boundary of the stabil-
ity domain. Next, the unit step responses for two asymp-
totically stable systems are presented. In Figs. 3 and 4
responses related to the coefficients

p̄1 = −1.4 + j0.1, p̄2 = −1.4 − j0.1 (35)
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Fig. 3. Unit step response of the system (30) with the coeffi-
cients (32).
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Fig. 4. Unit step response of the system (30) with the coeffi-
cients (34).

A1 = 2.8, A0 = 1.97 (36)

and
p̄1 = −0.2, p̄2 = −0.4 (37)

A1 = 0.6, A0 = 0.2 (38)

are displayed, respectively.
Next, we consider again Eqn. (15) with n = 4, m =

0, ν = 0.5 and B0 = A0. All parameters p̄j , j =
1, 2, 3, 4 are on boundary of the stability domain,

p̄1 = −1.284110014049142
+ j0.5318957833982609,

p̄2 = p̄∗1,
p̄3 = −1.130235782084677

+ j0.7551994054009926,
p̄4 = p̄∗3

(39)

where (*) denotes the complex conjugate. The unit step



Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains 537

0 50 100 150
-8

-6

-4

-2

0

2

4

6

8

10

Time [k]

U
ni

t s
te

p 
re

sp
on

se

Fig. 5. Unit step response of the system (30) with the coeffi-
cients (36).
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Fig. 6. Unit step response of the system (30) with the coeffi-
cients (38).
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Fig. 7. Unit step response of the system (15) with the coeffi-
cients (39).

response of the system (15) with the coefficients (39) is
presented in Fig. 7.

Applying now a diminishing factor υ1 = 0.99 to all
coefficients (39), i.e., taking υ1p̄j , j = 1, 2, 3, 4, we
get an asymptotically stable system. For an increasing fac-
tor υ2 = 1.01, the system (39) with υ2p̄j, j = 1, 2, 3, 4
is unstable. Stable and unstable system responses are pre-
sented in Figs. 8 and 9, respectively.

Finally, one can mention that the systems considered
above are FO first and second order systems, due to the
highest orders of the difference equations (15).
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Fig. 8. Unit step response of the system (15) with the coeffi-
cients (39) multiplied by υ1 = 0.99.
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Fig. 9. Unit step response of the system (15) with the coeffi-
cients (39) multiplied by υ1 = 1.01.

5. Conclusions

The transformation (26) proposed in this paper allows
quick and precise graphical and numerical evaluation of
the stability domains of FO linear discrete systems. One
should note that an approximation of the FO discrete sys-
tem by an integer order system may be inadequate, es-
pecially when the system is on the stability limit. Its
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simplicity and visibility may be useful in a robust digi-
tal controller in FO closed-loop control system synthesis
due to plant parameter changes leading to different closed-
loop system poles configurations. The presented transient
responses of FO stable systems revealing new shapes of
waves may be helpful in the FO generator or digital filter
synthesis.
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