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This paper provides an optimal approximation of the fundamental linear fractional order transfer function using a distri-
bution of the relaxation time function. Simple methods, useful in systems and control theories, which can be used to
approximate the irrational transfer function of a class of fractional systems for a given frequency band by a rational func-
tion are presented. The optimal parameters of the approximated model are obtained by minimizing simultaneously the gain
and the phase error between the irrational transfer function and its rational approximation. A simple analog circuit which
can serve as a fundamental analog fractional system is obtained. Illustrative examples are presented to show the quality and
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1. Introduction

Since the first work on fractional order derivatives pub-
lished several centuries ago, the theory of fractional calcu-
lus has been mostly developed by mathematicians. In the
last decades a considerable focus on fractional calculus
has been stimulated by applications of these concepts in
various areas of physics and engineering. Many systems
are known to reveal fractional order system dynamics,
such as viscoelastic systems (Torvik and Bagley, 1984),
electrode-electrolyte polarization (Ichise et al., 1971), in-
terface polarization (Sun and Onaral, 1983), cardiac be-
haviour (Goldberger et al., 1985), dielectric relaxation
(Cole and Cole, 1941; Davidson and Cole, 1950). Be-
cause of their representation by irrational transfer func-
tions, fractional order systems were studied marginally in
theory and practice. But a great effort was made to put into
practice some established results. It is only in recent years
that one can find significant progress in theoretical works

which serve as a foundation for an increasing number of
applications in systems and control fields (Manabe, 1961;
Oustaloup, 1983; Charef et al., 1992; Miller and Ross,
1993; Podlubny, 1994; 1999; Hartley and Lorenzo, 1998;
Petras et al., 2002). However, intensive research work is
still under way in many electrical engineering areas to-
wards the application of these fractional order concepts.

The fundamental linear fractional order transfer
function commonly used to describe some typical frac-
tional systems, defined in (Hartley and Lorenzo, 1998), is
represented by the following equation:

H(s) =
b0

1 + (τ0s)m
, (1)

where b0 , τ0 and m are positive real numbers. This type
of expression gives a much more suitable mathematical
representation to the natural phenomena.

Transfer functions such as (1) are not easy to imple-
ment for computational purposes. Since their mathemati-
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cal representations in the frequency domain are irrational,
direct analysis methods and corresponding time domain
behavior seem difficult to handle. As for the identifica-
tion, analysis, synthesis and simulation of the correspond-
ing systems, a need arises for a rational function approxi-
mation.

This makes the task of finding integer order approx-
imations of fractional transfer functions a most important
one. What is meant by this is that when simulations are to
be performed or models are to be identified or controllers
are to be implemented, fractional transfer functions, are
usually replaced by rational transfer functions which are
easier to handle. During the last twenty years numerical
algorithms have been developed to approximate fractional
order systems using either continuous or discrete rational
models approximating, see (Vinager et al., 2000; Chen
and Moore, 2002; Aoun et al., 2003; Poinot and Trigeas-
sou 2004; Barbosa et al. 2006). It is not possible to say
that one of them is the best, because even though some
are better then others with regard to certain characteris-
tics, the relative merits of each approximation depend on
the fractional powers, on whether one is more interested
in an accurate frequency behavior or in accurate time re-
sponses, on how large admissible transfer functions may
be, and other factors like these.

In this paper new simple methods, very useful in sys-
tems and control theories, are presented to approximate
the fundamental fractional order transfer function given
in (1) by a rational function. A distribution of the relax-
ation time function is used. The optimal distribution of the
relaxation time is obtained by minimizing simultaneously
the gain and the phase error between the original fractional
system and its rational approximation. Section 2 summa-
rizes the optimal approximation, simulation and analog
realization of the relaxation fractional system represented
by the Cole-Cole transfer function for 0 < m < 1. In
Section 3 we present the approximation and analog real-
ization of the oscillation fractional system given by (1) for
1 < m < 2. Illustrative examples are presented to show
the quality and usefulness of the proposed approach.

2. Relaxation Fractional Order System

2.1. Definition. A relaxation fractional system is de-
fined in this context by the following fundamental linear
fractional order differential equation for 0 < m < 1:

(τ0)m dmy(t)
dtm

+ y(t) = e(t). (2)

Its transfer function is given by

H(s) =
1

1 + (τ0s)m
, (3)

where τ0 is a positive real number.

2.2. Rational Function Approximation. In dielec-
tric studies, Cole and Cole (1941) observed that disper-
sion/relaxation data measured from a large number of ma-
terials can be modeled by the function (3), where m is a
real number such that 0 < m < 1. It is also known that
the distribution of the relaxation times function G(τ) can
be derived directly from the original transfer function as
(Fuross and Kirkwood, 1941):

H(s) =

∞∫

0

G(τ)
1 + τs

dτ. (4)

Cole and Cole (1941) applied this method to find the dis-
tribution function G(τ) for the model (3), which gives

G(τ) =
1
2π

sin [(1 − m) π]

cosh
[
m log

(
τ
τ0

)]
− cos [(1 − m) π]

. (5)

The proposed approximation method starts with sam-
pling the distribution of the relaxation times function
G(τ) of Eqn. (5) for a limited frequency band of practical
interest [wmin, wmax] at logarithmically equidistant points
τi (Sun et al., 1992):

G(τ) =
2N−1∑
i=1

G (τi) δ (τ − τi), (6)

where

τi = τ0 (λ)(N−i)
, i = 1, 2, . . . , 2N − 1 (7)

are the relaxation times and λ > 1 is the ratio of a time
constant to the next one or the ratio of a pole to the previ-
ous one, where the poles are given by

pi = 1/τi, i = 1, 2, . . . , 2N − 1. (8)

Then the transfer function of Eqn. (3) can be approx-
imated by

H(s) ≈ HN (s) = b

2N−1∑
i=1

G (τi)
1 + τis

, (9)

where b is a positive real number.
From the condition

H(jw) ≈ HN (jw)|w=wmin
,

the parameter b can be defined by the following equation:

b =
|H(jwmin)|∣∣∣∣

2N−1∑
i=1

G(τi)
1 + τijwmin

∣∣∣∣
. (10)

In almost all cases the frequency wmin is supposed to be
close to zero (wmin ≈ 0). Thus, the previous formulas
simplify to

b =
1

2N−1∑
i=1

G(τi)
. (11)
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For a given frequency band wmax the number N is
obtained from the following equation (Sun et al., 1992):

N = Integer
[
log(τ0wmax)

log(λ)

]
+ 1. (12)

For given values of N and m, the optimal ratio λop

can be calculated by minimizing the criterion J(λ) given
by the following equation within the frequency band of
interest w ∈ [wmin, wmax] rd/s:

J(λ) =
wmax∑
wmin

[
α
(∣∣HN (jw)

∣∣− ∣∣H(jw)
∣∣)2

+ (1 − α)arg(HN (jw) − arg(H(jw)
)2]

, (13)

where 0 < α < 1 is the scaling ratio. We have

[λop] = arg min (J(λ)) (14)

This is a nonlinear optimization problem, which justifies
a recourse to nonlinear optimization methods. Using a ge-
netic algorithm implemented in Matlab, the optimal val-
ues of the ratio λ for a given scaling ratio α = 0.5 and for
different values of m and N are given in Table 1.

Table 1. Optimal ratio λop, the maximum gain er-
ror (maxeg) and the maximum phase error
maxeph obtained using the proposed approx-
imation method for different values of m and
N , with τ0 = 1.

N = 10 N = 20 N = 40

m = 0.1

λop 22.644 10.343 4.748

|maxeg|dB 1.162 0.233 0.052

|maxeph|deg 2.725 0.644 0.105

m = 0.4

λop 7.115 3.645 2.640

|maxeg|dB 0.331 0.028 0.002

|maxeph|deg 1.610 0.125 0.004

m = 0.7

λop 5.044 2.740 2.261

|maxeg|dB 0.225 0.013 0.004

|maxeph|deg 1.680 0.092 0.014

m = 0.9

λop 3.563 1.987 1.488

|maxeg|dB 2.451 0.599 0.056

|maxeph|deg 4.000 1.327 0.165

2.3. Time Response. From (9) we have

H(s) =
Y (s)
E(s)

=
1

1 + (τ0s)m
∼= b

2N−1∑
i=1

G (τi)
1 + τis

. (15)

For e(t) = δ(t) (a unit impulse), we get

Y (s) = b

2N−1∑
i=1

G (τi)
1 + τis

. (16)
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Fig. 1. Simulation scheme of the fractional system
H(s) = 1/(1 + (τ0s)

m) for 0 < m < 1.

Using the inverse Laplace transform, we deduce the im-
pulse response of (16):

y(t) = b

2N−1∑
i=1

G(τi)
τ i

exp
(
− t

τi

)
. (17)

Now, for e(t) = u(t) (a unit step), we have

Y (s) = b

2N−1∑
i=1

G (τi)
1 + τis

1
s

= b

2N−1∑
i=1

G(τi)
(

1
s
− τi

1 + τis

)
. (18)

Using the inverse Laplace transform, we get the step
response of (18):

y(t) = b
2N−1∑
i=1

G(τi)
(

1 − exp(− t

τi
)
)

. (19)

Figure 1 provides the simulation scheme for the discussed
system for 0 < m < 1.

2.4. Analog Circuit Realization. It can be easily seen
that (15) is analogous to the impedance Z(s) of 2N − 1
parallel RC cells connected in series as shown in Fig. 2:

Z(s) =
2N−1∑
i=1

Ri

1 + sRiCi
. (20)

From (15) and (20), and for i = 1, 2, . . . , 2N − 1, we can
write

Ri = bG(τi), RiCi = τi. (21)

Hence the resistor and capacitor parameters of the analog
circuit modeling the simple fractional order system in a
given frequency band are

Ri = bG(τi), Ci =
τi

bG(τi)
, (22)

i = 1, 2, . . . , 2N − 1.
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Fig. 2. Analog RC circuit realization of the fundamental
fractional order system, 0 < m < 1.

2.5. Illustrative Example. For illustration, consider a
numerical example for a relaxation fractional order system
represented by the Cole-Cole transfer function given by
the following equation with m = 0.7 and τ0 = 1:

H(s) =
1

1 + s0.7
.

For a frequency band of practical interest [wmin, wmax] =[
10−3, 103

]
rad/s, and a given number N = 10, the opti-

mal ratio λop, the relaxation times τi, the factor b and the
distribution G(τi) for a given scaling ratio α = 0.5 can be
easily calculated based on the results of Section 2.2:

λop = 5.044, τ0 = 1, τi = (5.044)(10−i),

G(τi) =
1
2π

sin [0.3π]
cosh [0.7(10 − i) log (5.044)] − cos [0.3π]

,

b =
1

19∑
i=1

G(τi)
, i = 1, 2, . . . , 19.

Figures 3 and 4 show the Bode plots of the relaxation
fractional order system and its proposed rational function
approximation along with the rational function approxi-
mation by Oustaloup’s method. Figures 5 and 6 show the
magnitude and phase errors of the proposed method and
those of Oustaloup’s approximations (Oustaloup, 1995).
One can easily see that the proposed method yields a sat-
isfactory approximation over the entire frequency band of
interest.

Figure 7 additionally shows the step responses of this
fractional order system obtained from the proposed ratio-
nal function approximation and from the rational function
approximations by the Oustaloup and Grünwalds methods
given in (Oustaloup, 1995).

3. Oscillatory Fractional Order System

3.1. Definition. An oscillatory fractional order system
is defined in this context as a fundamental linear fractional
order differential equation (3) for 1 < m < 2.

3.2. Rational Function Approximation. The transfer
function of the oscillatory fractional order system given
by (3) can be modeled by the following function:

H(s) =
1

1 + (τ0s)m
≈ (τ0s + 1)(2−m)

(τ0s)2 + 2ξτ0s + 1
= HN (s)HD(s), (23)
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Fig. 3. Magnitude Bode plot of H(s) = 1/(1 + s0.7) of the
proposed rational function approximation and of the ra-
tional function approximated by Oustaloup’s method.
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Fig. 4. Phase Bode plot of H(s) = 1/(1+s0.7) of the proposed
rational function approximation and of the rational func-
tion approximated by Oustaloup’s method.
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Fig. 6. Phase error plots of the approximations of H(s) =
1/(1 + s0.7) using the proposed and Oustaloup meth-
ods.
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posed rational function approximation, the rational func-
tion approximated by Oustaloup’s method and Grün-
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where

HN (s) = (τ0s + 1)(2−m) (24)

represents the Fractional Power Zero (FPZ) with 0 < (2−
m) < 1, and

HD(s) =
1

(τ0s)2 + 2ξτ0s + 1
(25)

is a regular second-order system. It can be easily shown
that for |H(jw)| ∼= |HN (jw)| |HD(jw)| ∼= 1, w � 1/τ0

for |H(jw)| ∼= |HN (jw)| |HD(jw)| ∼= 1
(τ0w)m , w �

1/τ0 and for w = 1/τ0 we get

|H(jw)| =
∣∣∣∣ 1
1+(j)m

∣∣∣∣ = 1√
(1+cos mπ

2 )2+(sin mπ
2 )2

∼=
∣∣∣∣ (j + 1)(2−m)

2ξj

∣∣∣∣ =
(√

2
)2−m

2ξ
. (26)

From (26), the damping ratio ξ of a regular second-
order system must be given as

ξ =

√
(1 + cos(mπ/2))(√

2
)m−1 . (27)

To represent the oscillatory fractional order system of (23)
by a linear time-invariant system model, it is necessary
to approximate it, for a limited frequency band of prac-
tical interest [0, wmax], by a rational function. To this
end, we have to approximate the fractional power zero of
(24) by a rational function in the frequency band of prac-
tical interest [0, wmax]. The proposed method consists in
approximating its 20(2 − m) dB/dec slope on the Bode
plot by a number of zig-zag lines with alternate slopes of
20 dB/dec and 0 dB/dec corresponding to alternate zeros
and poles on the negative real axis of the s-plane such that
z0 < p0 < z1 < p1 < · · · < zn < pn. Hence we can
write

HN (s) = (τ0s + 1)(2−m) ∼=

N∏
i=0

(
1 +

s

zi

)

N∏
i=0

(
1 +

s

pi

) . (28)

Accordingly, Eqn. (23) can be rewritten as

H(s) =
1

1 + (τ0s)m

≈
[

1
(τ0s)2 + 2ξτ0s + 1

] N∏
i=0

(
1 +

s

zi

)

N∏
i=0

(
1 +

s

pi

) . (29)

The same idea was used to approximate the Frac-
tional Power Pole (FPP) given in (Charef et al., 1992). Us-
ing a simple graphical method, the zeros zi and the poles
pi of the approximation for a specified error ε in dB were
found to be in a geometric progression form:

H(s) =
1

1 + (τ0s)m

≈
[

1
(τ0s)2 + 2ξτ0s + 1

] N∏
i=0

(
1 +

s

z0(ab)i

)

N∏
i=0

(
1 +

s

p0(ab)i

) , (30)

where

a = 10[ ε
10(m−1) ] b = 10[ ε

10(2−m) ],

z0 =
1
τ0

√
b, p0 = az0

N = Integer

⎡
⎢⎣

log
wmax

z0

log(ab)

⎤
⎥⎦+ 1.
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3.3. Time Responses. By partial fraction expansion of
the rational function (30), it is possible to represent the
transfer function of the oscillatory fractional order system
by a linear combination of elementary simple functions,
i.e.,

H(s) =
1

1 + (τ0s)m

≈ As + B

(τ0s)2 + 2ξτ0s + 1
+

N∑
i=0

ki

1 + s
p0(ab)i

, (31)

where ki, i = 0, 1, . . . , N are the residues of the poles,

ki =
[

1
(τ0p0(ab)i)2 − 2ξτ0p0(ab)i + 1

]

×

N∏
j=0

[
1 − a(ab)(i−j)

]

N∏
j=0
j �=i

[
1 − (ab)(i−j)

] . (32)

The constants A and B can be calculated as

B = 1 −
N∑

i=0

ki, A = −τ2
0

N∑
i=0

kip0(ab)i.

Consequently,

H(s) =
Y (s)
E(s)

=
As + B

(τ0s)2 + 2ξτ0s + 1
+

N∑
i=0

ki

1 + s
p0(ab)i

. (33)

Using the inverse Laplace transform, the step response of
(33) can be obtained as

y(t) = 1 −
N∑

i=0

ki exp
(−p0(ab)it

)

+ C exp
(
− ξ

τ0
t

)
sin

(√
1 − ξ2

τ0
+ φ

)
, (34)

where the constants C and φ are given as follows (Kuo,
1995):

C = B

√
A2 − 2ABξτ0 + (Bτ0)2

(Bτ0)2(1 − ξ2)

and

φ = arctan

(
A
√

1 − ξ2

Bτ0 − Aξ

)
− arctan

(√
1 − ξ2

−ξ

)
. (35)

3.4. Analog Circuit Realization. From (30), the trans-
fer function of the oscillation fractional order system de-
fined above is given by

H(s) =
1

1 + (τ0s)m

≈
[

1
(τ0s)2 + 2ξτ0s + 1

] N∏
i=0

(
1 +

s

z0(ab)i

)

N∏
i=0

(
1 +

s

p0(ab)i

)

= H1(s)H2(s). (36)

The above transfer function can be realized by the analog
circuit of Fig. (6) as

H(s) =
Y (s)
E(s)

=
(

1
Ls

)(
Ls

LCs2 + L
Rs + 1

)

×
(

1
Rp

+
N∑

i=0

Cis

1 + RiCis

)
(RS) , (37)

where RS = Rp = 1Ω, L = 2Rξτ0, C = τ0/2Rξ,

Ci =
1

p0(ab)i

N∏
j=0

(1 − a(ab)i−j)

∏
(1 − (ab)i−j)

,

Ri =
1

p0(ab)iCi
. (38)

3.5. Illustrative Example. This section presents simu-
lation results for an oscillation fractional order system rep-
resented by the following fractional order transfer func-
tion:

H(s) =
1

1 + s1.6
.

First, H(s) is modeled by the following function:

H(s) =
1

1 + s1.6
≈ (s + 1)0.4

s2 + (0.71)s + 1
.

For a frequency band of practical interest
[10−3, 10+3] rad/s and for an approximation error
ε = 1dB, the approximation of the fractional power zero
(1 + s)0.4 by a rational function can be given by

(s + 1)0.4 =

N∏
i=0

(
1 +

s

z0(ab)i

)

N∏
i=0

(
1 +

s

p0(ab)i

) ,

where the parameters a, b, z0, p0 and N can be easily cal-
culated as follows:

a = 1.468, b = 1.778, p0 = 1.957 rad/s,
z0 = 1.334 rad/s, N = 8.
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Fig. 8. Analog RLC circuit realization of the fundamental frac-
tional order system for 1 < m < 2.

Then we have

H(s) =
1

1 + s1.6

≈
[

1
s2 + (0.71)s + 1

] 8∏
i=0

(
1 +

s

1.334(2.61)i

)

8∏
i=0

(
1 +

s

1.957(2.61)i

) .

Figures 9 and 10 show the Bode plots of the relax-
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Fig. 9. Magnitude Bode plot of H(s) = 1/(1 + s1.6) of the
proposed rational function approximation and of the ra-
tional function approximated by Oustaloup’s method.

ation fractional order system transfer function given above
and its proposed rational function approximation along
with the rational function approximation by Oustaloup’s
method. We can easily see that the Bode plots of the pro-
posed method and the original function are all quite over-
lapping over the frequency band of interest.

Figure 11 shows the step responses of this fractional
order system obtained from its proposed rational func-
tion approximation, from the rational function approxima-
tion by Oustaloup’s method and by the Grünwald method
given in (Oustaloup, 1995).
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posed rational function approximation and of the ratio-
nal function approximated by Oustaloup’s method.
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4. Conclusion

In this paper we presented some effective methods, very
useful in systems and control theories, for optimal ap-
proximation of the irrational function given by H(s) =
1/(1 + (τ0s)m) for 0 < m < 2 representing the fun-
damental fractional order transfer function, by a ratio-
nal function in a given frequency band of practical inter-
est. Using this approximation, the step responses of this
type of system are derived and simple analog circuit real-
izations are also obtained. Illustrative examples demon-
strated the usefulness of the proposed methods. This ap-
proximation is very suitable for simulation, modeling and
parameter identification of a class of fractional systems
and useful in the analysis, realization and implementation
of fractional order control systems because it is possible



462 A. Djouambi et al.

to do the analysis and the design directly in the s-plane.
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