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Abstract: The purpose of this paper is to investigate a double torsion pendulum with planar frictional contact. The single torsion pendulum 
with one-degree-of-freedom is an angular equivalent of the linear harmonic oscillator. The second degree of freedom has been obtained by 
adding a free body to the inverted single torsion pendulum. The free body’s angular displacement is caused by frictional forces appearing 
in the interface (contact zone) between the free body and the pendulum column’s head kinematically excited at its base by a mechanism 
with torsion spiral spring. An experimental station has been set up and run to find most unknown parameters of the pendulum from the time 
series of state variables taken as inputs to the Nelder-Mead method of identification. The obtained results proved significant usability 
of the identification method in the case of numerical simulation of the pendulum’s dynamical model. It has not been satisfactorily proved 
in the case of time characteristics coming from a real system that exhibits also some unrecognized physical effects. 
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1. INTRODUCTION 

The friction in nature exists in the form of external friction oc-
curring at the interface of two bodies. Two kinds are distinguished: 
a static friction between the two mutually not moving bodies; 
a kinetic friction between the two mutually moving bodies: friction 
sliding, wherein the speed of the two bodies in their mutual con-
tact points are different; friction bearings, wherein the resistance 
movement occurs in turning one body after another. The friction 
may have a structural form that is related to a dissipation of ener-
gy released in the contact surface of mutually fixed parts. Finally, 
the friction may be internal being observed in solids and fluids 
in the form of mechanical energy loss (Awrejcewicz and Olejnik, 
2005). 

The first full friction model was presented by Charles Cou-
lomb, who showed that the static friction is not constant, 
and pointed to the variability of kinetic friction. It is often used 
in engineering practice. The concept of friction can incorporate the 
friction effects such as: a viscous friction increasing linearly while 
the speed increases; the Stribeck effect observed when a friction 
force decreases at a low speed, which is called the Stribeck 
speed; the friction dependent on angular position of the contact 
surface in rotational motion (Awrejcewicz and Olejnik, 2007). 

Steady states of a nonlinear discrete three-degree-of-freedom 
system containing a torsional damper are investigated in Skup 
(2002). The system under consideration is harmonically excited. 
The analysis takes into account structural friction and linear vis-
cous friction of a ring floating in a plunger filled with a high density 
silicon oil. The influence of external loading amplitude, unit pres-
sures, linear viscous damping, geometric parameters and ampli-
tude-frequency characteristics is analyzed. The equations 

of motion of the examined power transmission system are solved 
by a slowly-varying parameter method and digital simulation. 

The described system is related to our work too, in a few key 
points, i.e. by regarding to the influence of friction in the two-
degrees-of-freedom system as well as in the forced oscillation 
of the torsion pendulum caused by harmonic excitation. 

In Bassan et al. (2013) an analysis of a simple torsion pendu-
lum’s motion is presented. Usual basic dynamical model is inves-
tigated in the context of some unexpected features found in exper-
imental data. Comparison with observed values yields estimates 
for the misalignment angles and other parameters of the model. 
The authors developed a more flexible model for the torsion pen-
dulum.The basic feature of that is to consider a rigid body sus-
pended to the fibre at an arbitrary point, therefore, not necessarily 
associated to any particular symmetry of the body. Despite maxi-
mum experimental accuracy, some misalignment can occur when 
the fibre is fastened to the test mass. A detailed mechanical mod-
el of the torsion pendulum with geometrical imperfections can 
explain two unexpected features, ie.: the modulation of the torsion 
signal at the natural frequency of the swinging motion and the 
splitting of the swinging resonance. 

Analysis of a torsion pendulum is also conducted in some ex-
perimental works. For instance, the dynamic process from period-
doubling bifurcations to chaos is observed in Miao et al. (2014) 
by changing the driving period of a modified Pohl's torsion pendu-
lum that formally exhibits periodical dynamics. A data acquisition 
system with a CCD camera connected to a computer and corre-
sponding image processing software is designed to exhibit the 
dynamics of the modified pendulum by recording the oscillating 
angle of the copper rotating wheel. As a result, abundant chaotic 
sequence diagrams and phase diagrams can be clearly seen 
in real time. 
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The described system is related to our work by a similar form 
of kinematic forcing. With regard to the method of tunable pa-
rameters of periodic forcing and the free body being in a frictional 
contact with the second body, our experimental model is capable 
to exhibit any irregular behavior, including various ways of param-
eter dependent bifurcation diagrams and chaotic motion. 

An eight-degrees-of-freedom Lagrangian model that provides 
a suitable account for the motion of the double torsion pendulum 
is described in De Marchi et al. (2013). The model fully describes 
its free dynamics and its response to external disturbances, 
and can accurately predict the torsion, swinging pendulum 
and bouncing resonances. The number and location of resonance 
peaks are correctly predicted and are used for a first validation 
of the model with preliminary data. There is possible to extend the 
Lagrangian formalism, via the Rayleigh dissipation function, 
to account for frictional forces. Dissipative effects are taken into 
account in order to predict, via the fluctuation-dissipation theorem, 
the fundamental limits of sensitivity of the system. 

The described system is related to our work in two key points: 
(a) parameter identification during validation of the investigated 
pendulum’s model; (b) estimation of frictional forces that act in the 
contact interface described in Section 2. 

Physical systems such as an inverted pendulum driven by 
a spiral spring, an unbalanced Euler elastica with a travelling 
mass, a heavy body with a parabolic section and an Ising ferro-
magnet are very different. In Coullet et al. (2009) a nonlinear 
oscillator close to its supercritical bifurcation that oscillates with 
a period inversely proportional to its angular amplitude is present-
ed. The authors performed experiments with a Holweck-Lejay-like 
pendulum which was used to measure the gravity field during the 
twentieth century. Main conclusions prove, that the spiral spring, 
parabolic heavy body and Holweck-Lejay oscillators belong to the 
same class of universality as the Ising ferromagnet close to their 
symmetry-breaking bifurcation. The Larmor's law was confirmed 
experimentally with a good accuracy. 

The described system is related to our work in the key point: 
kinematic forcing of the investigated double torsion pendulum 
is made with the use of a spiral spring. Thanks to that, the dynam-
ics may be investigated using similar methods taken into consid-
eration in Coullet et al. (2009). 

The real application of torsional dynamics can be found  in Liu 
et al. (2014) showing modeling and analysis of a drilling system 
discretized into several components with lumped inertia properties 
and with the inertia elements interconnected with axial and tor-
sional springs. The work extends the model of one coupling of two 
mutually rotating bodies onto a set of multiple couplings modelling 
the dynamics of a drill string. 

The described system is related to our work only in its particu-
lar connection, but it brings a real application that could be inves-
tigated using elementary couplings with a frictional interface and 
a torsional spiral spring. 

In other fields of science like in textile metrology or biology the 
double torsion pendulum is found as the basic model for the deri-
vation of principles governing description of dynamics of complex 
hybrid systems. 

In Michalak and Krucińska (2004), the influence of chemical 
treatment on bending and torsional rigidity of flax and hemp fibers 
was studied. The double pendulum’s mathematical model is use-
ful for the determination of fibre bending rigidity, and the torsional 
pendulum is helpful in a subsequent determination of fibre tor-
sional rigidity in investigation of bast fibre rigidities. 

The nonlinear dynamics of DNA relevant to the transcription 

process in terms of a chain of coupled pendulums was described 
in Cadoni et al. (2013). The authors provided a simple model for a 
nonlinear double chain showing some features which are quite 
interesting both in the frame of nonlinear dynamics for discrete 
systems and for applications, in particular, to DNA torsional dy-
namics. 

2. A PHYSICAL MODEL OF THE DOUBLE TORSION 
PENDULUM WITH FRICTION 

Fig. 1 shows a three-dimensional simplified visualization of the 
double torsion pendulum without any excitation mechanism. 
It consists of main and auxiliary parts such as screws and pins. 
The construction is inverted as compared with the general models 
of torsion pendulums so that on the pendulum column’s head it is 
possible to freely place a next body. Rotational displacement 
of the free body depends on the pendulum column’s dynamics 
and the friction in the interface of the two contacting bodies. 
The lower part of the sleeve is connected to the movable cam with 
the torsion spiral spring imitated by a handmade bar spring. 
A dynamic kinematic forcing of the free end of the spring attached 
to the slider causes the pendulum's torsion about an angle. 
The construction provides an angular contact bearing, allowing 
the rotation of the column with minimizing the adverse effects 
of friction occurring in that part of the construction (see Fig. 3). 

 
Fig. 1. The double torsion pendulum's CAD in Inventor  
            with marked generalized coordinates 𝜑1 and 𝜑2 

 
Fig. 2. Scheme of the double torsion pendulum 
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In Fig. 2 it can be seen a cross-section taken along the verti-
cal axis of the pendulum with the numbered particular elements. 
The construction is placed on the plate (5) on which the pendu-
lum’s base (4) is mounted. The base is designed so that one can 
attach the lower measuring circuit board of circular shape, bearing 
(3) and the torsion spiral spring (10). Angular contact bearing that 
is used in the project transmits the rotation to the lower mounting 
ring (2), which is screwed onto the sleeve (1). Rotational move-
ment is generated by the spiral spring mounted between the body 
and the sleeve. At the end of the sleeve there is concealed 
a plastic cap (8), while the other end of the sleeve is engaged with 
an upper mounting ring (6 – head of the pendulum’s column), 
wherein the second measuring circuit board with the angular 
motion sensor is placed. A free body (7) with a screwed plastic 
cap (9) containing two small circular magnets is placed on the 
upper surface of the mounting ring. Two rotating magnets at-
tached to the free body create a contactless measurement 
by means of the Hall-effect sensor of magnetic field. Therefore, 
any angular relative displacement of the bodies can be measured. 

 
Fig. 3. A mechanism generating the dynamic kinematic sinusoidal forcing  
           (see 𝑓𝑒(𝑡) given by equation (3b)) of one end of the torsion spiral  
           spring 

The design provides some space for installation of the two 
mentioned circuit boards with the Hall-effect sensors, which 
measure angles of rotation of the torsion pendulum’s column 
formed by elements (1, 2 and 6) and the internal sleeve bearing 
(3), as well as an angle of rotation of the free body (7). 

 
Fig. 4. View of the experimental stand with electronics  
           and a stepper motor mounted below the base plate 

The torsion pendulum’s kinematic forcing mechanism visible 
in Fig. 3 consists of a few mechanical parts (1-5) and a stepper 
motor attached to the cam (5). The cam (5) which is put on the 
stepper motor’s shaft enables movement of the arm (1) via an 
intermediate pin (4). The point of rotation of the arm is the axis of 
the fastening pin (3) in the pendulum’s base (2 – it is the same 
base marked by 4 in Fig. 2). At the end of the arm there is a roller 

(6) used to attach one end of the spiral spring. The second end is 
attached to the sleeve (1) visible in Fig. 2. 

Finally, the described design has been physically realized, 
and a view of the experimental stand for investigation of dynamics 
of the two-degrees-of-freedom mechanical system with friction is 
shown in Fig. 4. 

3. ELECTRONIC SYSTEM FOR MEASUREMENT  
OF THE VECTOR OF GENERALIZED COORDINATES 

The vector of real measurement data used for the identifica-
tion purposes has been subject to an acquisition by means 
of a measurement system shown in Fig. 5. 

 
Fig. 5. The measurement and motor driving electronic system 

The measurement and motor driving system of the torsion 
pendulum cosists of the following elements: two angular position 
sensors HMC1512 embedded in a dedicated electronic circuit 
based on the LM358 amplifier; Freescale microcontroller FRDM-
KL25Z for data acquisition and control; the DC stepper motor 
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driver SMC64v2 controlled by the microcontroller; the 2-phase DC 
stepper motor 57BYG081 (55Ncm, 5V, 1A, 1.8˚ – basic step); 
a computer (CPU in Fig. 5) for data reading in a serial connection 
with the SDA port of the microcontroller. After reading, the two 
series of data corresponding to the angles of rotation were pre-
sented in the Terminal in a column form and after a single experi-
ment saved in a text file for further presentation on the graphs 
(see Fig. 11-13).  

4. MATHEMATICAL MODEL OF THE DOUBLE TORSION 
PENDULUM WITH FRICTION 

4.1. Introduction 

The investigated double torsion pendulum with friction is an 
extension of a single torsion pendulum. The construction has 
been inverted, compared to the general models of torsion pendu-
lum so that on the pendulum column’s head there is possible to 
place a next body, of which free motion dynamics will depend on 
the base pendulum’s dynamics and the friction forces acting in an 
interface of the two contacting bodies. This implies that the result-
ing frictional coupling with the two movable bodies establishes the 
two-degrees-of-freedom mechanical system with friction. 

In Fig. 1 we have introduced two variables 𝜑1and 𝜑2  that 
constitute the vector of generalized coordinates: 

𝑞 = [
𝜑1

𝜑2
],  (1) 

where 𝜑1  [rad] is the angular displacement of the pendulum’s 
column relative to its base, 𝜑2  [rad] – the angular displacement of 
the free body relative to the column. 

The zero position of the column is determined by the neutral 
position of the kinematically forced end of the spiral spring, which 
is attached at the center of the hollow bore’s opening in the base. 
The column can rotate clockwise and counter-clockwise, contrary 
to the range indicated by the opening angle of the hollow bore. 

4.2. Derivation of the double torsion pendulum's equations 
of motion using the Lagrange method 

Kinetic energy of the double torsion pendulum is given by: 

𝑇 =
1

2
𝐵1𝜑̇1

2 +
1

2
𝐵2(𝜑̇1 + 𝜑̇2)2, (2) 

where 𝐵1 [kg·m2] is the mass moment of inertia of the sleeve with 
two rings constituting the pendulum’s column, 𝐵2 [kg·m2] – the 
mass moment of inertia of the free body. 

The potential energy is given by: 

𝑉 =
1

2
𝑘(𝑓𝑒(𝑡) − 𝜑1)2, (3a) 

where𝑘 [N·m/rad] is the torsion spring’s stiffness, 𝑓𝑒(𝑡) – function 
of the kinematic sinusoidal forcing (external excitation) of one end 
of the torsion spring given by the formula: 

𝑓𝑒(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡), (3b) 

where 𝜔 [rad/s] is the angular frequency of kinematic forcing, 
𝐴 [rad] – amplitude of the kinematic forcing. 

Vector 𝑄 of generalized forces can be written as follows 

𝑄 = [
𝜏1

𝜏2
] = [

−𝑀𝐿 + 𝑀𝑇

−𝑀𝑇
], (4) 

where 𝑀𝐿 [N·m] is the frictional resistance torque of the bearing, 
in which the first pendulum’s body (the column) is mounted, 𝑀𝑇 
[N·m] – the frictional resistance torque between both pendulum’s 
bodies of inertia 𝐵1  and 𝐵2 . 

We assume, that the frictional resistance torque of the bearing 
depends on unknown viscous friction and the Coulomb friction 
expressed by the maximum static friction torque 𝑀1 acting in the 
contact zone Michalak and Krucińska (2004). Moreover, the dis-
continuity introduced by Coulomb model of dry friction is smooth-
ened by the smoothing function 𝑎𝑟𝑐𝑡𝑔 approximating function 
𝑠𝑔𝑛(𝜑̇1) of sign of the angular velocity 𝜑̇1 of the column 

𝑀𝐿 = 𝑐1𝜑̇1 + 𝑀1
2

𝜋
𝑎𝑟𝑐𝑡𝑔(𝜀1𝜑̇1), (5) 

where 𝑐1 [N·m·s/rad] is the coefficient of viscous friction in bear-
ing, 𝑀1 [N·m] – maximum torque of the static friction of the bear-
ing in the contact zone, 𝜀1 [s] – a parameter determining accuracy 
of smoothing of the static friction torque’s Coulomb term acting 
in the bearing’s contact zone. The larger the value of 𝜀1 is the 
closer the 𝑎𝑟𝑐𝑡𝑎𝑛 function approximates the frictional effects 
caused by Coulomb friction. 

For further use in the text, the term “contact zone” will denote 
a contact zone in the frictional coupling between the pendulum’s 
bodies of inertia 𝐵1  and 𝐵2 . 

One takes into account more frictional effects existing in the 
contact zone between both pendulum’s bodies. The frictional 
resistance torque between bodies of inertia 𝐵1 and 𝐵2  depends 
on the viscous friction 𝑇𝑣𝜑̇2 , smoothened relation for Coulomb 

dry friction 𝑇𝑠1
2

𝜋
𝑎𝑟𝑐𝑡𝑔(𝜀2𝜑̇2), the free body’s angular position 

dependent friction 𝑇𝑠2(1 − 𝑠𝑔𝑛|𝜑̇2|) and the Stribeck effect that 

is characterized by a Stribeck curve 𝑇𝑠𝑡 (1 − 𝑒−𝑇0|𝜑̇2|)𝑠𝑔𝑛(𝜑̇2). 

Therefore, concatenating the possible frictional effects we obtain: 

𝑀𝑇 = 𝑇𝑣𝜑̇2 + 𝑇𝑠1

2

𝜋
𝑎𝑟𝑐𝑡𝑔(𝜀2𝜑̇2) 

+𝑇𝑠2(1 − 𝑠𝑔𝑛|𝜑̇2|) + 𝑇𝑠𝑡(1 − 𝑒−𝑇0|𝜑̇2|)𝑠𝑔𝑛(𝜑̇2), 
(6) 

where 𝑇𝑣 [N·m·s/rad] is the viscous friction coefficient in contact 
zone, 𝑇𝑠1[N·m] – the maximum static friction torque in the contact 
zone, 𝑇𝑠2 [N·m] – the maximum static friction torque,𝑇𝑠𝑡  [N·m] – 
friction coefficient associated with the exponential curve appearing 
due to the Stribeck effect, 𝑇0  [s] – the parameter of exponential 
curve, 𝜀2 [s] – a parameter of static friction torque in the analyzed 
contact zone. 

Expressing the kinetic and potential energies in generalized 
coordinates, a Lagrange function 𝐿 is defined as the difference 
of the kinetic energy 𝑇 and the potential energy 𝑉: 

𝐿 = 𝑇 − 𝑉, (7) 

which after substituting equations (2) and (3) leads to the formula 

𝐿 =
1

2
𝐵1𝜑̇1

2 +
1

2
𝐵2(𝜑̇1 + 𝜑̇2)2 −

1

2
𝑘(𝑓𝑒(𝑡) − 𝜑1)2. (8) 

Then, for the function 𝐿, the Lagrange equation is used 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑖̇
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄, (9) 

where 𝑄 – vector of generalized forces, 𝑞𝑖 – 𝑖-th generalized 
coordinate. 

The Lagrange equation for the coordinate 𝜑1 is given by: 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑1̇
) −

𝜕𝐿

𝜕𝜑1
= 𝜏1. (10) 

Considering only the left-hand side of equation (10) and equa-
tion (8), one obtains: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑1̇
) −

𝜕𝐿

𝜕𝜑1
= 𝐵1𝜑̈1 + 𝐵2(𝜑̈1 + 𝜑̈2) − 𝑘(𝑓𝑒(𝑡) − 𝜑1).    (11) 

 
Fig. 6. Complete simulation diagram of the double torsion pendulum. 

 
Fig. 7. Simulation diagram of a subsystem modelling the equation  
           of the frictional resistance torque 𝑀𝐿 

 
Fig. 8. Simulation diagram of a subsystem modelling the equation  
            of the frictional resistance torque 𝑀𝑇 

The Lagrange equation for the coordinate 𝜑2 is given in the 
form: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑2̇
) −

𝜕𝐿

𝜕𝜑2
= 𝜏2. (12) 

Combining the left-hand side of equation (12) and equation 
(8), one gets: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜑2̇
) −

𝜕𝐿

𝜕𝜑2
= 𝐵2(𝜑̈1 + 𝜑̈2). (13) 

 
Substituting the generalized forces 𝜏1 and 𝜏2, which are de-

fined in (4) into the equations (10) and (12), and taking into ac-
count the formulas (11) and (13), the two ordinary differential 
equations of second order describing the dynamics of the double 
inverted torsion pendulum with the dynamic kinematic forcing are 
found: 

𝐵1𝜑̈1 + 𝐵2(𝜑̈1 + 𝜑̈2) − 𝑘(𝑓𝑒(𝑡) − 𝜑1) = −𝑀𝐿 + 𝑀𝑇 (14) 

and: 

𝐵2(𝜑̈1 + 𝜑̈2) = −𝑀𝑇 . (15) 

Finally, the double torsion pendulum with a plane frictional 
coupling is represented by a two-degrees-of-freedom dynamical 
system and described by the system of two second-order ordinary 
differential equations: 

{
𝐵1𝜑̈1 − 𝑘(𝑓𝑒(𝑡) − 𝜑1) = −𝑀𝐿 + 2𝑀𝑇 ,

    𝐵2(𝜑̈1 + 𝜑̈2) = −𝑀𝑇 .
 (16) 

Equations (16) were implemented in Scilab to build the simu-
lation diagram of the analyzed physical model visible in Fig. 6-8. 

5. PARAMETER IDENTIFICATION OF THE REAL OBJECT 

Prior to the process of identification, the objective function was 
assumed as the arithmetic average of squares of the differences 
between the measured and estimated angles in the following form 

𝑦 =
1

𝑁
∑ (𝜑1−𝜑̂1)2𝑁

𝑖=1 +
1

𝑁
∑ (𝜑2−𝜑̂2)2𝑁

𝑖=1

2
, (17) 

where 𝜑1(𝑡), 𝜑2(𝑡) are the actual measurements of angles, 
𝜑̂1(𝑡), 𝜑̂2(𝑡) – the estimates of angles, 𝑁 – number of samples 
in the series. The objective function (17) was implemented 
in Scilab (see Listing 1 in Appendix). 

To identify the unknown parameters of the pendulum the 
Nelder-Mead simplex method for finding a local minimum 
of a function of several variables has been used. It allows to de-
termine the local minimum without using the derivatives, so it can 
be applied when the function is not differentiable at a point. In the 
numerical analysis we used an identification algorithm available 
in the Scilab (see Listing 1). Exemplary references extending the 
problem of finding of unknown parameters with the use of the 
Nelder-Mead simplex method can be found in Luersen and Le 
Richie (2004). 

In the identification process there are assumed some known 
parameters: 𝜔, 𝜀1, 𝜀2, while the unknowns are as follows: 
𝑘, 𝐴, 𝐵1, 𝐵2 , 𝑐1, 𝑀1, 𝑇𝑣 , 𝑇𝑠1, 𝑇𝑠2 , 𝑇𝑠𝑡 , 𝑇0 . 

5.1. An identification based on the numerical solution – 
example 

Before the target identification of parameters of the real tor-
sion pendulum will be made, a test of the assumed method in an 
exemplary simulation has to be carried out with the use of a nu-
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merically computed solution. The identification procedure was 
initiated with all values of parameters, i.e.: ω = 0.5, ε1 =

1000,ε2 = 1000, B1 = 20, B2 = 1, k = 100, A =
π

6
, c1 =

10,  M1 = 3, Tv = 1, Ts1 = 2, Ts2 = 2, Tst = 0.5, T0 = 10. 
As a result, the trajectories of state variables visible in Fig. 9 and 
10 were obtained. 

Figs. 9a and 9b show a time histories of system variables 
in a response of the pendulum to the sinusoidal function of the 
kinematic forcing 𝑓𝑎(𝑡). According to the specificity of the exter-
nally forced two-degrees-of-freedom dynamical system, the angu-
lar velocities and accelerations are difficult to predict within a time 
period of applied forcing. This irregularity is caused by the effects 
of a rolling friction present in the bottom bearing and the inertia 
of the free body acting reversely on the column at the stick-slip 
frictional contact interface of both bodies of the pendulum. In Fig. 
9 we can see a temporal slippings as well as close to zero relative 
velocities of the free body against the column. Also in this case, 
the angular velocity and acceleration of both bodies are difficult 
to predict. It is caused by the frictional effects occurring at the 
frictional contact interface of both pendulum bodies of inertias 
𝐵1and 𝐵2 . 

a) 

 
b) 

 
Fig. 9. Time histories of the angular displacements [𝜑1 , 𝜑2], velocities  
            [𝜑̇1 , 𝜑̇2] and accelerations [𝜑̈1 , 𝜑̈2] of the column  
            and the free body 

The set of parameters which were described as unknowns 
was slightly modified in relation to the simulation, i.e.: 𝐵1 = 22, 
𝐵2 = 11, 𝑘 = 10, 𝐴 = 𝜋/4, 𝑐1 = 5, 𝑀1 = 2, 𝑇𝑣 = 0.1, 
𝑇𝑠1 = 3, 𝑇𝑠2 = 1, 𝑇𝑠𝑡 = 0.2, 𝑇0 = 1000. 

It is seen, that after a few steps of the identification procedure 
of parameters of the pendulum, the time trajectories are signifi-
cantly different (see Fig. 10a and 10b). However, after several 
thousands of iterations, there was obtained better set of parame-
ters. The angular velocity and acceleration are difficult to predict 
by unrecognized effects of friction occurring in contact zone of the 
pendulum’s bodies. 

a) 

 
b) 

 
Fig. 10. Time histories of the actual [𝜑1 , 𝜑2] and partially estimated 

[𝜑̂1 , 𝜑̂2] dynamical variables of the pendulum before the final 
identification parameters are found. In the presented view, 
the model’s parameters are not finally identified (the procedure 
of identification is still in progress) 

It has guaranteed almost perfectly identified model of the in-
verted double torsion pendulum with friction and a dynamic kine-
matic forcing (see Fig. 11a and 11b). 

5.2. The target identification based on the data acquired 
from measurement 

In previous section a numerical solution of the pendulum’s 
model was taken into consideration leading to the successful 
identification. Correctness of our methodology has been proved. 

Now, beginning with the identification of the measurement se-
ries, three parameters were assumed as known. Frequency of the 
dynamic kinematic forcing 𝜔 = 2𝜋/𝑇 = 2𝜋/0.48 = 13.09 is 
assumed. A parameter of static friction torque in the slip zone of 
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the bearing and the static friction torque in the analyzed frictional 
contact of the pendulum’s bodies are as follows: 𝜀1 =
1000, 𝜀2 = 1000, respectively. After a few thousand of itera-

tions, the smallest possible value of objective function was ob-
tained: 𝑦 = 0.01171. 

a) 

 

b) 

 
Fig. 11. Time histories of the actual [𝜑1 , 𝜑2] and estimated [𝜑̂1, 𝜑̂2] dynamical variables of the pendulum after final identification  
             of parameters. In the presented view, the model’s parameters are identified (the procedure of identification is finished) 

a) 

 

b) 

 
Fig. 12. Time histories of the actual [φ1 , φ2]and estimated [φ̂1 , φ̂2] dynamical variables of the pendulum after final identification of parameters 

a) 

 

b) 

 

Fig. 13. Time histories of the actual [𝜑1 , 𝜑2] and estimated [𝜑̂1, 𝜑̂2] dynamical variables of the analyzed pendulum after final identification of parameters 
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Given the time history in Fig. 12b, which shows the matching, 
it can be concluded, that the presented numerical solution of the 
double torsion pendulum’s model with friction does not match the 
measurement series obtained from our real experiment. The time 
history of actual value and the estimated value of the angle 𝜑1 
tends to correct convergence, however, the 𝜑2  angle’s time histo-
ry does not show any acceptable convergence. 

Then, the second real identification was performed. As 
previously, three parameters were assumed as known and set to 
the same values. After a few thousand of iterations, the smallest 
possible value of objective function was obtained: 𝑦 = 0.05328. 

Given the time history in Fig. 13, which shows the matching, 
it can be concluded, that the presented numerical solution of the 
double torsion pendulum’s model with friction does not satisfctorily 
match the measurement series of data obtained from our real 
experiment as in the previous case. 

6. CONCLUSIONS 

The introduced mathematical model of the torsion double 
pendulum with a spiral spring allows to simulate complex dynam-
ics of the mechanical system. The time histories of angular dis-
placement, velocity and acceleration of the pendulum’s column 
were shown in Fig. 9. According to the given time history of exter-
nal excitation of the pendulum, the kinematic forcing takes the 
form of sine wave. It is one of the reasons causing main complexi-
ty of the system, so the angular velocity and acceleration are 
difficult to predict. This irregularity of responses is caused by the 
effects of dry and viscous friction acting on the column and the 
free body placed on its head. In turn, we had shown in Fig. 10 
a time history of the angular displacement, velocity and accelera-
tion of the free body, that is forced via a plane frictional contact by 
the column’s head. We can see the restraint of the free body 
against the column. Also in this case, if we consider a noise in the 
measured series of data, then the velocity and acceleration will be 
impossible to observe. After the first sample simulations, it was 
decided to carry out the identification of model parameters using 
a slightly modified form in relation to the simulation model. It has 
led to some satisfactory fitting, even though not all the parameters 
have been fully identified. This may be due to the fact that this 
particular solution was possible with several different values 
of unknown parameters. It is worth noting that even a small 
change in the parameters dramatically changes the behavior 
of our mechanical system. 

The next step was to perform the identification of pendulum’s 
parameters. Considering the real and the estimated angular dis-
placements of the pendulum’s bodies, as well as assuming that 
the parameters obtained with known parameters 𝐵1  and 𝐵2  
should be equal to each other, it can be concluded, that the 
matching of the double torsion pendulum’s model with a planar 
frictional contact to the measurements obtained from the real 
experiment is not sufficiently correct. There are several aspects 
that have a direct impact on such divergence.  

Firstly, it should be pointed out that the system is very sensi-
tive and has a lot of local solutions dependent on initial conditions. 
Free body of the torsion pendulum can move relatively to the 
column, where it can exhibit an oscillatory rotational motion to the 
right and then to the left, it can move only in one direction and 
suddenly stop to move with the column, it can sometimes exhibit 
rapid stick-slip behavior in relation to the pendulum’s head and 
others. Even with the same initial conditions, the system may 

behave differently as shown by measurements. Another problem 
is devoted to the number of unknown parameters. To many un-
known parameters were reported, so that the same co-existing 
solutions may be obtained at their different sets of values. It is 
also essential that the parameters of the model do not need to be 
constant in time, as it has been assumed at the beginning, and 
may vary in time. 

The spiral spring is worth a comment. Its stiffness during wind-
ing and unwinding is slightly different, although it is assumed 
constant. Another imperfections can be introduced by small vibra-
tions visible on the graphs of the angular displacement of the free 
body. Such discrepancy may be caused by insufficiently precise 
manufacturing of the mechanical parts of the laboratory stand, the 
type of bearing and insufficient parallelism between the base and 
the column, which causes vibration of the column in a vertical 
plane. Another problem could be deduced from the mathematical 
model, in which, there could not be taken into account the un-
known dynamical effects that occur in the adequate real object, 
or even the idealized mathematical model could include too many 
frictional effects that complicate the identification. A small change 
of the parameters may result in a large change in the waveforms 
of the double torsion pendulum's states. In most considered cas-
es, the estimated displacement of the column adjusts to a meas-
ured position as the parameters in the equation of the position 
of the columns are easier to estimate, and the second equation 
depends only on both the movement of the column and the friction 
between the column and the free body. 

Another aspect may be connected with the Nelder-Mead 
method. Despite the fact that it is a simple and easy implementing 
method allowing the determination of extremes of nonlinear func-
tion of several variables without the use of derivatives, the objec-
tive function can reach local minima during the identification algo-
rithm, so it is not always possible to find the correct set of identi-
fied parameters. 

The last aspect that one needs to consider is the fact that the 
arm of the mechanism realizing the dynamic kinematic forcing 
is greater than the spring hook arm, which can cause unnatural 
deformation of the spring and the fact, that angle-voltage charac-
teristics of two sensors are not ideal to measure the rotational 
movement of the column and the free body in a range greater 
than ±45°. This prevents a full examination of the model, 
as in other cases. In the measurements, it was necessary to adopt 
high frequency of excitation, which leads to the observed rapid 
dynamic changes of state variables. 

Despite the not fully correct identification of parameters of the 
double torsion pendulum with friction, we have achieved a good 
basis for further work on the subject. It is possible to consider 
several possible paths, such as simplifications based on reduction 
of system variables, or the extension of the model to take into 
account more effects, including a time-dependent uncertainty of 
model parameters, which were originally assumed as constants. 
One should also tend to improve accuracy of the angle sensors to 
be able to measure the states more correctly. Performance of 
certain mechanical parts should be raised by eliminating 
unwanted vibrations of the column or by replacing the bearing with 
another one of a higher enough tolerances, as well as by using 
a spiral spring with a greater stiffness. The identification method 
could be supplemented with partial analytical solutions to identify 
some unknown parameters. 
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APPENDIX 

Listing 1. A procedure in Scilab of using the Nelder-Mead identification 
method 

ExpData = fscanfMat("data_in_rad.txt"); 
fip1.time = ExpData(:,1); 
fip1.values = ExpData(:,2); 
fip2.values = ExpData(:,3); 
 
function y=Fobj(x); 
importXcosDiagram("xcos_model_pendulum.zcos") 
Context.w=13.09;Context.E1=1000;Context.E2=1000; 
    Context.B1=x(1);Context.B2=x(2); Context.k=x(3); 
Context.A=x(4);Context.c1=x(5);Context.M=x(6); 
Context.Tv=x(7);Context.Ts1=x(8);Context.Ts2=x(9); 
Context.Tst=x(10);Context.T0=x(11);  
 
Context.tmax=10;Context.tini=0;Context.S=2; 
scicos_simulate(scs_m,Context); 
 
y= (mean((fip1.values-fi1.values)^2) + mean((fip2.values-
fi2.values)^2))/2; 
 
clf(1); figure(1) 
plot(fip1.time, [fip1.values,fi1.values]);   
clf(2); figure(2) 
plot(fip1.time, [fip2.values,fi2.values]); 
endfunction 
 
x=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100] 
y=Fobj(x) 
opt = optimset("MaxIter",50,"PlotFcns",optimplotfval); 
x = fminsearch(Fobj,x,opt) 

 


