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Abstract: Double diffusive convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field with Soret effect 
is investigated for more realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal 
boundaries. The normal mode method is used to find linear stability analysis for the fluid layer. Oscillatory convection is ruled out because 
of the absence of the two opposing buoyancy forces. Graphs have been plotted to find the effects of various parameters on the stationary 
convection and it is found that magnetic field, solutal Rayleigh number and nanofluid Lewis number stabilizes fluid layer, while Soret effect, 
Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number destabilize the fluid layer. 
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1. INTRODUCTION 

Double-diffusive convection is referred to convection induced 
by temperature and concentration gradients or by concentration 
gradients of two spices. Double diffusive convection has become 
important in recent years because of its applications in many 
fields of science, engineering and technology. Nield (1968) inves-
tigate the double-diffusive convection using linear stability analysis 
for various thermal and solutal boundary conditions. The onset 
of the double-diffusive convection by using a weak nonlinear 
theory was investigated by Rudraiah et al.(1982). Later Nield et al. 
(1993) considered the effects of inclined temperature and solutal 
gradients on the double convection. Thermal convection in binary 
fluid driven by the Soret and Dufour effect has been investigated 
by Knobloch (1980).He has shown that the equations are identical 
to the thermosolutal problem except relation between the thermal 
and solutal Rayleigh numbers. Bahloulet al. (2003) investigated 
the effects of Soret (thermal diffusion) in double –diffusive flow. 
Thermosolutal convection in the presence of Dufour and Soret 
effects by Motsa (2008) and found that Soret parameter stabilize 
while Dufour parameter destabilize the stationary convection. 
Dufour and Soret effects on thermosolutal convection in a visco-
elastic fluid layer have been given by Chand and Rana (2012a, 
2014a), Chand et al. (2015a)and observed that Dufour and Sore 
parameters have significance influence on the fluid layer. 

The effect of magnetic field on double-diffusive convection 
finds importance in geophysics, particularly in the study of Earth’s 
core where the Earth’s mantle, which consists of conducting fluid. 
Magnetic field plays an important role in engineering and industrial 
applications. These applications include design of chemical pro-
cessing equipment, formation and dispersion of fog, distributions 
of temperature and moisture over agricultural fields and groves 
of fruit trees and damage of crops due to freezing and pollution of 
the environment etc. Chandrasekhar (1961) studied in detail the 
thermal convection in a hydromagnetics. Patil and Rudraiah 

(1973), Alchaar et al.(1995) considered the problem of thermo-
solutal convection in the presence of magnetic field for different 
boundary conditions.  

Nanofluids have novel properties that make them potentially 
useful in wide range of engineering applications where cooling 
is of primary concern. Nanofluid used as heat transfer, chemical 
nanofluids, smart fluids, bio-nanofluids, medical nanofluids (drug 
delivery and functional tissue cell interaction) etc. in many indus-
trial applications.The term nanofluid refers to a fluid containing 
a suspension of nanoscale particles. This type of fluid is a mixture 
of a regular fluid, with a very small amount of suspended metallic 
or metallic oxide nanoparticles or nanotubes, which was first 
coined by Choi (1995). Suspensions of nanoparticles are being 
developed medical applications including cancer therapy. Convec-
tion in nanofluid based on Buongiorno’s model [Buongiorno, 
(2006)] was studied by Tzou (2008a,b), Alloui et al.(2010), Kuz-
netsov and Nield (2010a, b , 2011), Nield and Kuznetsov (2009, 
2010a, b,c, 2011), Kim et al. (2011), Chand and Rana 
(2012b,c,d), Chand et al. (2015b). Magneto- convection in a layer 
of nanofluid finds its applications in biomedical engineering such 
as MRI, plethora of engineering, power plant cooling systems as 
well as in computers. Yadav et al. (2013), Chand (2013), Gupta et 
al. (2013) and Chand and Rana (2014b, 2015) reported various 
application of magnetic field in a layer of nanofluid heated from 
below. But the choice of the boundary conditions imposed by 
them on nanoparticles fraction is somewhat arbitrary; it could be 
argued that zero-flux for nanoparticles volume fraction is more 
realistic. Recently Nield and Kuznetsov (2014), Chand el al. 
(2014), Chand and Rana (2014c,2015) studied the thermal insta-
bility of nanofluid by taking normal component of the nanoparticle 
flux zero at boundary which is more physically realistic. Zero-flux 
for nanoparticles mean one could control the value of the nano-
particles fraction at the boundary in the same way as the tempera-
ture there could be controlled. In this paper an attempt has been 
made to study the magneto- convection in a horizontal layer 
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of nanofluid with Soret effect for more realistic boundary condi-
tions. 

2. MATHEMATICAL FORMULATIONS OF THE PROBLEM 

Consider an infinite horizontal layer of nanofluid of thick-

ness𝑑  bounded by surfaces 𝑧 = 0  and𝑧 = 𝑑 heated and so-
luted from below such that a constant temperature and concentra-
tion distribution is prescribed at the boundaries of the fluid layer. 

Fluid layer is acted upon by gravity force𝑔(0, 0, −𝑔)and a uni-

form vertical magnetic field 𝐻(0, 0, 𝐻)as shown in Fig. 1. The 
temperature and concentration are taken to be 𝑇0 and 𝐶0 at 𝑧 =
0 and 𝑇1  and 𝐶1  at 𝑧 = 𝑑 , (𝑇0 > 𝑇1 , 𝐶0 > 𝐶1 ). The reference 

scale for temperature and nanoparticles fraction is taken to be 𝑇1 
and 𝜑0 respectively. 

 
Fig.1. Physical configuration of the problem 

2.1. Assumptions 

 The mathematical equations describing the physical model 
are based upon the following assumptions: 

 Thermo physical properties expect for density in the buoyancy 
force (Boussinesq Hypothesis)are constant; 

 The fluid phase and nanoparticles are in thermal equilibrium 
state; 

 Nanoparticles are spherical; 

 Radiation heat transfer between the sides of wall is negligible 
when compared with other modes of the heat transfer; 

 Nanoparticles do not affect the transport of the solute; 

 No chemical reactions take place in fluid layer. 

2.2. Governing Equations 

The appropriate governing equations for magneto double dif-
fusive convection (Chandrasekhar, 1961; Chand, 2013;Nield 
and Kuznetsov, 2014) are: 

𝛻 ⋅ 𝑞 = 0 (1) 

𝜌0

𝜕𝑞

𝜕𝑡
= −𝛻𝑝 + (𝜙𝜌𝑝 + (1 − 𝜙) 

∙ {𝜌0(1 − 𝛼(𝑇 − 𝑇0) + 𝛼′(𝐶 − 𝐶0))})𝑔 

+𝜇𝛻2𝑞 +
𝜇𝑒

4𝜋
(𝐻 ⋅ 𝛻)𝐻 

(2) 

𝜌𝑐
𝜕𝑇

𝜕𝑡
+ (𝜌𝑐)𝑓𝑞 ⋅ 𝛻𝑇 = 𝑘𝑚𝛻2𝑇 + 𝜀(𝜌𝑐)𝑝 

∙ (𝐷𝐵𝛻𝜙 ⋅ 𝛻𝑇 +
𝐷𝑇

𝑇1

𝛻𝑇 ⋅ 𝛻𝑇) 

(3) 

𝜕𝐶

𝜕𝑡
+ 𝑞 ⋅ 𝛻𝐶 = 𝜅′𝛻2𝐶 + 𝐷𝐶𝑇𝛻2𝑇 (4) 

𝜕𝜙

𝜕𝑡
+ 𝑞 ⋅ 𝛻𝜙 = 𝐷𝐵𝛻2𝜙 +

𝐷𝑇

𝑇1

𝛻2𝑇 (5) 

where: 𝑞(𝑢, 𝑣, 𝑤)  is the velocity vector, 𝜌0  is the density 
of nanofluid at lower boundary layer, 𝜑  is the volume fraction-

of the nanoparticles, 𝜌𝑝 density of nanoparticles, 𝑝 is the hydro-

static pressure, 𝜇  is the velocity viscosity, 𝜇𝑒  is the magnetic 

permeability, 𝛼 is thecoefficientof thermal expansion, 𝛼′ an anal-

ogous solvent coefficient of expansion, 𝜅is the thermal diffusivity, 

𝜅′is the solute diffusivity of fluid, 𝐻 is the magnetic field, 𝑇 is the 
temperature, 𝐶 is the solute concentration, 𝜌𝑐 is the effective heat 

capacity of fluid, (𝜌𝑐)𝑝  is the heat capacity of nanoparticles, 

𝑘𝑚  is the effective thermal conductivity of the porous medium, 

𝑔  is acceleration due to gravity, 𝐷𝐵  is the Brownian diffusion 

coefficient, 𝐷𝑇 is thethermophoretic diffusion coefficient of the 
nanoparticles and 𝐷𝐶𝑇  is the Soret coefficient.  

Maxwell equations are: 

𝑑𝐻

𝑑𝑡
= (𝐻 ⋅ 𝛻)𝑞 + 𝜂𝛻2𝐻          (6) 

𝛻 ⋅ 𝐻 = 0           (7) 

where 𝜂 is the electrical resitivity. 
We assume that the temperature is constant and nanoparti-

cles flux is zero on the boundaries. Thus boundary conditions 
(Chandrasekhar, 1961; Nield and Kuznetsov, 2014) are: 

𝑤 = 0, 𝑇 = 𝑇0,, 𝐶 = 𝐶0,𝐷𝐵

𝜕𝜑

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0𝑎𝑡𝑧 = 0 

𝑤 = 0, 𝑇 = 𝑇1, 𝐶 = 𝐶1, 𝐷𝐵

𝜕𝜑

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0𝑎𝑡𝑧 = 𝑑 

(8) 

Introducing non-dimensional variables as: 

(𝑥′, 𝑦′, 𝑧′) = (
𝑥, 𝑦, 𝑧

𝑑
) , 𝑞′(𝑢′, 𝑣′, 𝑤′) = 𝑞 (

𝑢, 𝑣, 𝑤

𝜅
) 𝑑, 

𝑡′ =
𝜅

𝑑2 𝑡, 𝑝′ =
𝑑2

𝜇𝜅
𝑝, 𝜙′ =

(𝜙−𝜙0)

𝜙0
, 𝑇′ =

𝑇

𝛥𝑇
, 𝐶′ =

𝐶

𝛥𝐶
,𝐻′ =

𝐻

𝐻
. 

Equations (1) – (8), in non-dimensional form can be written as: 

𝛻 ⋅ 𝑞′ = 0    (9) 

1

𝑃𝑟

𝜕𝑞′

𝜕𝑡
= −𝛻′𝑝′ + 𝛻2𝑞′ − 𝑅𝑚�̂�𝑧 + 𝑅𝑎𝑇′�̂�𝑧 −

𝑅𝑠

𝐿𝑒
𝐶′�̂�𝑧

− 𝑅𝑛𝜙′�̂�𝑧 +
𝑃𝑟

𝑃𝑟𝑀

𝑄(𝐻′ ⋅ 𝛻′)𝐻 

(10) 

𝜕𝑇′

𝜕𝑡′
+ 𝑞′ ⋅ 𝛻′𝑇′ = 𝛻2𝑇′ +

𝑁𝐵

𝐿𝑛
𝛻′𝜙′ ⋅ 𝛻𝑇′ +

𝑁𝐴𝑁𝐵

𝐿𝑛
𝛻′𝑇′

⋅ 𝛻′𝑇′ 
(11) 

𝜕𝐶′

𝜕𝑡′
+ 𝑞′ ⋅ 𝛻𝐶′ =

1

𝐿𝑒
𝛻2𝐶′ + 𝑆𝑟𝛻2𝑇′ (12) 

𝜕𝜙′

𝜕𝑡′
+ 𝑞′ ⋅ 𝛻𝜙′ =

1

𝐿𝑛
𝛻2𝜙′ +

𝑁𝐴

𝐿𝑛
𝛻2𝑇′ (13) 
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𝑑𝐻′

𝑑𝑡′
= (𝐻′ ⋅ 𝛻′)𝑞′ +

𝑃𝑟

𝑃𝑟𝑀

𝛻′2𝐻′ (14) 

,0 H                                                                                      (15) 

where non-dimensional parameters are: 𝐿𝑛 =
𝜅

𝐷𝐵 
 is a nanofluid 

Lewis number, 𝐿𝑒 =
𝜅

𝜅′
 Lewis number, 𝑅𝑎 =

𝜌0𝑞𝛼𝑑3Δ𝑇

𝜇𝜅
 is the 

thermal Rayleigh number, 𝑅𝑠 =
𝜌0𝑔𝛼′𝑑3𝛥𝐶

𝜇𝜅
 is the solutal Rayleigh 

number, 𝑅𝑚 =
(𝜌𝑝𝜙0+𝜌(1−𝜙0))𝑔𝑑3

𝜇𝜅
  is the basic-density Rayleigh 

number, 𝑃𝑟 =
𝜇

𝜌0𝜅
is the Prandtl number, 𝑃𝑟𝑀 =

𝜇

𝜌0𝜂
is the mag-

netic Prandtl number, Q =
𝜇𝑒𝐻2𝑑2

4𝜋𝜌0𝜐𝜂
  is the Chandrasekhar number, 

𝑅𝑛 =
(𝜌𝑝−𝜌0)𝜙0𝑔𝑑3

𝜇𝜅
  is the nanoparticle Rayleigh-Darcy number, 

𝑆𝑟 =
𝐷𝐶𝑇𝛥𝑇

𝜅𝛥𝐶
  is the Soret parameter,  𝑁𝐴 =

𝐷𝑇𝛥𝑇

𝐷𝐵𝑇1𝜙0
 is the modi-

fied diffusivity ratio, 𝑁𝐵 =
(𝜌𝑐)𝑝𝜙0

𝜌𝑐
 is the modified particle-density 

increment. 
The dimensionless boundary conditions are: 

𝑤 = 0, 𝑇 = 1, 𝐶 = 1,
𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 0 

𝑤 = 0, 𝑇 = 0, 𝐶 = 0,
𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 1 

(16) 

2.3. Basic Solutions 

The basic state of the nanofluid is assumed to be time inde-

pendent and is described by 𝑞′(𝑢, 𝑣, 𝑤) = 0, 𝑝′ = 𝑝′(𝑧), 
𝐻′ = 𝐻𝑏(𝑧), 𝑇′ = 𝑇𝑏(𝑧), 𝐶 = 𝐶𝑏(𝑧), 𝜙 = 𝜙𝑏(𝑧). 

The steady state solution is obtained as: 

𝑇𝑏 = 1 − 𝑧, 𝐶𝑏 = 1 − 𝑧, 𝜙𝑏 = 𝜑0 + 𝑁𝐴𝑧      (17) 

where 𝜑0 is reference value for nanoparticles volume fraction. 
The basic solution for temperature is same as the solution ob-

tained by Chand (2013) while basic solution for the nanoparticles 
volume fraction is changed in comparison with Chand (2013).  

But these basic solutions are identical with solutions obtained 
by Nield and Kuznetsov (2014). 

2.4. Perturbation Solutions 

To study the stability of the system, we superimposed infini-
tesimal perturbations on the basic state, which are of the forms: 

𝑞′ = 0 + 𝑞′′, 𝑇′ = 𝑇𝑏, + 𝑇′′, 𝜙′ = 𝜙𝑏 + 𝜙′′, 𝑝′ 

= 𝑝𝑏 + 𝑝′′, 𝐻′ = 𝐻𝑏 + ℎ(ℎ𝑥, ℎ𝑦 , ℎ𝑧) 

with 𝑇𝑏 = 1 − 𝑧, 𝐶𝑏 = 1 − 𝑧, 𝜙𝑏 = 𝜙0 + 𝑁𝐴𝑧 

  (18) 

There after dropping the dashes ( '' ) for simplicity. 
Using the equation (18) in the equations (9) – (15), we obtain 

the linearized perturbation (neglecting the product of the prime 
quantities) equations as: 

𝛻 ⋅ 𝑞 = 0 (19) 

1

𝑃𝑟

𝜕𝑞

𝜕𝑡
= −𝛻𝑝 + 𝛻2𝑞 + 𝑅𝑎𝑇�̂�𝑧 −

𝑅𝑠

𝐿𝑒
𝐶�̂�𝑧 − 𝑅𝑛𝜙�̂�𝑧

+
𝑃𝑟

𝑃𝑟𝑀

𝑄
𝜕ℎ

𝜕𝑧
 

(20) 

𝜕𝑇

𝜕𝑡
− 𝑤 = 𝛻2𝑇 +

𝑁𝐵

𝐿𝑛
(

𝜕𝑇

𝜕𝑧
−

𝜕𝜙

𝜕𝑧
) −

2𝑁𝐴𝑁𝐵

𝐿𝑛

𝜕𝑇

𝜕𝑧
 (21) 

𝜕𝐶

𝜕𝑡
− 𝑤 =

1

𝐿𝑒
𝛻2𝐶 + 𝑆𝑟𝛻2𝑇 (22) 

𝜕𝜙

𝜕𝑡
+ 𝑤 =

1

𝐿𝑛
𝛻2𝜙 +

𝑁𝐴

𝐿𝑛
𝛻2𝑇 (23) 

𝜕ℎ

𝜕𝑡
=

𝜕𝑤

𝜕𝑧
+

𝑃𝑟

𝑃𝑟𝑀

𝛻2ℎ (24) 

𝛻 ⋅ ℎ = 0 (25) 

The boundary conditions are: 

𝑤 = 0, 𝑇 = 0, 𝐶 = 0,
𝜕𝜑

𝜕𝑧
+ 𝑁𝐴

𝜕𝑇

𝜕𝑧
= 0𝑎𝑡𝑧 = 0,1

     

(26) 

Now eliminating p and h from equations (20) by making use 
of equations (19) and (25), we get: 

((
𝑃𝑟

𝑃𝑟𝑀

𝛻2 −
𝜕

𝜕𝑡
) (

1

𝑃𝑟

𝜕

𝜕𝑡
𝛻2 − 𝛻4) +

𝑃𝑟

𝑃𝑟𝑀

𝑄𝐷2𝛻2) 𝑤 

= (
𝑃𝑟

𝑃𝑟𝑀

𝛻2 −
𝜕

𝜕𝑡
) (𝑅𝑎𝛻𝐻

2𝑇 −
𝑅𝑠

𝐿𝑒
𝛻𝐻

2𝐶 − 𝑅𝑛𝛻𝐻
2𝜙) 

  (27) 

3. NORMAL MODES ANALYSIS 

Analyzing the disturbances into the normal modes and assum-
ing that the perturbed quantities are of the form: 

[𝑤, 𝑇, 𝜙, 𝐶] = [𝑊(𝑧), 𝛩(𝑧), 𝛷(𝑧), 𝛤(𝑧)]𝑒𝑥𝑝(𝑖𝑘𝑥𝑥

+ 𝑖𝑘𝑦𝑦 + 𝑛𝑡) 
  (28) 

where: 𝑘𝑥 , 𝑘𝑦 are wave numbers in 𝑥  and 𝑦  direction and 𝑛 

is growth rate of disturbances. 
Using equation (28), equations (27), (19), (21) – (23) become: 

((
𝑃𝑟

𝑃𝑟𝑀

(𝐷2 − 𝑎2) − 𝑛) (
𝑛

𝑃𝑟
(𝐷2 − 𝑎2) − (𝐷2 − 𝑎2)2)

+
𝑃𝑟

𝑃𝑟𝑀

𝑄𝐷2(𝐷2 − 𝑎2)) 𝑊

+ (
𝑃𝑟

𝑃𝑟𝑀

(𝐷2 − 𝑎2) − 𝑛) (𝑎2𝑅𝑎𝛩

− 𝑎2
𝑅𝑠

𝐿𝑒
𝛤 − 𝑎2𝑅𝑛𝛷) = 0 

  (29) 

𝑊 + (𝐷2 − 𝑎2 +
𝑁𝐵

𝐿𝑛
𝐷 −

2𝑁𝐴𝑁𝐵

𝐿𝑛
𝐷 − 𝑛) 𝛩 −

𝑁𝐵

𝐿𝑛
𝐷𝛷

= 0 
(30) 

𝑊 + 𝑆𝑟(𝐷2 − 𝑎2)𝛩 + (
1

𝐿𝑒
(𝐷2 − 𝑎2) − 𝑛) 𝛤 = 0 (31) 

𝑊 −
𝑁𝐴

𝐿𝑛
(𝐷2 − 𝑎2)𝛩 − (

1

𝐿𝑛
(𝐷2 − 𝑎2) − 𝑛) 𝛷 = 0 (32) 

and 
dz

d
D: where  𝑎 = √𝑘𝑥

2 + 𝑘𝑦
2 is dimensionless result-

ant wave number. 
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The boundary conditions of the problem in view of normal 
mode analysis are: 

𝑊 = 0, 𝐷2𝑊 = 𝛩 = 0, 𝛤 = 0, 𝐷𝛷 + 𝑁𝐴𝐷𝛩 = 0  

𝑎𝑡 𝑧 = 0,1.                                                                          (33) 

For neutral stability the real part of the n is zero. Hence now 

we write𝑛 =  𝑖𝜔, (where ω is real and is dimensionless frequen-
cy of the oscillation). 

4. METHOD OF SOLUTION 

The Galerkin weighted residuals method is used to obtain 
an approximate solution to the system of equations (29) – (32) 
with the corresponding boundary conditions (33). On choosing 

trial functions (satisfying boundary condition (33)) 𝑊, 𝛩, 𝛤 and 𝛷 
as: 

W = ∑ 𝐴𝑝Wp

𝑁

𝑝=1

, Θ = ∑ 𝐵𝑝Θp

𝑁

𝑝=1

 

Γ = ∑ 𝐶𝑝Γp

𝑁

𝑝=1

, Φ = ∑ 𝐷𝑝Φp

𝑁

𝑝=1

 

(34) 

where: 𝐴𝑝, 𝐵𝑝, 𝐶𝑝 and 𝐷𝑝  are unknown coefficients,                  

 𝑝 = 1, 2, 3, . . . 𝑁  and the base functions 𝑊𝑝, 𝛩𝑝,𝛤𝑝 and 𝛷𝑝 

are assumed in the following form: 

𝑊𝑝 = 𝑧𝑝+1 − 2𝑧𝑝+2 + 𝑧𝑝+3,𝛩𝑝 = 𝛤𝑝 = 𝑧𝑝 −

𝑧𝑝+1𝛷𝑝 = −𝑁𝐴(𝑧𝑝 − 𝑧𝑝+1) 
(35) 

such that 𝑊𝑝,𝛩𝑝,𝛤𝑝 and 𝛷𝑝  satisfy the corresponding boundary 

conditions. Using expression for 𝑊 , 𝛩 , 𝛤  and 𝛷  in equations 
(29) – (32) and multiplying first equation by 𝑊𝑝 second equation 

by 𝛩𝑝 and third by 𝛤𝑝 and forth by 𝛷𝑝, and integrating in the limits 

from zero to unity, we obtain a set of 4N linear homogeneous 
equations in 4N unknown 𝐴𝑝, 𝐵𝑝, 𝐶𝑝and 𝐷𝑝; 𝑝 =  1, 2, 3, . . . 𝑁. 

For existing of nontrivial solution, the vanishing of the determinant 
of coefficients produces the characteristics equation of the system 

in term of Rayleigh number 𝑅𝑎. Thus 𝑅𝑎 is found in terms of the 
other parameters. 

5. STATIONARY CONVECTION 

Oscillatory convection is ruled out because of the absence 
of the two opposing buoyancy forces so we consider the case 
of the stationary convection. 

For the first Galerkin approximation we take 𝑁 =  1; the ap-
propriate trial function for boundary condition (33) is given by: 

𝑊𝑝 = 𝑧2(1 − 𝑧)2, 𝛩𝑝 = 𝛤𝑝 = 𝑧(1 − 𝑧), 𝛷𝑝

= −𝑁𝐴𝑧(1 − 𝑧) (36) 

Substituting trail functions (36) in the system of equations 
(29) – (32) and using boundary condition (33), we obtain the 
eigenvalue equation as: 

R𝑎 − 𝑅𝑠(1 − 𝑆𝑟) + (𝑁𝐴 + 𝐿𝑛)𝐿𝑒𝑅𝑛 

=
28

27𝑎2
(𝑎4 + 24𝑎2 + 504 + 12𝑄)(𝑎2 + 10) 

(37) 

In the absence of solute gradient (𝑅𝑠 = 0, 𝐿𝑒 = 1), the cor-
responding Rayleigh number Ra for steady onset is given byR𝑎 =

28

27𝑎2
(𝑎4 + 24𝑎2 + 504 + 12𝑄)(𝑎2 + 10) − (𝑁𝐴 + 𝐿𝑛)𝑅𝑛.This is 

good agreement of the result obtained by Chand (2013). 

In the absence of magnetic field (𝑄 =  0), equation (37) re-
duces to: 

R𝑎 − 𝑅𝑠(1 − 𝑆𝑟) + (𝑁𝐴 + 𝐿𝑛)𝐿𝑒𝑅𝑛 

=
28

27𝑎2
(𝑎4 + 24𝑎2 + 504 + 12𝑄)(𝑎2 + 10) 

(38) 

The right- hand side of equation (38) takes the minimum value 
when 𝑎 =  3.12  and its minimum value is 1750 . Hence the 

onset stationary convection is given by: R𝑎 − 𝑅𝑠(1 − 𝑆𝑟) +
(𝑁𝐴 + 𝐿𝑛)𝐿𝑒𝑅𝑛 = 1750. 

The value 1750  obtained using the Galerkin first term ap-

proximation is about 3%  greater than exact value 1707.76 
for the critical Rayleigh number for the classical Rayleigh- Bénard 
problem.   

In the absence of both magnetic field (𝑄 =  0) and solute 

gradient (𝑅𝑠 =  0, 𝐿𝑒 =  1), the onset of stationary convection 
is given by 𝑅𝑎 + (𝑁𝐴 + 𝐿𝑛)𝑅𝑛 = 1750 .                 

This is good agreement of the result obtained by Nield 
and Kuznetsov (2014). 

6. RESULT AND DISCUSSION 

Double diffusive convection in a horizontal layer of nanofluid 
in the presence of vertical magnetic field with Soret effect is inves-
tigated. Equation (37) expresses the thermal stationary Rayleigh 

number 𝑅𝑎  as a function of dimensionless wave number 𝑎 
and magnetic field (Chandrasekhar number 𝑄), Lewis number 𝐿𝑒, 

nanofluid Lewis number𝐿𝑛,modified diffusivity ratio 𝑁𝐴, and na-

noparticles Rayleigh number 𝑅𝑛. It is also noted that parameter 
NB does not appear in the equation, thus instability is purely 
phenomenon due to buoyancy coupled with the conservation of 
nanoparticles. It is independent of the contributions of Brownian 
motion and thermophoresis to the thermal energy equation. The 

parameter 𝑁𝐵 drops out because of an orthogonal property of the 
first order trail functions and their first derivatives.  

Now we discuss the results graphically. Numerical computa-
tions are carried out for different values of Chandrasekhar number 

𝑄, Lewis number 𝐿𝑒, nanofluid Lewis number 𝐿𝑛, Soret parame-
ter 𝑆𝑟 and solutal Rayleigh number𝑅𝑠. The parameters consid-

ered are in the range of Chand and Rana (2013, 2014a) 102 ≤
𝑅𝑎 ≤ 105(thermal Rayleigh number), 102 ≤ 𝑅𝑠 ≤ 105 (solutal 

Rayleigh number), 10 ≤ 𝑄 ≤ 103  (Chandrasekhar number), 
1 < 𝜀 < 10−1(porosity parameter), 0 ≤ 𝑆𝑟 ≤ 1 (Soret parame-

ter), 10−1 ≤ 𝐿𝑒 ≤ 10  (Lewis number) 102 ≤ 𝐿𝑛 ≤ 104 
(nanofluid Lewis number), 1 < 𝑁𝐴 < 10 (modified diffusivity 
ratio), 1 ≤ 𝑅𝑛 ≤ 10 (nanoparticle Rayleigh number).  

The variation of the stationary thermal Rayleigh number as 
functions of the wave number for different sets of values for the 
different parameters are shown in Figs. 2 – 8. 

The stationary convection curves in (𝑅𝑎, 𝑎) plane for various 

values of Chandrasekhar number 𝑄  and fixed values of other 
parameters is shown in Fig. 2. It is found that the Rayleigh num-
ber increases with increase in the value of Chandrasekhar num-

ber𝑄, thus magnetic field has stabilizing effect on fluid layer.  
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Fig. 2. Variation of Rayleigh number with wave number  
            for different values of Chandrasekhar number 

Fig. 3.Variation of stationary Rayleigh number with wave number  
           for different values of solutal Rayleigh number 

 
Fig. 4. Variation of stationary Rayleigh number with wave number 

for different values of nanofluid Lewis number 

Fig. 3 shows the variation of thermal Rayleigh number with 
wave number for different values of solutal Rayleigh number. 
It is found that the thermal Rayleigh number increases as values 
of solutal Rayleigh number increases. Thus solutal Rayleigh 
number stabilizes the fluid layer.  

Fig. 4 shows the variation of thermal Rayleigh number with 
wave number for different values of nanofluid Lewis number. 
It is found that the thermal Rayliegh number increases as values 
of nanofluid Lewis number increases. Thus nanofluid Lewis num-
ber stabilizes the fluid layer.  

Fig. 5 shows the variation of Rayleigh number with wave 
number for different values of Soret parameter. It is found that the 
Rayleigh number decreases as values of Soret parameter in-
creases. Thus Soret parameter has destabilizing effect on fluid 
layer. 

Fig. 6 shows the variation of Rayleigh number with wave 
number for different values of nanoparticle Rayleigh number. It is 
found that the Rayleigh number decreases as values of nanopar-
ticle Rayleigh number increases. Thus nanoparticle Rayleigh 
number destabilizes the fluid layer. 

 
Fig. 5. Variation of stationary Rayleigh number with wave number 

for different values of Soret parameter 

 
Fig. 6. Variation of stationary Rayleigh number with wave number 

for different values of nanoparticle Rayleigh number 

 
Fig. 7. Variation of stationary Rayleigh number with wave number 

for different values of Lewis number 
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Fig. 8. Variation of Rayleigh number with wave number for different  

            values of modified diffusivity ratio 

Fig. 7 shows the variation of Rayleigh number with wave 
number for different values of Lewis number. It is found that the 
Rayleigh number decreases as values of Lewis number increas-
es. Thus Lewis number destabilizes the fluid layer. 

Fig. 8 shows the variation of Rayleigh number with wave 
number for different values of modified diffusivity ratio. It is found 
that the Rayleigh number decreases as values of modified diffu-
sivity ratio increases. Thus modified diffusivity ratio has destabiliz-
ing effect on the fluid layer. 

7. CONCLUSIONS 

Double-diffusive convection in a horizontal layer of nanofluid 
in the presence of magnetic field with Soret effect is investigated 
for more realistic boundary conditions. The problem is analyzed 
boundaries which are isothermal and the flux of volume fractions 
of nanoparticles is zero on the boundaries.The resulting eigenval-
ue problem is solved numerically using the Galerkin technique. 

The main conclusions are: 
 The critical cell size is not a function of any thermo physical 

properties of nanofluid. 
 Instability is purely phenomenon due to buoyancy coupled 

with the conservation of nanoparticles. It is independent of the 
contributions of Brownian motion and thermophoresis. 

 Oscillatory convection is ruled out because of the absence 
of the two opposing buoyancy forces.  

 For stationary convection the magnetic field, nanofluid Lewis 
number and solutal Rayleigh number stabilizes fluid layer, 
while Soret effect, Lewis number modified diffusivity ratio and 
nanoparticle Rayleigh number destabilize the fluid layer. 

Nomenclature: 𝑎  – wave number, 𝐶  – solute concentration, 

𝑐𝑝  – heat capacity, 𝑑  – thickness of fluid layer,𝐷𝐵  – diffusion coeffi-

cient, 𝐷𝑇  – thermophoretic diffusion coefficient, 𝐷𝐶𝑇  –Soret coefficient,  

𝑔 – acceleration due to gravity, 𝐻 – magnetic field, 𝑘𝑚  – thermal con-

ductivity, 𝐿𝑒 – Lewis number, 𝐿𝑛 – nanofluid Lewis number, 𝑛 – growth 

rate of disturbances, 𝑁𝐴 – modified diffusivity ratio, 𝑁𝐵 – modified parti-
cle-density increment,𝑝 – pressure,𝑃𝑟 – Prandtl number, 𝑃𝑟𝑀 – magnet-

ic Prandtl number, 𝑞  – velocity of fluid, 𝑄  – Chandrasekhar number,  

𝑅𝑎  –thermal Rayleigh number, 𝑅𝑎𝑐 – critical Rayleigh number,  

𝑅𝑚 – density Rayleigh number, 𝑅𝑛 – concentration Rayleigh number, 

𝑅𝑠 – solutal Rayleigh number,𝑡 –  time, 𝑇 – temperature, 𝑇1 – reference 

scale for temperature, (𝑢, 𝑣, 𝑤) – components of fluid velocity, (𝑥, 𝑦, 𝑧) 

– space co-ordinates. 
Greek symbols:  𝛼  – thermal expansion coefficient,  𝛼′  – analogous 

solvent coefficient of expansion, 𝜇𝑒 – magnetic permeability, 𝜇 – viscosi-

ty, 𝜌 – density of the nanofluid, 𝜌0  – density of the nanofluid at lower 

boundary, 𝜌𝑐  – heat capacity, (𝜌𝑐)𝑝 – heat capacity of the nanoparti-

cles,  𝜑 – volume fraction of the nanoparticles,  𝜑0  – reference scale 

for nanoparticles fraction, 𝜌𝑝 – density of the nanoparticles, 𝜌𝑓 – density 

of base fluid, 𝜅  – thermal diffusivity,  𝜅′ – solute diffusivity, 𝜔 – frequen-

cy of oscillation, 𝜕 – curly operator. 

Superscripts: ′ – non-dimensional variables, ′ ′ – perturbed quantities. 

Subscripts: 𝑝 – particle, 𝑓 – fluid, 𝑠 – stationary convection. 

REFERENCES 

1. Alchaar S., Vesseur P.,  Bilgen E.(1995), Effect of a magnetic field 
on the onset of convection in a porous medium, Heat and Mass 
Transfers, 30, 259-267. 

2. Alloui Z . ,  Vasseur P. , Reggio M. (2010), Natural convection 
of nanofluids in a shallow cavity heated from below, International 
Journal of Thermal Science, 50(3), 385-393. 

3. Bahloul A., Boutana N., Vasseur P. (2003), Double-diffusive and 
Soret-induced convection in a shallow horizontal porous layer, J. Flu-
id Mech., 491, 325-352. 

4. Buongiorno J.(2006), Convective Transport in Nanofluids, AS-
MEJournal of Heat Transfer, 12, 240-250. 

5. Chand R.(2013), On the onset of Rayleigh-Bénard convection 
in a layer of nanofluid in Hydromagnetics, Int. J. of Nanoscience, 
12(6), 1350038-7. 

6. Chand R., Kango S. K., Rana G. C. (2014),Thermal Instability 
in Anisotropic Porous Medium Saturated by a Nanofluid-A Realistic 
Approach, NSNTAIJ, 8(12), 445-453. 

7. Chand R., Kango S. K., Singh V. (2015a), Megneto-convection 
in a layer of Maxwell visco-elastic fluid in a porous medium with Soret 
effect, Research J. of Engineering and Tech., 6(7), 23-30. 

8. Chand R., Rana G. C. (2012a), Dufour and Soret effects on the 
thermosolutal instability of Rivlin-Ericksen elastico-viscous fluid 
in porous medium, Z. Naturforsch, 67a, 685-691.  

9. Chand R., Rana G. C. (2012b), Oscillating convection of nanofluid 
in porous  medium, Transp Porous Med., 95, 269-284. 

10. Chand R., Rana G. C. (2012c), On the onset of thermal convection 
in rotating nanofluid layer saturating a Darcy-Brinkman porous 
medium, Int. J. of Heat and Mass Transfer, 55, 5417-5424. 

11. Chand R., Rana G. C.(2012d),Thermal instability of Rivlin-Ericksen 
elastico-viscous nanofluid saturated  by a porous medium, J. Flu-
ids Eng., 134(12), 21203-7. 

12. Chand R., Rana G. C.(2014a), Double diffusive convection in a layer 
of Maxwell visco-elastic fluid in porous medium in the presence of 
Soret and Dufour effects, Journal of Fluids, 2014, 1-7. 

13. Chand R., Rana G. C. (2014b), Hall Effect on the thermal instability 
in a horizontal layer of nanofluid, Journal of  Nanofluids, 3, 247-253. 

14. Chand R., Rana G. C. (2014c),Thermal instability in a Brinkman 
porous medium saturated by nanofluid with no nanoparticle flux on 
boundaries, Special Topics & Reviews in Porous Media: An Interna-
tional Journal, 5(4), 277-286.  

15. Chand R., Rana G. C. (2015), Magneto convection in a layer 
of nanofluid in porous medium-A more realistic approach, Journal 
of Nanofluids, 4, 196-202. 

16. Chand R., Rana G. C., Hussein A. K. (2015b),On the onset 
of thermal instability in a low Prandtl number nanofluid layer in a po-
rous medium, Journal of Applied Fluid Mechanics, 8(2), 265-272. 

17. Chandrasekhar S.(1961),  Hydrodynamic and Hydromagnetic 
Stability, Oxford University Press, Dover Publication, New York. 

18. Choi S.(1995), Enhancing Thermal Conductivity of Fluids with Na-
noparticles in: D.A. Siginer and H. P. Wang (Eds), Developments 
and Applications of Non-Newtonian Flows, ASMEFED, Vol. 231/MD-
Vol. 66, 99-105. 



DOI 10.1515/ama-2015-0011        acta mechanica et automatica, vol.9 no.2 (2015) 

69 

19. Gupta U., Ahuja J., Wanchoo R. K. (2013), Magneto-convection 
in a nanofluid layer, Int. J. Heat and Mass Transfer, 64, 1163-1171. 

20. Kim J.,Kang Y .T . ,Choi C . K .  (2011),Analysis of convective i n -
s ta b i l i t y  and heat transfer characteristics  of nanofluids, Physics  
of Fluid, 16(7), 2395-2401. 

21. Knobloch E., (1980), Convection in binary fluids, Phys. Fluids, 
23(9), 1918-1920.  

22. Kuznetsov A. V., Nield D. A. (2010a), Effect of local thermal non-
equilibrium on the onset of convection in a porous medium layer satu-
rated by a nanofluid, Transport in Porous Media, 83, 425-436. 

23. Kuznetsov A. V.,  Nield D. A. (2010b), The onset of double-diffusive 
nanofluid convection in a layer of a saturated porous medium, 
Transport in Porous Media, 85(3),941-952. 

24. Kuznetsov A. V., Nield D. A.(2011), Thermal instability in a porous 
medium layer saturated by a nanofluid: Brinkman Model, Transp. Po-
rous Medium, 81(3), 409-422. 

25. Motsa S. S. (2008), On the onset of convection in a porous layer 
in the presence of Dufour and Soret effects, SJPAM, 3, 58-65. 

26. Nield D. A. (1968), Onset of thermohaline convection in a porous 
medium, Water Resour. Res., 4, 553-560.  

27. Nield D. A., Kuznetsov A. V. (2009), Thermal instability in a porous 
medium layer saturated by a nanofluid, Int. J. Heat Mass Transf., 52, 
5796-5801. 

28. Nield D. A., Kuznetsov A. V. (2010a), The on set of convection 
in a horizontal nanofluid layer of finite depth, European Journal 
of  Mechanics B/Fluids, 2, 217-223. 

29. Nield D. A., Kuznetsov A. V. (2010b), The effect of local thermal 
non-equilibrium on the onset of convection in a nanofluid, J. Heat 
Transfer, 132(5),052405–052411. 

30. Nield D. A., Kuznetsov A. V. (2010b), The onset of double-diffusive 
convection in a nanofluid layer, Int. J. of Heat and Fluid Flow, 32(4), 
771-776. 

31. Nield D. A., Kuznetsov A. V. (2011a), The onset of convection 
in a layer of cellular porous material: Effect of temperature-dependent 
conductivity arising from radiative transfer, J. Heat Transfer, 132(7), 
074503-4. 

32. Nield D. A., Kuznetsov A. V. (2014), Thermal instability in a porous 
medium layer saturated by a nanofluid: A revised model, Int. J. 
of Heat and Mass Transfer, 4, 68, 211-214. 

33. Nield D. A., Manole D. M.,  Lage J. L. (1993), Convection induced 
by inclined thermal and thermosolutal gradients in a shallow horizon-
tal layer of porous medium, J. Fluid Mech., 257, 559-568. 

34. Patil R. P., Rudraiah N. (1973), Stability of hydromagnetic thermo-
convective flow through porous medium, Transactions of the ASME 
Journal of Applied Mechanics, 40(E), 879-884.  

35. Rudraiah N., Shrimani P. K., Friedrich R. (1982), Finite amplitude 
convection in two component fluid saturated porous layer, Int. J. Heat 
and MassTransfer, 25, 715-722.  

36. Tzou D. Y. (2008a), Thermal in stability of nanofluids in natural 
convection, International Journal of Heat and Mass Transfer, 51, 
2967–2979. 

37. Tzou D. Y. (2008b), Instability of nanofluids in natural convection, 
ASME Journal of Heat Transfer, 130, 1-9. 

38. Yadav D., Bhargava R., Agrawal G. S. (2013), Thermal instability 
in a nanofluid layer with a vertical magnetic field, J. Eng. Math., 80, 
147-164. 

The authors are grateful to the reviewers for their valuable comments 
and suggestions for improvement of the paper. 

 
 

http://www.springerlink.com/content/wu6p45g841016186/
http://www.springerlink.com/content/wu6p45g841016186/
http://www.springerlink.com/content/0169-3913/
http://www.springerlink.com/content/0169-3913/85/3/

