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Abstract: The paper presents the exact analytic solution to the antiplane problem for a non-homogeneous bimaterial medium containing 
closed interfacial cracks, which faces can move relatively to each other with dry friction. The medium is subjected to the action of normal 
and arbitrary single loading in a longitudinal direction. Based on the discontinuity function method the problem is reduced to the solution 
of the system of singular integral-differential equations for stress and displacement discontinuities at the possible slippage zones. Influence 
of loading parameters and the effects of friction on the sizes of these zones is analyzed. The stress intensity factors, stress and displacement 
discontinuities, energy dissipation are determined for several characteristic types of external loading.  
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1. INTRODUCTION 

The study of the contact phenomena with the account of friction 
effect is one of the most actual problems in mechanical engineering 
(Goryacheva, 2001; Panasiuk et al., 1976; Sulym and Piskozub, 
2004; Johnson, 1985; Hills et al.,1993; Herrmann and Loboda, 
1999; Ulitko and Ostryk, 2006) etc. To a greater or lesser extent the 
contact phenomena both at macroscopic and microscopic levels 
are always accompanied with friction. 

Fracture mechanics studies mainly problems for cracks with 
traction-free faces. Rarely the problems for cracks with uniformly 
distributed tractions (internal pressure) or concentrated forces ap-
plied at their faces are considered. The solution of the problems 
of first kind are important in the analysis of stress strain state near 
the oil or gas layers (Kit et al., 2003; Evtushenko and Sulym, 1981), 
mechanical influence of hydrogen, which due to high permeability 
and mobility migrates into the material cavities, thus, creating there 
high pressure and debond adhesive joints in the material, increas-
ing defects size. The solution of the second kind has not only the 
applied value, but also serve as Green’s functions, thus allows de-
riving the solutions of the problems with loadings arbitrarily applied 
at crack faces. 

The problem of crack faces contact, which account for contact 
interaction, is less studied. Main achievements in this direction be-
long to the theory of interface cracks in a bimaterial within the 
framework of 2D elasticity, which uses different models of local 
crack face contact for elimination of physically incorrect oscillating 
behavior (Comninou, 1977, 1980; Schmueser, 1980; Aravas 
and Sharma, 1991; Herrmann and Loboda, 1999; Kharun and Lo-
boda, 2001, 2003; Sulym and Piskozub, 2004). 

Kundrat (2003) developed the two-phase model, when between 

the plastic bands (first phase of prefracture zone) at the continua-
tion of the axis of a thin inclusion there develops a short zone 
of crumby material (the second phase), where the shear stress 
of adhesive interaction linearly decrease from zero at the tip to the 
value at the beginning of the plastic band, thus removing the singu-
larity of the solution. 

Among other directions of the account of friction in crack face 
interaction one can refer to the publication of Cherepanov (1966). 
The referred paper formulates two types of boundary conditions for 
overlapping faces of the mathematical cut (crack), at which discon-
tinuities of normal stress, displacement and tangent traction are de-
fined, and mechanical interaction of opposite faces of the cut can 
be arbitrary. 

Sekine (1982) studied mechanics of deformation of inclusion-
stringer in the infinite isotropic medium, which is stretched along the 
axis of inclusion. It was assumed, that the central zone of a perfect 
contact of materials was accompanied at both sides with two-phase 
zones of imperfect contact, moreover, the first one addressed 
smooth contact (without friction), and that at the tip of the inclusion 
(the second one) addressed friction (here normal stress was com-
pressive, and the material of a matrix in the contact zone of inclu-
sion did not depart from it in the normal direction). 

The wide range of problems on the influence of friction on con-
tact stress between half-planes with superficial smooth surface 
notches were studied by Martynyak et al. (2000, 2005, 2007). 

The growth of delaminating crack (actually mutual slippage 
of the materials) at the interface of rigid fibrous inclusion was stud-
ied by Brussat and Westmann (1974) with the account of friction 
between components. In this relation it is necessary to pay attention 
to the works by Antipov (1995), Arkhipenko and Kryvyy (2008), 
Ulitko and Ostryk (2002, 2006), Weertman et al. (1983). 

The problem of crack faces contact accounting for friction 
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is less studied in the case of antiplane shear (Sulym, 2007; Paster-
nak et al., 2010). 

This paper presents the technique for studying the influence 
of friction during the out-of-plane deformation (antiplane problem) 
of a solid with a closed crack on the formation of slippage zones 
and energy dissipation in the case of quasi-static (slow) application 
of single monotonously increasing loading. In the general case 
of= loading type and position with respect to closed cracks one can 
assume that the loading at the beginning is low enough to cause 
slippage. Then it is enough to cause slippage, but the slippage 
zones do not reach the size of the cracks, and thus the stresses are 
finite at their ends. And finally for enough big loading the cracks’ 
sizes bound the growth of slippage zones, and thus, at one or both 
of its tips stress singularity arises. 

The discontinuity function method (Sulym et al., 2007, 2008, 
2010) and the singular integral-differential equation approach are 
the base of the proposed technique. It is assumed that the loading 
applied to the piecewise-homogeneous medium with interface strip-
like (tunnel) crack can be divided into two types: the first one satis-
fies the plane strain conditions, and the second one performs the 
out-of-plane deformation of a medium. Thus one can formulate two 
problems, one of which (the antiplane one) is further called the pri-
mary problem, and the second (the plane one) is auxiliary as it al-
lows to determine the distribution of compressive traction at the 
contact surfaces of half-spaces and layers. Thus, due to the inde-
pendent separation of in-plane and out-of-plane problems in the lin-
ear elasticity of isotropic materials, the solution of the primary prob-
lem does not influence the solution of auxiliary one. 

2. PROBLEM STATEMENT 

Consider the infinite isotropic matrix consisting of two half-

spaces with the elastic constants 𝐸𝑘 , 𝜈𝑘 , 𝐺𝑘     (𝑘 = 1,2), which 

interface 𝐿 contains 𝑁 coaxial strip-like cracks. In this extent, 
it is possible to consider contact defects with different rheological 
properties. Everything depends on the models used for simulating 
their behavior (Sulym et al. 2004, 2007, 2008, 2010). 

The fixed reference Cartesian coordinate system 𝑂𝑥𝑦𝑧 is con-

sidered, which 𝑥𝑂𝑧 plane coincides with the material interface, and 

𝑂𝑧 axis is directed along the longitudinal axes of cracks. 
Consider the stress strain state of the solid’s cross-section with 

the 𝑥𝑂𝑦 plane, which is perpendicular to the shear direction 𝑧. The 
cross-sections of the bimaterial perpendicular to the interface form 
two half-planes 𝑆𝑘   (𝑘 = 1,2), and the material interface corre-

spond to the abscissa 𝐿~𝑥. The latter contains median lines of 

cracks’ sections, which mold a line 𝐿′ = ∪
𝑛=1

𝑁
𝐿′𝑛 = ∪

𝑛=1

𝑁
[𝑏𝑛

−;   𝑏𝑛
+] 

(Fig. 1). The application of similar traditional notation for an axis 𝑧 
and a complex variable 𝑧 = 𝑥 + 𝑖𝑦 should not cause misunder-
standing in the solution of the problem. 

Contact between the bimaterial medium components along 
a line 𝐿′′ = 𝐿\𝐿′ is supposed to be mechanically perfect, and the 

contact along defects’ (cracks’) faces 𝐿′ is assumed to be per-
formed according to the laws of tangential mechanic contact, 
at which bodies contact mechanically perfect until the moment, 
when relative sliding of crack surfaces may start in some areas 

𝛾𝑛 ⊂ 𝐿′𝑛  at the material interface (Johnson, 1985; Goryacheva, 
2001; Sulym and Piskozub, 2004). Outside the lines𝛾𝑛 the value of 
tangential traction at the places of the slippage absence does not 

exceed the level of maximal admissible traction, and the mutual dis-
placement of crack faces is not observed (the displacement discon-

tinuity [𝑤]𝑛 is zero). The sign (an action direction) of tangent trac-
tion is chosen depending on a sign of a difference of displacement 

at both sides of a cut 𝛾𝑛 at the considered point. The following no-

tations are used hereinafter: [𝜙] = 𝜙(𝑥, −0) − 𝜙(𝑥, +0),  
⟨𝜙⟩ = 𝜙(𝑥, −0) + 𝜙(𝑥, +0). 

 

Fig. 1. The loading and geometric scheme of the problem 

The medium is loaded with the mechanical load (stress at the 
infinity, the concentrated forces, etc.) such that their action causes 
the quasi-static stress strain state in a bimaterial solid. Simultane-
ously with the main loading, which defines the out-of-plane defor-

mation, the medium is subjected to the additional in-plane (𝑥𝑂𝑦) 
compressing loading, which causes the plane strain deformation. 
Its influence on the solution of the primary problem of longitudinal 

shear occurs only in the case when at the contact lines 𝛾𝑛 ⊂ 𝐿′𝑛  
of crack faces contact the perfect mechanical contact is violated, 

where the normal stress 𝜎𝑦𝑦𝑘 is negative and the pressed surfaces 

of contacting materials move relatively to each other in the 𝑧 direc-
tion. 

The contact conditions with the possibility of slippage with fric-
tion at the closed crack provide that at the achievement by tangent 

traction 𝜎𝑦𝑧 at the lines 𝛾𝑛 of a certain critical value 𝜏𝑦𝑧
max the slip-

page occurs, and the tangent traction cannot exceed this threshold. 
Thus, within the classical Amontons’ law of friction (Goryacheva, 
2001; Johnson, 1985; Hills et al., 1993; Comninou, 1977, 1980), 
consider a variant of a contact problem according to which the tan-

gent traction (friction traction) is constant along the lines 𝛾𝑛: 

𝜎𝑦𝑧𝑛
± = −sgn([𝑤]𝑛)𝜏𝑦𝑧

max,    

𝜏𝑦𝑧
max = −𝛼𝜎𝑦𝑦  (𝜎𝑦𝑦 < 0,    |𝑤− − 𝑤+| ≠ 0)

,         (1) 

where 𝛼 is a coefficient of dry friction. Outside the lines 𝛾𝑛 the tan-
gent traction at the crack points without slippage does not exceed 
the possible admissible level 

|𝜎𝑦𝑧𝑛| ≤ 𝜏𝑦𝑧
max    (𝜎𝑦𝑦 < 0,    [𝑤]𝑛 = 0)                        (2) 

and the mutual crack face displacement (displacement discontinu-
ity) is absent. The sign (an action direction) of tangent traction 
is chosen depending on a sign of the difference of displacements 
[𝑤]𝑛 at a considered point of 𝛾𝑛. At those points of 𝐿′𝑛

  , where 

𝜎𝑦𝑦𝑘 ≥ 0, the classical conditions of a traction-free crack are for-

mulated: 

𝜎𝑦𝑧𝑘 = 0.            (3) 
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Application of the law of friction in the form of (1) allows to sim-
plify the boundary conditions for the primary problem, however, 
a choice of more difficult models of friction incorporating Eqs (1), 
(2) (Goryacheva, 2001; Sulym and Piskozub, 2004; Pasternak 
et al., 2010; Popov, 1966; Johnson, 1985; Hills et al., 1993), which 
account for wear and thermal emissions (Bogdanovich and 
Tkachuk, 2009; Pyrjev et al., 2012; Datsyshyn and Kadyra, 2006; 
Goryacheva et al., 2001), will not essentially complicate the solution 
process. 

Following the approach of Refs (Panasyuk et al., 1976; Pis-
kozub and Sulim, 2008; Sulym, 2007), consider that the influence 
of defects of contact is possible to model with the stress and dis-
placement discontinuities at 𝐿′𝑛

  : 

[Ξ]𝐿′𝑛
  ≡ Ξ− − Ξ+ = 𝐟𝑛,           (4) 

where Ξ(𝑧, 𝑡) = {𝜎𝑦𝑦 , 𝜎𝑥𝑦 , 𝜎𝑦𝑧 ,
∂𝑢

∂𝑥
,

∂𝑣

∂𝑥
,

∂𝑤

∂𝑥
} (𝑧, 𝑡) is a state 

vector; 𝐟𝑛(𝑥, 𝑡) = {𝑓1
𝑛, 𝑓2

𝑛 , 𝑓3
𝑛, 𝑓4

𝑛, 𝑓5
𝑛, 𝑓6

𝑛}(𝑥, 𝑡) is a disconti-
nuity vector; t is time as a formal monotonously increasing param-
eter related with the convertible force. 

The solution of the auxiliary problem for the case of arbitrary 
mechanical loading and a perfect contact is presented by Panasyuk 
et al. (1976), Pasternak et al. (2010), Piskozub and Sulim (2008), 
Sulym (2007). To illustration the considered approach, consider its 
elementary applications, assuming that half-spaces are com-
pressed by a uniform pressure 

𝜎𝑦𝑦𝑘 = −𝑃  (𝑘 = 1,2;   𝑥 ∈ 𝐿).        (5) 

For the primary problem with the account of Hook’s law, Eq (4) 
writes as: 

 

 

  



 

 



 

 

 

     

     
          

   

3

6
1 2

, ,

, , ;

n

n n

n
yz yz yzL

xz

L L

nxz xz
n

f x t

w w w

x x x G

f x t x L
G G

         (6) 

𝑓3
𝑛(𝑥, 𝑡) = 𝑓6

𝑛(𝑥, 𝑡) = 0,If𝑥 ∉ 𝛾𝑛.  

Assuming that the magnitude and a direction of action of the 
mechanical loads, which perform longitudinal shear, change quasi-
statically (so slowly that there is no necessity to consider inertial 
terms) and change under the certain law, which can be arbitrary. 
Thus, external loading of the primary problem is defined by the 

stress 𝜎𝑦𝑧
∞ = 𝜏(𝑡),𝜎𝑥𝑧

∞ = 𝜏𝑘(𝑡) uniformly distributed at the infin-

ity, the concentrated forces of intensity 𝑄𝑘(𝑡) and screw disloca-

tions with Burgers vectors 𝑏𝑘(𝑡) applied at the points 𝑧∗𝑘 ∈
𝑆𝑘(𝑘 = 1, 2). According to Eq (20.5) of (Sulym, 2007) stresses 
at the infinity at arbitrary time should satisfy the condition 

𝜏2(𝑡)𝐺1 = 𝜏1(𝑡)𝐺2,           (7) 

which provides the straightness of the material interface at the in-
finity. 

After the antiplane problem is solved accounting for friction and 
for each contact lines 𝛾𝑛 the displacement discontinuity is deter-
mined, it is possible to calculate the work of friction forces. This 

work, and hence, and the energy dissipation at 𝛾𝑛 for a single step 
of change in external loading from zero to the maximum value, 
is calculated by means of the integrals 

𝑊𝑛
𝑑 = − ∫ 𝜏max|(𝑤− − 𝑤+)|𝑑𝑥

𝛾𝑛
.          (8) 

3. THE PROBLEM SOLUTION 

Applying the results of sec. 20.2 (Sulym, 2007) to the solution 
of the primary problem, one can obtain the following relations, 
which state that components of stress tensor and derivatives of dis-
placement at the line 𝐿 of infinite plane 𝑆, and inside the latter are 
equal to 

       

       

 
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yz xz yz xz

n n
k

f x t dx
g z t

x z
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ip g z t Cg z t

         (9) 

The superscript "+" corresponds to 𝑘 = 2 and "- " corresponds 

to 𝑘 = 1. The values denoted with superscript "0" characterize cor-
responding quantities in a continuous medium without cracks under 
the corresponding external loading (the homogeneous solution): 

𝜎𝑦𝑧
0 (𝑧, 𝑡) + 𝑖𝜎𝑥𝑧

0 (𝑧, 𝑡) = 𝜏(𝑡) + 𝑖{𝜏𝑘(𝑡) +

+𝐷𝑘(𝑧, 𝑡) + (𝑝𝑘 − 𝑝𝑗)𝐷𝑘(𝑧, 𝑡) + 2𝑝𝑘𝐷𝑗(𝑧, 𝑡)},
                (10) 

𝐷𝑘(𝑧, 𝑡) = −
𝑄𝑘(𝑡) + 𝑖𝐺𝑘𝑏𝑘(𝑡)

2𝜋(𝑧 − 𝑧∗𝑘)
     (

𝑧 ∈ 𝑆𝑘 ,
𝑘 = 1, 2;   𝑗 = 3 − 𝑘

). 

Using Eqs (9), (10) and the condition (1) of presence of limiting 

friction force at the crack slippage lines 𝛾𝑛 under the mutual dis-
placement of faces in the out-of-plane direction 𝑧 (at other crack 
zones friction forces corresponds to the value defined by a condi-

tion of a perfect mechanical contact) one obtains the system of 2𝑁 
singular integral-differential equations 

{
𝑓3

𝑛(𝑥, 𝑡) = 0,   (𝑥 ∈ 𝐿′)

𝑔6
𝑛(𝑥, 𝑡) =

1

2𝐶
(⟨𝜎𝑦𝑧

0 (𝑥, 𝑡)⟩ + 2sgn[𝑤]𝜏𝑦𝑧
max),

      (11) 

which solution is known (Sulym, 2007). 
For the detailed analysis of the solution of the problem consider 

a special case of presence of a single (𝑁 = 1) crack (contact de-
fect) with 𝐿′1 = [−𝑏;   𝑏] and the slippage line arising at 𝛾1 =
[−𝑎;  𝑎]  (𝑎 ≤ 𝑏) under symmetric (𝑧∗𝑘 = ±𝑖𝑑) loading. The so-
lution of the integral equation (11) after calculation of corresponding 
integrals is as follows 

𝑓6(𝑥, 𝑡) =
1

𝜋𝐶√𝑎2−𝑥2
{𝜋(𝜏(𝑡) + sgn[𝑤]𝜏𝑦𝑧

max)𝑥 +

+ ∑ 𝑝3−𝑘 (𝑄𝑘(𝑡)Im
√𝑧∗𝑘

2−𝑎2

𝑥−𝑧∗𝑘
+2

𝑘=1      

+ (𝐺𝑘𝑏𝑘(𝑡)Re (
√𝑧∗𝑘

2−𝑎2

𝑥−𝑧∗𝑘
+ 1))}  (𝑥 ∈ [−𝑎;   𝑎]).

         (12) 

The function 𝑋(𝑧) = √𝑧2 − 𝑎2 is understand as a branch, 

satisfying the condition √𝑧2 − 𝑎2 𝑧⁄ → 1 as 𝑧 → ∞. Similar rea-

soning is used for a choice of branches of functions √𝑧∗𝑘
2 − 𝑎2  

and √𝑧∗̅𝑘
2 − 𝑎2, 𝑘 = 1, 2. 

Expression for displacement discontinuity [𝑤] is received with 
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integration of Eq (12): 

[𝑤](𝑥, 𝑡) = ∫ 𝑓6(𝑥, 𝑡)𝑑𝑥
𝑥

−𝑎
= −

1

𝐶
(𝜏(𝑡) +

+sgn[𝑤]𝜏𝑦𝑧
max)√𝑎2 − 𝑥2 +

+
1

𝜋𝐶
{∑ 𝑝2−𝑘

2
𝑘=1 (𝑄𝑘(𝑡)Im𝐼(𝑥, 𝑧∗𝑘) +   

+𝐺𝑘𝑏𝑘(𝑡) (𝜋 + 2arcsin
𝑥

𝑎
+ Re𝐼(𝑥, 𝑎, 𝑧∗𝑘)))}

      (13) 

where 

𝐼(𝑥, 𝑎, 𝑧) ≡ √𝑧2 − 𝑎2 ∫
𝑑𝑥

√𝑎2−𝑡2(𝑥−𝑧)

𝑥

−𝑎
=

= 𝑖ln
𝑎(𝑧−𝑥)

𝑎2−𝑥𝑧−𝑖√𝑎2−𝑥2√𝑧2−𝑎2

.       (14) 

Introducing the stress intensity factor (SIF) with the relation 

𝐾3 = lim
𝑟→𝑜 (𝜃=0)

√𝜋𝑟𝜎𝑦𝑧,         (15) 

it is simple to obtain analytical expression for SIF in the case 
of a crack with a slippage line 𝛾1 = [−𝑎;  𝑎]  (𝑎 ≤ 𝑏): 

𝐾3
±(𝑡) =

1

2√𝜋𝑎
∫ √

𝑎±𝑥

𝑎∓𝑥
(⟨𝜎𝑦𝑧

0 (𝑥, 𝑡)⟩ +
𝑎

−𝑎

+2sgn[𝑤]𝜏𝑦𝑧
max)𝑑𝑥 =

1

√𝜋𝑎
{𝜋𝑎(𝜏(𝑡) +

+sgn[𝑤]𝜏𝑦𝑧
max) − ∑ 𝑝2−𝑘 (𝑄𝑘(𝑡)Im

𝑎±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎2

+2
𝑘=1

+ 𝑏𝑘(𝑡)𝐺𝑘Re (
𝑎±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎2

∓ 1))} .

      (16) 

Let's address the question on the size 𝑎 of a slippage zone. 
In the course of increase in loading it is possible to allocate three 
phases essentially different from the point of view of the develop-
ment of crack face slippage under the longitudinal shear: 
1. The applied loading is still so small, that the condition (2) holds 

everywhere along 𝐿, i.e. slippage does not arise in general. 
2. The applied loading is already sufficient for conditions (1) 

to hold at least at some small line 𝛾1 = [−𝑎;  𝑎]  (𝑎 ≤ 𝑏), but 

its size is less than established size 𝐿′1 = [−𝑏;   𝑏] of a crack. 
Loading at which the slippage first occurs is further named the 
first critical loading. While loading at a stage of the first phase 
of its change has not reached the first critical size, existence 
of a crack will not have any influence on the stress strain state 
of a solid. Everything occur the same as if two half-spaces 
pressed to each other are the object of research. In case 
of transition to the second loading phase, for determination 

of the size 𝑎 of a slippage zone it is possible to use a condition 
of equality to zero of stress intensity factor given by Eq (22) 
in (Cherepanov, 1966). 

3. If the loading increases such that the size of a crack (natural 
cohesive or adhesive forces of half-spaces outside the cracks) 
limits the slippage zone (in the absence of restrictions, 𝑎 tends 

to exceed 𝑏), then at the crack tips singular stresses are 
present, and hence, SIF is nonzero. In this case the slippage 
zone 𝛾1 coincides with a crack 𝐿′1. The minimal loading, for 
which the slippage line equals to the crack length thus initiating 
stress singularity at its tips, is further called the second critical 
loading. 
Presence of the analytical solution for all parameters of stress 

strain state, and in particular, for SIF allows to calculate analytically 

the work of friction forces at the line 𝐿′1 of slippage for any consid-
ered kind of loading. This work, and hence, energy dissipated 

on 𝐿′1 due to change in external loading at certain time 𝑡 is deter-
mined through the integral 

𝑊1
𝑑(𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](𝑥, 𝑡)|
𝑎

−𝑎
𝑑𝑥 =

= −
𝜏𝑦𝑧

max

𝐶
 |

𝜋𝑎2

2
(𝜏(𝑡) + sgn[𝑤]𝜏𝑦𝑧

max) +

  + ∑ 𝑝2−𝑘 (𝑄𝑘(𝑡)Im(√𝑧∗𝑘
2 − 𝑎2 − 𝑧∗𝑘) +2

𝑘=1   

  +𝐺𝑘𝑏𝑘(𝑡)Re(√𝑧∗𝑘
2 − 𝑎2 − 𝑧∗𝑘))| .

      (17) 

Let's analyze expressions (12- 13), (16- 17) for the most indic-

ative variant of loading by concentrated force 𝑄2(𝑡), which 
changes monotonously from zero to its maximum value 𝑄max. 

The force is applied at the point 𝑧∗2 = 𝑖𝑑 of an upper half-space. 
Then from expression 

𝐾3(𝑡) = −√𝜋𝑎𝜏𝑦𝑧
max + √

𝑎

𝜋

𝑝1𝑄2(𝑡)

√𝑎2+𝑑2
        (18) 

accounting for the fact that sgn[𝑤] = −1 under the monotonous 
increase in loading, one obtains the slippage condition 

𝑄2(𝑡) ≥ 𝑄2
∗ =

𝜋𝑑𝜏𝑦𝑧
max

𝑝1
         (19) 

and the size of a slippage zone 

𝒂(𝒕) = √
𝒑𝟏

𝟐𝑸𝟐(𝒕)𝟐

𝝅𝟐𝝉𝒚𝒛
𝐦𝐚𝐱𝟐 − 𝒅𝟐 = 𝒅√

𝑸𝟐(𝒕)𝟐

𝑸𝟐
∗𝟐 − 𝟏.       (20) 

Hereinafter 𝑄2
∗ is the first critical value of the force, at which 

slippage starts at certain time 𝑡∗ . Assuming that 𝑎 = 𝑏 in (20) one 

can obtain the second critical value for the concentrated force load-
ing, which induces nonzero SIF and stress singularity at crack tips, 

𝑄2
∗∗ =

𝜋𝜏𝑦𝑧
max

𝑝1
√𝑑2 + 𝑏2 = 𝑄2

∗ √𝑑2+𝑏2

𝑑
.       (21) 

Hence, accepting for a generality, that 𝑄max ≥ 𝑄2
∗∗, the follow-

ing values are obtained for the stress strain state parameters 
for 𝑄2(𝑡) ≤ 𝑄2

∗: 

𝑓6(𝑥, 𝑡)=[𝑤](𝑥, 𝑡)=𝑔6(𝑧, 𝑡) ≡ 0;         (22) 

for 𝑄2
∗ ≤ 𝑄2(𝑡) ≤ 𝑄2

∗∗: 

𝑓6(𝑥, 𝑡) =
𝑥

𝐶√𝑎2−𝑥2
(−𝜏𝑦𝑧

max +

+
𝑝1𝑄2(𝑡)√𝑎2+𝑑2

𝜋(𝑥2+𝑑2)
) ,

[𝑤](𝑥, 𝑡) =
𝑝1𝑄2(𝑡)

2𝜋𝐶
ln

√𝑎2+𝑑2−√𝑎2−𝑥2

√𝑎2+𝑑2+√𝑎2−𝑥2
+

+
1

𝐶
𝜏𝑦𝑧

max√𝑎2 − 𝑥2  (|𝑥| ≤ 𝑎);

       (23) 

𝑊1
𝑑(𝑡) =

𝜋𝑎2𝜏𝑦𝑧
max2

2𝐶
−

−
𝜏𝑦𝑧

max

𝐶
𝑝1𝑄2(𝑡)(√𝑎2 + 𝑑2 − 𝑑)

        (24) 

or accounting for Eq (19) 

𝑊1
𝑑(𝑡) = −

𝑝1
2

2𝜋𝐶
(𝑄2(𝑡) − 𝑄2

∗)2;         (25) 

for 𝑄2
∗∗ ≤ 𝑄2(𝑡) ≤ 𝑄max one should replace 𝑎 with 𝑏 in Eqs (18), 

(23) and (24).  
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In case of identical materials of half-spaces (𝐺1 = 𝐺2 = 𝐺) 
one should use in the abovementioned equations the following pa-
rameters: 𝐶 = 𝐺/2,   𝑝1 = 𝑝2 = 1/2. 

At a smooth contact between crack edges (friction coefficient is 

zero) one should assume that 𝜏𝑦𝑧
max = 0 in the abovementioned 

equations. In this case at arbitrary magnitude of the considered var-
iants of loading the slippage zone instantly grows to the size 
of a crack. 

For solution of the problem for various combinations of loading 
it is necessary to consider that superposition of solution for variants 
of loading can be not always used due to the nonlinearity of the 
problem considered. 

4. THE NUMERICAL ANALYSIS 

On an example of the aforementioned variant of loading let us 
illustrate the application of the proposed approach to determination 
of the size of a slippage zone, the displacement discontinuity at 𝐿′1, 
and energy dissipation depending on the basic parameters 
of stress strain state (the magnitude and remoteness of the applied 
force, friction coefficient, material properties). Based on Eqs (20)–
(25) the following dimensionless values are further considered: 

𝑎̃ = 𝑎/𝑏, 𝑥̃ = 𝑥/𝑏, 𝑑̃ = 𝑑/𝑏, which are normalized length of 
slippage line, 𝑥 coordinate and remoteness of a force application 

point, respectively; 𝑄̃2(𝑡) = 𝑄2(𝑡)/𝜋𝑏𝑃, 𝑄̃2
∗ = 𝑄2

∗/𝜋𝑏𝑃 =

𝑑̃𝛼/𝑝1, which are normalized magnitudes of acting force and the 

first critical force; and 𝑤̃(𝑥, 𝑡) = [𝑤]𝐶/𝑏𝑃, 𝑊̃1
𝑑 = 𝑊1

𝑑𝐶/

𝜋𝑏2𝑃2, 𝐾3 = 𝐾3/√𝜋𝑏𝑃, which are normalized displacement dis-
continuity, dissipation energy and SIF, respectively. 

Fig. 2 shows the dependence of the dimensionless length 𝑎̃ 

of a slippage zone on the ratio 𝑄̃2(𝑡)/𝑄̃2
∗ in the range from zero to 

𝑄̃max/𝑄̃2
∗ ≥ 𝑄̃2

∗∗/𝑄̃2
∗ = √1 + 𝑑̃2/𝑑̃ for various values of the re-

moteness parameter 𝑑̃. It is well noticed that with remoteness 
of a force application point together with natural increase in the first 
critical force the relative slippage zone growth rate also essentially 
increases. 

 
Fig. 2. Dependence of the size of a slippage zone  
           on the loading parameter 

Figs 3 and 4 depict the change of the displacement discontinu-

ity function 𝑤̃(𝑥, 𝑡) depending on the 𝑥/𝑏 for various cases 
of change in the magnitude and remoteness of the applied force 

𝑄̃2(𝑡), and friction coefficient 𝛼. Predictably, the increase in force 

magnitude leads to growth of displacements, and increase in 𝛼 
contrarily decrease them. Presence of the loading concentrated 
force renders considerably greater influence on the displacement 
discontinuity, if it is applied in the less rigid medium (Fig. 5). 

 
Fig. 3. Displacement discontinuity dependence on the magnitude  
           of the applied force 

 
Fig. 4. Influence of friction coefficient on the displacement discontinuity 

 
Fig. 5. Influence of shear modulus ratio of the materials  
           on the displacement discontinuity 

Figs 6 and 7 plot the dependence of the dissipated energy 

𝑊1
𝑑𝐶/𝜋𝑏2𝑃2 on the magnitude and remoteness of the applied 

force 𝑄̃2(𝑡) at various combinations of parameters 𝐺1/𝐺2,𝑑/𝑏, 
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and friction coefficient 𝛼. In the plots the continuous line corre-
sponds to energy dissipation at the second stage of loading, and 
das-dot one corresponds to the third stage of loading. The general 
tendency of the energy dissipation change can be formulated as fol-

lows: the less is relative distance 𝑑/𝑏 of the force application point 
and the greater is the friction coefficient, the bigger is the energy 
dissipation. 

 
Fig. 6. Influence of the remoteness of the force application point  
           on the energy dissipation 

 
Fig. 7. Influence of the friction coefficient on the energy dissipation 

 
Fig. 8. Friction influence on SIF for a crack  

           (here 𝐾3
0 is SIF in the absence of friction) 

Figs. 8-10 illustrate the influence of friction on the reduction 

of SIF 𝐾3 arising at the third phase of loading, comparing to classic 

SIF 𝐾3
0 calculated in the absence of friction. Dependence on the 

magnitude and remoteness of the applied force 𝑄̃2(𝑡) is studied 

for various combinations of parameters 𝐺1/𝐺2 and 𝑑/𝑏. The gen-
eral qualitative tendency of influence of these parameters on SIF 
is the same as those for energy dissipation. 

Doubtless interest of the further research is in the study of in-
fluence of friction slippage under the multiple, in particular cyclic, 
loading of a medium containing crack-like defects of contact at the 
interface. 

 
Fig. 9. Influence of remoteness of the force application point on SIF  

            for a crack (here 𝐾3
0 is SIF in the absence of friction) 

 
Fig. 10. Influence of shear modulus ratio of the materials on SIF  

              for a crack (here 𝐾3
0 is SIF in the absence of friction)  
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