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Abstract: The methods of irreversible thermomechanics and functional analysis are used to formulate the mathematical model  
of thermoelastic solid body taking account of structural heterogeneity of the body material and geometric irregularity of its surface. The 
density and the chemical potential of skeleton among others are included into  the state parameters space. The source of skeleton mass 
reconciles the actual and reference body states and may be associated with real surface forming method. The analysis of model problem 
solutions shows that the model is appropriate to describe coupled processes in porous and nanoporous bodies. It allows studying the size 
effects of strength, elastic moduli, etc. caused by near-surface non-homogeneity. 
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1. INTRODUCTION 

In recent years nanomaterials have found many applications 
in various fields of science and technology. A number of nano-
materials have excellent mechanical, chemical, electrical or opti-
cal properties as described by Bao et al. (2016), Hu et al. (2010), 
Wang et al. (2009). This draws attention to the problems of mode-
ling, simulating and calculating characteristics of the newfound 
materials. Among the important properties of nanomaterials one 
can find the size effects of elastic properties, strength, surface 
tension, durability, etc. 

The approaches to model the mechanical properties of nano-
materials include atomistic simulation, mesoscopic modeling and 
enhanced continual models (Pindera et al., 2009; Rafii-Tabar et 
al., 2016). Some of the well-known models in the mechanics of 
structurally heterogeneous media for the purpose of analyzing 
their suitability to describe properties of nanomaterials (nanoparti-
cles and nanocomposites) and their mechanical behavior may be 
found in the works by Young (2012). Among the continual models, 
nonlocal and gradient approaches predominate. The first ap-
proach origin goes back to works by Eringen (1972, 2002), the 
second one was contributed by many authors and in many varia-
tions, e.g. Maugin (1979), Polizzotto (2003), Aifantis (2011b), 
Geers (2001, 2002). Note that these approaches rarely consider 
processes other than mechanical, and bodies other than deform-
able solids. However taking account of the influence of tempera-
ture, admixtures, electric charge is important in many applications. 

In the literature, the method of homogenizing is widely used to 
describe heterogeneous media (Charalambakis, 2010; Kachanov 
and Sevostianov, 2018; Markov, 2000; Kalamkarov et al., 2009).  
This method allows studying the effective properties of the hetero-
geneous material. Mechanics of periodically heterogeneous struc-
tures and homogenized models of periodic composite materials 
with application to thermoelasticity have been developed by 
Woźniak (1987) and his followers. 

The local gradient approach in thermomechanics is aimed to 
describe structural heterogeneity and near-surface non-homoge-
neity in bodies with different physical fields presence. The appro-
ach originates from the study by Burak and Nahirnyj (1992) and 
was sufficiently reconsidered and expanded recently (Nahirnyj 
and Tchervinka, 2013, 2014, 2015). Its name originates from intro-
ducing gradients of state parameters into the space of thermody-
namic local variables (mainly chemical potential as conjugated to 
the density parameter) thus increasing order and scope of classi-
cal models of solid mechanics, thermomechanics, etc. 

Now the thermoelastic solid body is considered as an open 
thermodynamic system with variable density reflecting the struc-
ture of body and its surface (Nahirnyj and Tchervinka, 2015). The 
density incorporation into state parameter space and the formu-
lated equation for it allow to describe structural heterogeneity of 
the material, as was shown by comparison with double diffusivity 
models that account for two distinct diffusivity paths throught  
grain and grain boundary (Nahirnyj and Tchervinka, 2012).  

The models of this approach allow describing multiscale size 
effects of strength, elastic moduli, surface tension (other ap-
proaches to model such phenomena may be found in works by 
Dönmez and Bažant, 2017; Elliott, 2011). We interpret the non-
homogeneity in the density distribution and its difference from 
initial value as a variable porosity of structurally heterogeneous 
material for continual description. Hence the models of local gra-
dient approach in thermomechanics allow describing the size 
effects, different physical nature fields effects on stress-strain 
state and variable density inherent to the structured e.g. porous 
body. We also note that this approach to the description of porosi-
ty is fundamentally different from other well-known approaches 
(Bio, 1941; Coussy, 2004; Vafai, 2015). 

The mass sources introduced into the model of one-com-
ponent body allow, in particular, to take into account a geometric 
non-uniformity of the real bodies surface, i.e. its roughness, wavi-
ness. The above factors (namely, the heterogeneity of the materi-
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al and mass sources) are the causes of the non-homogeneity of 
considered fields in the bodies, that are free from the external 
force load. 

In this paper, the key relations of local gradient approach, its 
applications to nanoporous solid solution description and some 
model problems solution analysis are presented . 

2. MODEL APPROACH 

We consider a two-component thermoelastic body consisting 
of skeleton and admixture. The considered processes are defor-
mation, diffusion and thermal conductivity. According to the gen-
eral principles of irreversible thermodynamics and theory of rheo-
logical systems we shall formulate balance equations for energy 
and additive quantity of every form of motion within the considered 
processes. The body is considered as an open thermodynamic 
system whose mass changes relatively to the uniform reference 
body containing no admixture. The material structure and body 

surface have arisen at the initial moment of time 𝜏 = 0 and do not 

change afterward (𝜏 > 0). The flux of skeleton mass 𝒋𝑚0 and 
mass sources 𝜎𝑚0 are the model parameters used to describe 
the process of the body structure forming (see Fig.1). The admix-

ture with the density 𝜚1 and the flux 𝒋𝑚1 is considered according 
to the classical theory of diffusion. 

2.1. Balance equations for solid solution 

The local balance equations for momentum 𝒌𝑣, entropy 𝑆, 
masses of skeleton and admixture have the form: 

𝜕𝒌𝑣

𝜕𝜏
= 𝛁 ∙ 𝝈,     

𝜕𝑆

𝜕𝜏
= −𝛁 ∙ 𝒋𝑠 + 𝜎𝑠,  

𝜕𝜚0

𝜕𝜏
= −𝛁 ∙ 𝒋𝑚0 + 𝜎𝑚0,

𝜕𝜚1

𝜕𝜏
= −𝛁 ∙ 𝒋𝑚1. (1) 

Here 𝝈 is the Cauchy stress tensor, 𝒋𝑠 and 𝜎𝑠 are the entropy flux 

and its production, respectively, 𝛁 is the del operator.  
The local form of the balance equation for total energy 

𝐸 = 𝑈 + 𝐾 (where K and U are the kinetic and internal ener-
gies, respectively) are written as follows: 

𝜕(𝑈+𝐾)

𝜕𝜏
= 𝛁 ∙ (𝝈 ∙ 𝒗 − 𝑇𝒋𝑠 − 𝐻0𝒋𝑚0 − 𝐻1𝒋𝑚1) + 𝜎𝐸 . (2) 

Here 𝒗 is velocity vector, 𝑇, 𝐻0, 𝐻1 are temperature, chemical 
potentials of skeleton and admixture, 𝜎𝐸  is an energy source 

related to body structure formation. We take that 𝜎𝑚0 = 𝜎𝐸/𝐻0.  
We assume that 𝑑𝐾 = 𝒗 ⋅ 𝑑𝒌𝑣 and from (1),(2) obtain the 

following equation for the internal energy: 

𝜕𝑈

𝜕𝜏
= 𝝈:

𝜕𝒆

𝜕𝜏
+ 𝑇

𝜕𝑆

𝜕𝜏
+ 𝐻0

𝜕𝜚0

𝜕𝜏
+ 𝐻1

𝜕𝜚1

𝜕𝜏
  

−𝑇𝜎𝑠 − 𝒋𝑠 ∙ 𝛁𝑇 − 𝒋𝑚0 ∙ 𝛁𝐻0 − 𝒋𝑚1 ∙ 𝛁𝐻1 (3) 

Here 𝒆 is the strain tensor, the colon “:” represent double inner 
product. 

Eq. (3) that is sometimes referred to as the internal energy 
balance equation is the basis for formulating constitutive relations 
of the thermodynamical model. The key point of local gradient 
approach is the proper choice of kinetic relations (Burak et al., 
1992).  

Note that some other approaches also use modification of ki-
netic relations in modeling processes in heterogeneous media. 
For instance, the kinetic relations for phase transition fronts and 

straight through crack propagation are derived on the basis of the 
material description of continuum mechanics and the thermodyna-
mics of discrete systems by Berezovski et al. (2007); unstable ki-
netic relations with application to phase transitions are considered 
by Rosakis and Knowles, (1997); the viscosity and strain-gradient 
effects are considered also by Abeyaratne and Knowles, (1991). 

2.2. Constitutive relation for solid solution 

Within the linear approach the linear functions of thermody-

namic forces 𝛁𝑇, 𝛁𝐻0,𝛁𝐻1 for the fluxs 𝒋𝑠, 𝒋𝑚0, 𝒋𝑚1 are conven-

tionally accepted. However we assume that skeleton mass flux 
contains a term describing the non-fading memory of body struc-
ture formation: 

𝒋𝑚0 = 𝒋𝑚𝑐 + 𝒋𝑚ℎ ,    𝒋𝑚ℎ =  𝑔𝑚𝑚
𝜕(𝛁𝐻0)

𝜕𝜏
. (4) 

 

Fig. 1. The ideal medium vs. structurally heterogeneous medium  
and its physically small element 

According to the theory of hereditary media, the flux is repre-
sented as integral over the history and the non-fading memory is 
described by term with singular kernel (Rabotnov, 1980) resulting 
in the flux dependence on the time derivative of the force. 

The other kinetic relations are: 

𝒋𝑚𝑐 = −𝑔𝑚𝑠0𝛁𝑇 − 𝑔00𝛁𝐻0 − 𝑔01𝛁𝐻1,  

𝒋𝑚1 = −𝑔𝑚𝑠1𝛁𝑇 − 𝑔10𝛁𝐻0 − 𝑔11𝛁𝐻1,  

𝒋𝑠 = −𝜆𝑠𝑠
𝛁𝑇

𝑇
− 𝜆𝑠𝑚0

𝛁𝐻0

𝑇
− 𝜆𝑠𝑚1

𝛁𝐻1

𝑇
. (5) 

Here 𝑔𝑖𝑗 , 𝜆𝑖𝑗  are constants, hereinafter indices 𝑖, 𝑗 run through all 

values present in the above formula. 
From Eq. (3) using the above kinetic representation and the 

expression for the dissipation energy:  

𝑇𝜎𝑠 = −𝒋𝑠 ∙ 𝛁𝑇 − 𝒋𝑚𝑐 ∙ 𝛁𝐻0 − 𝒋𝑚1 ∙ 𝛁𝐻1, (6) 

we obtain  

𝜕

𝜕𝜏
(𝑈 −

𝑔𝑚𝑚

2
(𝛁𝐻0) ∙ (𝛁𝐻0))  

= 𝝈:
𝜕𝒆

𝜕𝜏
+ 𝑇

𝜕𝑆

𝜕𝜏
+ 𝐻0

𝜕𝜚0

𝜕𝜏
+ 𝐻1

𝜕𝜚1

𝜕𝜏
. (7) 

Introducing the free energy 𝐹 of heterogeneous material with 
formula: 

𝐹 = 𝑈 −
𝑔𝑚𝑚

2
(𝛁𝐻0) ∙ (𝛁𝐻0) − 𝑇𝑆  (8) 

from (7) we obtain the Gibbs equation: 
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𝑑𝐹 = 𝝈: 𝑑𝒆 − 𝑆𝑑𝑇 + 𝐻0𝑑𝜚0 + 𝐻1𝑑𝜚1 (9) 

and write the state equations: 

𝝈 =
𝜕𝐹

𝜕𝒆
, 𝑆 = −

𝜕𝐹

𝜕𝑇
,  𝐻0 =

𝜕𝐹

𝜕𝜚0
,  𝐻1 =

𝜕𝐹

𝜕𝜚1
  (10) 

The energy 𝐹 is defined on the parameter space that contains 
the strain, the temperature and the densities of skeleton and 
admixture 𝒆, 𝑇, 𝜚0, 𝜚1. The conjugated parameters are the stress, 
the entropy and the chemical potentials of skeleton and admixture 

𝝈, 𝑆, 𝐻0, 𝐻1. 
The key equation system contains the balance equations (1), 

the kinetic relations (4), (5), the state equations (10) and some 
other relations, i.e. expression (6), strain-deformation relation 

2𝒆 = 𝛁 ⊗ 𝒖 + (𝛁 ⊗ 𝒖)𝑇 (⊗ is dyadic product, superscript 𝑇 
denotes transposition), expression for the translational momentum 

𝒌𝑣 = (𝜚0 + 𝜚1)
𝜕𝒖

𝜕𝜏
. To write solving equation system we need to 

use some representation of the energy 𝐹(𝑒, 𝑇, 𝜚0, 𝜚1). The 
Taylor series representation in the vicinity of a reference state is 
usually used. 

We consider the reference state in which:  

𝒆 = 𝟎, 𝑇 = 𝑇∗,   𝜚0 =  𝜚0∗,   𝜚1 =  𝜚1∗ = 0,  

𝝈 = 𝟎, 𝑆 = 𝑆∗,   𝐻0 = 𝐻0∗,  𝐻1 = 𝐻1∗  

and denote 𝜃 = 𝑇 − 𝑇∗. Then the quadratic representation of the 

energy 𝐹(𝒆, 𝜃, 𝜚0, 𝜚1) written as  

𝐹 = 𝐹∗ − 𝑆∗𝜃 + 𝐻0∗(𝜚0 − 𝜚0∗) + 𝐻1∗𝜌1 + 𝜇𝒆: 𝒆 − 𝑎𝑒𝑡𝑒𝜃    

+
𝜆

2
𝑒2 −

1

2
𝑎𝑡𝑡𝜃2 − 𝑎𝑒𝑚0𝑒(𝜚0 − 𝜚0∗)  − 𝑎𝑒𝑚1𝑒𝜚1   

−𝑎𝑡𝑚0𝜃(𝜚0 − 𝜚0∗) − 𝑎𝑡𝑚1𝜃𝜌1 + 𝑎𝑚0𝑚1(𝜚0 − 𝜚0∗)𝜚1   

+
1

2
𝑎𝑚0𝑚0(𝜚0 − 𝜚0∗)2 +

1

2
𝑎𝑚1𝑚1𝜚1

2   

leads to the linear equations of state: 

𝝈 = 2𝜇𝒆 + [𝜆𝑒 − 𝑎𝑒𝑚0(𝜚0 − 𝜚0∗) − 𝑎𝑒𝑚1𝜚1 − 𝑎𝑒𝑡𝜃]𝑰,     

𝑆 = 𝑆∗ + 𝑎𝑒𝑡𝑒 + 𝑎𝑡𝑚0(𝜚0 − 𝜚0∗) + 𝑎𝑡𝑚1𝜚1 + 𝑎𝑡𝑡𝜃,    

𝐻0 = 𝐻0∗ − 𝑎𝑒𝑚0𝑒 + 𝑎𝑚0𝑚0(𝜚0 − 𝜚0∗)   

+𝑎𝑚0𝑚1𝜚1 − 𝑎𝑡𝑚0𝜃,   

𝐻1 = 𝐻1∗ − 𝑎𝑒𝑚1𝑒 + 𝑎𝑚0𝑚1(𝜚0 − 𝜚0∗)   

+𝑎𝑚1𝑚1𝜚1 − 𝑎𝑡𝑚1𝜃.  (11) 

Here 𝑰 is the identity tensor, 𝑒 = 𝒆: 𝑰 = 𝛁 ∙ 𝒖, 𝜆, 𝜇, 𝑎𝑖𝑗  are the 

constants. 

2.3. Key equations systems  

Note that representation (4) modifies the third equation of (1) 
to the form: 

𝜕𝜚0

𝜕𝜏
+ 𝑔𝑚𝑚𝛁 ∙

𝜕(𝛁𝐻0)

𝜕𝜏
= −𝛁 ∙ 𝒋𝑚𝑐 + 𝜎𝑚0.    

In the study of solid solutions along with the systems of skele-
ton and admixtures it is convenient to consider the continuum of 
mass centers for which the total mass flux is zero. Taking this flux 

as 𝒋𝑚𝑐 + 𝒋𝑚1 = 𝟎 we write the equation of mass balance as 
follows: 

𝜕

𝜕𝜏
(𝜚0 + 𝜚1 + 𝑔𝑚𝑚∇2𝐻0) = 𝜎𝑚0. (12) 

By integrating this equation over time we obtain:  

𝜚0 − 𝜚0∗ + 𝜚1 + 𝑔𝑚𝑚∇2𝐻0 = 𝑑𝜎𝑚. (13) 

Here the relations  𝜚0 = 𝜚0∗,  𝜚1 =  𝜚1∗ = 0  and 𝐻0∗ = 𝑐𝑜𝑛𝑠𝑡 
for reference state have been used along with notation 

𝑑𝜎𝑚 = ∫ 𝜎𝑚0𝑑𝜏
𝜏

0
.  

An extra integral condition is needed to reconcile the actual 
and reference state. The supply from mass source must be equal 

to difference between masses of reference body of density 𝜚0∗ 

and real body (without admixtures) of density 𝜚0:  

∫ 𝑑𝜎𝑚𝑑𝑉
 

(𝑉)
= ∫ (𝜚0 − 𝜚0∗)𝑑𝑉

 

(𝑉)
. (14) 

If 𝑔𝑚𝑚 = 0, then (13) turns into:  

𝜚0 − 𝜚0∗ + 𝜚1 = 𝑑𝜎𝑚  

and we deal with porous body. In the absence of admixture the 
density 𝜚0 is different from the reference body density 𝜚0∗ in 

addend introduced above with mass source 𝜎𝑚0: 

𝜚0 = 𝜚0∗ + 𝑑𝜎𝑚.  

In the case 𝑔𝑚𝑚 ≠ 0 the body may be treated as nanopo-
rous body. This, in particular, is confirmed by comparing formula 
(13) with the results presented in the work of Aifantis (2011a) as 
was done by Nahirnyj and Tchervinka (2012). 

Eq. (13) contains the laplacians of the first strain invariant 𝑒, 

the densities 𝜚0, 𝜚1, the temperature 𝜃 (see third equation of (11)). 
In the stationary state they may be eliminated from Eq. (13) using the 
others equations of the system. The first equations of (1) and (11) in 
static and quasistatic cases yield: 

𝛁 ∙ 𝝈 = 0,   ⇒  

(𝜆 + 2𝜇)∇2(𝛁 ∙ 𝒖) − 𝑎𝑒𝑡∇2𝜃   

−𝑎𝑒𝑚0∇2(𝜚0 − 𝜚0∗) − 𝑎𝑒𝑚1∇2𝜚1 = 0,   ⇒    

∇2(𝛁 ∙ 𝒖) =
𝑎𝑒𝑡

𝜆+2𝜇
∇2𝜃 +

𝑎𝑒𝑚0

𝜆+2𝜇
∇2(𝜚0 − 𝜚0∗) +

𝑎𝑒𝑚1

𝜆+2𝜇
∇2𝜚1.   

This relation allows to exclude the term ∇2𝑒, and from heat 

conduction equation in stationary case it follows that ∇2𝜃 = 0. 
Thus the mass balance equation for skeleton leads to non-ho-
mogeneous Helmholtz equation: 

−𝜉−2∇2𝜚0 + 𝜚0 − 𝜚0∗ + 𝜚1 = 𝑑𝜎𝑚,  

where 𝜉 is the constant. 
In general case the solving equation system is written in terms 

of displacement, temperature, densities of admixture and skeleton 
using the standard linearization technique in heat conduction 
equation: 

𝜇∇2𝒖 + (𝜆 + 𝜇)𝛁(𝛁 ∙ 𝒖) − 𝑎𝑒𝑡𝛁𝜃   

−𝑎𝑒𝑚0𝛁(𝜚0 − 𝜚0∗) − 𝑎𝑒𝑚1𝛁𝜌1 =
𝜕

𝜕𝜏
[(𝜚0 + 𝜚1)

𝜕𝒖

𝜕𝜏
],   

𝑎𝑡𝑡𝑇∗
𝜕𝜃

𝜕𝜏
+𝑎𝑒𝑡𝑇∗

𝜕(𝛁∙𝒖)

𝜕𝜏
+𝑎𝑡𝑚0𝑇∗

𝜕𝜚0

𝜕𝜏
+𝑎𝑡𝑚1𝑇∗

𝜕𝜚1

𝜕𝜏
  

= 𝛾𝑡𝑡∇2𝜃 + 𝛾𝑡𝑚0∇2𝜚0 + 𝜆𝑡𝑚1∇2𝜚1,  

𝜕𝜚1

𝜕𝜏
= 𝛾𝑚1𝑡∇2𝜃 + 𝛾𝑡𝑚0∇2𝜚0 + 𝜆𝑡𝑚1∇2𝜚1,  

𝛾𝑡∇2𝜃+𝛾𝑒∇2𝑒 + 𝛾𝑚0∇2𝜚0 + 𝛾𝑚1∇2𝜚1   

+𝜚0 − 𝜚0∗ + 𝜚1 = 𝑑𝜎𝑚 . (15) 
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Here 𝛾𝑖 , 𝛾𝑖𝑗  are the constants. 

If we assume that 𝑇 = 𝑇∗  and confine ourselves to isother-
mal and static case, the key system of equations takes the form: 

−𝜉−2∇2𝜚0 + 𝜚0 − 𝜚0∗ + 𝜚1 = 𝑑𝜎𝑚,  

𝑎∇2𝜚0 + ∇2𝜚1 = 0, (16) 

𝜇∇2𝒖 + (𝜆 + 𝜇)𝛁(𝛁 ∙ 𝒖) − 𝑎𝑒𝑡𝛁𝜃   

−𝑎𝑒𝑚0𝛁(𝜚0 − 𝜚0∗) − 𝑎𝑒𝑚1𝛁𝜚1 = 0, (17) 

where 𝑎, 𝜉 are constants. 

If instead of the displacement 𝒖 the stress tensor is chosen as 
a key function, Eq. (17) is replaced by two equations: 

𝛁 ∙ 𝝈 = 0,  

𝛁 × [𝝈 −
2𝜇

3𝜆+2𝜇
(

𝜆

2𝜇
𝜎 − 𝑎𝑒𝑚0𝜚0 − 𝑎𝑒𝑚1𝜚1) 𝐈] × 𝛁 = 0. (18) 

When the skeleton density is known the admixture distribution, 
temperature and stresses or displacements are found using clas-
sical methods of thermomechanics. 

The boundary value problem for the skeleton density needs 

boundary condition 𝜚0|Σ = 𝜚0𝑎  at the body surface Σ that was 
discussed by Nahirnyj and Tchervinka (2015) where the signifi-
cance of the surface roughness for boundary condition formulation 
was indicated.  

2.4. Linear and nonlinear model formulation 

If coefficients in kinetic relations (4),(5) and equations of state 
(11) are constant, the solving systems (16), (17) and (16), (18) are 
linear. The system (15) becomes linear if the density in expression 

for momentum is taken as 𝜚0 + 𝜚1 ≈ 𝜚0∗. However there is a 
strong argument to consider nonlinear formulation.  

One of the model parameters is the density. In porous and 
nanoporous bodies the density varies strongly. When modeling 
surface roughness influence on mechanical properties of ele-
ments, one considers surface value of density to be half of the 
bulk value (Nahirnyj et al., 2015), in metal foams the density may 
be one tenth and less (Bhattacharya et al., 2002; Tappan et al., 
2010). The density of porous material depends directly on porosity 
coefficient 𝜙 and so the elastic properties depend on it. The 
Young’s modulus and Poisson’s ratio are often expressed as a 

power of (1 − 𝜙). So the coefficients state equation (11) (and in 
energy 𝐹 representation) may be considered as dependent on 
density:  

𝜆 = 𝜆(𝜚0, 𝜚1), 𝜇 = 𝜇(𝜚0, 𝜚1), 𝑎𝑖𝑗 = 𝑎𝑖𝑗(𝜚0, 𝜚1).  

Alternatively the higher terms in energy 𝐹 series expansion 
may be kept that leads to nonlinear state equations. The one-
dimensional problem in Cartesian coordinates for the thermoelas-
tic thin film was solved analytically (Nahirnyj et al., 2015). The 
solution of the boundary value problem for a stretched layer was 
used to study the size effect of the effective Young’s modulus in 
the body without admixture. 

The linear problem formulation is considered below on exam-
ple on the thermoelastic layer without admixture. 

2.5. Thermoelastic layer 

We consider a thermoelastic one-component layer |𝑥| ≤ 𝑙 
in Cartesian coordinates {𝑥, 𝑦, 𝑧}. The layer is stretched at infinity 

𝑦 → ±∞ with force 𝑭 = (0,2𝑙𝜎𝑎 , 0) and the constant value of 

density 𝜚0 = 𝜚0𝑎 > 0 is set at surfaces 𝑥 = ±𝑙. The solving 
functions of key system (15),(18) depend on variable 𝑥 only. 

𝑑2𝜌0

𝑑𝑥2 − 𝜉2(𝜌0 − 𝜌0∗) = −𝜉2𝑑𝜎𝑚 ,     
𝑑2𝜃

𝑑𝑥2 = 0,  

𝑑𝜎𝑥𝑥

𝑑𝑥
= 0,    

𝑑2𝜎𝑦𝑦

𝑑𝑥2 =
𝑑2𝜎𝑧𝑧

𝑑𝑥2 = −𝑎0
𝑑2𝜌0

𝑑𝑥2  (19) 

where 𝑎0 =
2𝜇𝑎𝑒𝑚0

𝜆+2𝜇
. 

We specify the following boundary conditions: 

𝜌0 = 𝜌0𝑎 ,     𝜃 = 𝜃𝑎 ,     𝜎𝑥𝑥 = 0  (20) 

at 𝑥 = ±𝑙 and integral conditions for stresses: 

∫ 𝜎𝑦𝑦 𝑑𝑥
𝑙

−𝑙
= 2𝑙𝜎𝑎,  ∫ 𝑥𝜎𝑦𝑦 𝑑𝑥

𝑙

−𝑙
= 0,  

∫ 𝜎𝑧𝑧 𝑑𝑥
𝑙

−𝑙
= 0, ∫ 𝑥𝜎𝑧𝑧 𝑑𝑥

𝑙

−𝑙
= 0.  (21) 

The condition (14) for density must be satisfied as well: 

∫ 𝑑𝜎𝑚
𝑙

−𝑙
 𝑑𝑥 = ∫ (𝜚0 − 𝜚0∗)

𝑙

−𝑙
 𝑑𝑥. (22) 

Assuming the mass sources to decrease exponentially with 
distance from surfaces, using the problem symmetry and the 
condition (22) we obtain: 

𝑑𝜎𝑚 = (𝜌0𝑎 − 𝜌0∗) (
𝜗2

𝜉2 − 1)
𝐷

1−𝐷

cosh(𝜗𝑥)

cosh(𝜗𝑙)
,   

𝐷 =
𝜉

𝜗

tanh(𝜉𝑙)

tanh(𝜗𝑙)
.  (23) 

The solution of the problem (19)–(23) is 

𝜃(𝑥) = 𝜃𝑎,  

𝜚0(𝑥) = 𝜚0𝑎 +
𝜚0𝑎−𝜚0∗

1−𝐷 
(

cosh(𝜉𝑥)

cosh(𝜉𝑙)
− 1)   

−
𝜚0𝑎−𝜚0∗

1−𝐷 
𝐷 (

cosh(𝜗𝑥)

cosh(𝜗𝑙)
− 1),   

𝜎𝑦𝑦(𝑥) = 𝜎𝑎 − 𝑎0 [
𝜚0𝑎−𝜚0∗

1−𝐷 
(

cosh(𝜉𝑥)

cosh(𝜉𝑙)
− 1)  

−
𝜚0𝑎−𝜚0∗

1−𝐷 
𝐷 (

cosh(𝜗𝑥)

cosh(𝜗𝑙)
− 1)],  

𝜎𝑧𝑧(𝑥) = 𝜎𝑦𝑦(𝑥) − 𝜎𝑎 ,     𝜎𝑥𝑥(𝑥) = 0. (24) 

If the layer is free of load (𝜎𝑎 = 0) then there is the stresses 
proportional to density disturbance 𝜚0𝑎 − 𝜚0∗. The density along 

with thermal load 𝜃𝑎 also affect strain component 𝑒𝑥𝑥 . From the 
first equation of (11) one obtains: 

𝒆 =
𝝈

2𝜇
−

𝜆𝜎𝑰

2𝜇(3𝜆+2𝜇)
+

𝑎𝑒𝑚(𝜚0−𝜚0∗)𝑰

3𝜆+2𝜇
+

𝑎𝑒𝑡𝜃𝑰

3𝜆+2𝜇
.   

or using Young’s modulus and Poisson’s ratio:  

𝒆 =
1+𝜈

𝐸
𝝈 −

𝜈

𝐸
𝜎𝑰 +

1−2𝜈

𝐸
(𝑎𝑒𝑚(𝜚0 − 𝜚0∗) + 𝑎𝑒𝑡𝜃)𝑰.  (25) 

From solution (24) and relation (25) we obtain: 

𝑒𝑥𝑥 =
−𝜆𝜎𝑎

2𝜇(3𝜆+2𝜇)
+

𝑎𝑒𝑡𝜃

3𝜆+2𝜇
+

𝑎𝑒𝑚

3𝜆+2𝜇
[

𝜚0𝑎−𝜚0∗

1−𝐷 
(

cosh(𝜉𝑥)

cosh(𝜉𝑙)
− 1)   

−
𝜚0𝑎−𝜚0∗

1−𝐷 
𝐷 (

cosh(𝜗𝑥)

cosh(𝜗𝑙)
− 1)],  

𝑒𝑦𝑦 =
(𝜆+𝜇)𝜎𝑎

𝜇(3𝜆+2𝜇)
+

𝑎𝑒𝑡𝜃

3𝜆+2𝜇
,   

𝑒𝑧𝑧 = −
𝜆𝜎𝑎

2𝜇(3𝜆+2𝜇)
+

𝑎𝑒𝑡𝜃

3𝜆+2𝜇
.   
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Thus for the formulated problem the non-homogeneity causes 
deformation only toward body surfaces. 

3. MODELING OF POROUS AND NANOPOROUS BODY  

Within the framework of the model, the density of the body 
can vary spatially. It is naturally to take that the elastic moduli 
present in equations of state must account for these changes. 
This applies to porous materials, hence we consider 

𝐸 = 𝐸0 (
𝜚0

𝜚0∗
)

𝛽𝐸
, 𝜈 = 𝜈0 (

𝜚0

𝜚0∗
)

𝛽𝑁
 (26) 

for local Young’s modulus and Poisson’s ratio (𝐸0, 𝜈0 are the 

moduli of bulk material, 𝛽𝐸 , 𝛽𝑁 are constants).  
The parameters 𝜆, 𝜇 in (11) depend on the density through re-

lations: 

𝜆 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
.  

The obtained nonlinear equation systems (16), (17) and (16), 
(18) describe distribution of stresses/deformation, temperature 
and admixtures of skeleton and admixture in the bodies of struc-
turally heterogeneous material and with rough surface.  

The relations (26) describe the elastic properties in every point 
of considered body. If deformation of entire body is considered, 
the effective Young’s modulus and Poisson’s ratio may be found. 
In paper by Nahirnyj et al. (2015) the stretched elastic layer 
|𝑥| ≤ 𝑙 was examined and the effective Young’s modulus de-
pendence on the layer size was found. It is plotted in Fig.2. Note 

that in the case of homogeneous body 𝐸 = 𝐸0, 𝜈 = 𝜈0. 
Taking into account the local elastic moduli depending on the 

density is important in terms of describing the behavior of nano-
elements. Density and elasticity moduli are equally important 
material characteristics.  

 
Fig. 2. The effective Young’s modulus dependence on the layer thickness 

(ξl) (size effect of effective Young’s modulus) for various values  

of parameter 𝛽𝐸  in (26) (𝛽𝐸 = 1;  0; −1.5; −3  curves  

1–4 respectively)  

Now we consider a one-dimensional problem for the layer 
saturated with the admixture using the key equation system (16), 
(18) in linear formulation.  

3.1. The two-component layer  

We now consider a layer |𝑥| ≤ 𝑙 in Cartesian coordinates 
{𝑥, 𝑦, 𝑧} at initial temperature 𝑇 = 𝑇∗. The layer is stretched at 
infinity 𝑦 → ±∞ with force 𝑭 = (0,2𝑙𝜎𝑎 , 0) and the constant 

non-zero values of densities 𝜚0 = 𝜚0𝑎 ,  𝜚1 = 𝜚1𝑎 , are set at 

surfaces 𝑥 = ±𝑙. The key functions in system (16),(18) depend 

on variable 𝑥 and the system has the form: 

𝑑2𝜌0

𝑑𝑥2 − 𝜉2(𝜌0 − 𝜌0∗ + 𝜌1) = −𝜉2𝑑𝜎𝑚,  

𝑎
𝑑2𝜌0

𝑑𝑥2 +
𝑑2𝜌1

𝑑𝑥2 = 0,  

𝑑𝜎𝑥𝑥

𝑑𝑥
= 0,

𝑑2𝜎𝑦𝑦

𝑑𝑥2 =
𝑑2𝜎𝑧𝑧

𝑑𝑥2 = −𝑎0
𝑑2𝜌0

𝑑𝑥2 − 𝑎1
𝑑2𝜌1

𝑑𝑥2 , (27) 

where  𝑎𝑖 =
2𝜇𝑎𝑒𝑚𝑖

𝜆+2𝜇
, 𝑖 = 1,2.  

We also assume that relations (23) and conditions (21),(22) 
are held along with the conditions at layer surfaces: 

𝜌0 = 𝜌0𝑎 ,     𝜌1 = 𝜌1𝑎,     𝜎𝑥𝑥 = 0. (28) 

The solution of the model problem is 

𝜚0 = 𝜚0𝑎 +
𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
(

cosh(𝜗𝑥)

cosh(𝜗𝑙)
− 1)   

+𝑚𝑠
𝜉2

𝜁2−𝜗2 (
cosh(𝜗𝑥)

cosh(𝜗𝑙)
−

cosh(𝜁𝑥)

cosh(𝜁𝑙)
),  

𝜚1(𝑥) = 𝜚1𝑎 − 𝑎
𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
(

cosh(𝜗𝑥)

cosh(𝜗𝑙)
− 1)  

−𝑎𝑚𝑠
𝜉2

𝜁2−𝜗2 (
cosh(𝜗𝑥)

cosh(𝜗𝑙)
−

cosh(𝜁𝑥)

cosh(𝜁𝑥)
),  

𝜎𝑦𝑦(𝑥) = 𝜎𝑎 + (𝑎𝑎1 − 𝑎0) [(
𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
+

𝑚𝑠𝜉2

𝜁2−𝜗2)  

× (
cosh(𝜗𝑥)

cosh(𝜗𝑙)
−

tanh(𝜗𝑙)

𝜗𝑙
) −

𝑚𝑠𝜉2

𝜁2−𝜗2 (
cosh(𝜁𝑥)

cosh(𝜁𝑙)
−

tanh(𝜁𝑙)

𝜁𝑙
)].  

𝜎𝑧𝑧(𝑥) = 𝜎𝑦𝑦(𝑥) − 𝜎𝑎 ,     𝜎𝑥𝑥(𝑥) = 0. (29) 

where 

𝑚𝑠 = (𝜌0𝑎 − 𝜌0∗)
𝜗2−ξ2

𝜉2

𝐷

1−𝐷
, 𝜁 = √1 − 𝑎 𝜉.   

For non-homogeneous layer the skeleton density 𝜌0 over the 
layer is shown in Fig.3 for different layer thicknesses (1 – thin film, 
3 – relatively thick layer). 

 
Fig. 3.  Skeleton density in the layer for various layer thicknesses  

 (the curves 1,2,3 correspond to  𝜉𝑙 = 2,5,20)  
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The increase in parameter 𝑎 reduces characteristic size 𝜁, 
and also increases density (of skeleton) in inner areas of the 
body. This is shown in Fig.4 that illustrates the value of 𝜚0/𝜚0∗ at 

𝑥 = 0. 

The admixture density 𝜚1/𝜚0∗ in the layer is shown in Fig.5.  

 
Fig. 4.  Skeleton density in the middle of the layer vs. parameter 𝑎  

 for 𝜉𝑙 = 2; 5; 20 (lines 1–3 respectively), 𝜚𝑎0 𝜚0∗⁄ = 0.5,    
 𝜚𝑎1 𝜚0∗⁄ = 0.02, 𝜉 𝜗⁄ = 0.5  

 
Fig. 5.  Admixture density in the layer for parameters 𝜚𝑎0 𝜚0∗⁄ = 0.5, 

 𝜚𝑎1 𝜚0∗⁄ = 0.02, 𝑎 = −0.01, 𝜉 𝜗⁄ = 0.5.  

 Curves 1–3 correspond to 𝜉𝑙 = 2; 5; 20 respectively 

 
Fig. 6.  Stress  𝜎𝑦𝑦 𝜎0⁄  (𝜎0 = 𝑎0𝜌0∗) in the layer for 𝜉𝑙 = 2; 5; 20 

 (curves 1–3), 𝜚𝑎0 𝜚0∗⁄ = 0.5, 𝜚𝑎1 𝜚0∗⁄ = 0.02, 𝑎 = −0.01,  

 𝑎1 𝑎0⁄ = 0.1,  𝜉 𝜗⁄ = 0.5. The dash line is the stress  

  in the absence of mass source for 𝜉𝑙 = 5 

 
Fig. 7. Surface stress in the free layer vs. its size for 𝜚𝑎0 𝜚0∗⁄ = 0.5, 

𝜚𝑎1 𝜚0∗⁄ = 0.02, 𝑎 = −0.01, 𝑎1 𝑎0⁄ = 0.1. The dash line 

corresponds to the absence of mass source. The curve 1  

is the stress for 𝜉−1 = 2𝜗−1 (the characteristic size of material 
heterogeneity is twice of the characteristic size of surface  

roughness), the curve 2 stands for 2𝜉−1 = 𝜗−1 

In a free layer the stresses 𝜎𝑦𝑦 = 𝜎𝑧𝑧 at external surfaces 

𝑥 = ±𝑙 are stretching (positive). When away from these surfaces 
in the depth of the layer the stresses decrease and turn into com-

pressive near a neighborhood of the middle surface 𝑥 = 0.  
Taking into account mass sources comparing with the model 
presented in Bozhenko (2016) changes the value of the stresses 
and the picture of their distribution. Their impact is particularly 
significant in the films, which are characterized by size 𝜁−1  which 
is comparable to the layer (thin film) thickness. This is illustrated 
in Fig.6. 

As can be seen from Fig.6 the internal stresses are inherent to 
the free layer and the largest stresses are at the layer surfaces. 
They are described by formula 

𝜎𝑦𝑦(±𝑙) = 𝜎𝑧𝑧(±𝑙) = (𝑎𝑎1 − 𝑎0) [
𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
  

× (1 −
tanh(𝜗𝑙)

𝜗𝑙
) +

𝑚𝑠𝜉2

𝜁2−𝜗2 (
tanh(𝜁𝑙)

𝜁𝑙
−

tanh(𝜗𝑙)

𝜗𝑙
)]. (29) 

They depend on layer size 𝑙, i.e. show size effect as illustrated 
in Fig.7. 

3.2. Admixture influence on size effect of layer strength 

The maximum stresses are important when investigating the 
strength. When calculating the strength parameters both external 
load force and internal stress should be considered. In the con-
sidered case the last is caused by structural heterogeneity of 
material and geometrical non-uniformity of real body surface. 
Using the arguments presented in the paper by Nahirnyj et al. 
(2015) concerning the strength for the intensity of the power load, 
which results in the fracture of the layer, based on (29) we write 
the formula 

𝜎𝑎
𝑐𝑟 = 𝜎𝑝 − (𝑎𝑎1 − 𝑎0) [(

𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
+

𝑚𝑠𝜉2

𝜁2−𝜗2)  

× (1 −
tanh(𝜗𝑙)

𝜗𝑙
) +

𝑚𝑠𝜉2

𝜁2−𝜗2 (
tanh(𝜁𝑙)

𝜁𝑙
−

tanh(𝜗𝑙)

𝜗𝑙
)].   

We denote with 𝜎+ the intensity of power load that causes 
fracture of thick layer without admixture and rewrite the obtained 
formula as 
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𝜎𝑎
𝑐𝑟 = 𝜎+ − 𝑎0(𝜚0𝑎 − 𝜚0∗) − (𝑎𝑎1 − 𝑎0) [

𝜚0𝑎−𝜚0∗+𝜚1𝑎

1−𝑎
  

× (1 −
tanh(𝜗𝑙)

𝜗𝑙
) + 𝑚𝑠

𝜉2

𝜁2−𝜗2 (
tanh(𝜁𝑙)

𝜁𝑙
−

tanh(𝜗𝑙)

𝜗𝑙
)].  

In Fig.8 there is shown dependence of 𝜎𝑐𝑟 = 𝜎𝑎
𝑐𝑟 (𝑎0𝜚0∗)⁄  

on layer thickness. Note that the curves 1,2 correspond to differ-
ent roughnesses of the body real surface. Effect of roughness on 
solids strength is well known from experimental investigations. 

 
Fig. 8. Size effect of strength of the layer with admixture for 𝑎 = −0.1, 

 𝜎+ (𝑎0𝜚0∗)⁄ = 0.3, 𝜚𝑎0 𝜚0∗⁄ = 0.5, 𝜚𝑎1 𝜚0∗⁄ = 0.02, 

 𝑎1 𝑎0⁄ = 0.1,  𝜉 𝜗⁄ = 0.5; 2 (curves 1,2 respectively).  

 The dotted line shows stresses in the absence of mass source.  

 The line 1 shows stresses for 𝜉−1 = 2𝜗−1 (the characteristic 

size of material heterogeneity is twice of the characteristic size  

 of surface roughness), the line 2 stands for 2𝜉−1 = 𝜗−1 

Based on the comparison of the results with the results for the 
body without admixture it can be argued that the presence of 
admixture does not change qualitatively the dependence of critical 

load 𝜎𝑎
𝑐𝑟 on characteristic size of the layer (its thickness) but 

changes the absolute value of 𝜎𝑎
𝑐𝑟.  

4. RESULTS AND CONCLUSSION 

The presented mathematical model of two-component thermo-
elastic non-homogeneous body describes multiscale size effects 
of mechanical properties. It features two characteristic sizes: the 
first one is related to heterogeneity of the body material and the 
second one depends on surface non-uniformity. 

The presence of an admixture may change the characteristic 
size related to structural heterogeneity of the body material.  

The equation systems within considered model allow describ-
ing bodies of both porous and nanoporous materials. It is done 
from unified point of view in consequence of using the methods of 
irreversible thermodynamics.   

The introduced mass sources allow surface roughness de-
scription and porosity modeling in the real bodies compared to 
ideal elastic body. 

The presence of the admixture in the stretched layer may 
cause either increase or decrease of the intensity of force load 
that evokes the layer fracture depending on the ratio of admixture 
and skeleton parameters. 

The size effects of Young’s modulus and Poisson’s ratio are 
associated with local nonlinearity in the state equations of the 
model. The models of considered approach may be used to inves-
tigate effects observed in porous nanomaterials. 
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