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Abstract:  The problem of longitudinal shear of bimaterial with thin nonlinear elastic inclusion at the interface of matrix materials  
is considered. Solution of the problem is constructed using the boundary value problem of combining analytical functions and jump  
functions method. The model of the thin inclusion with nonlinear resilient parameters is built. Solution of the problem is reduced  
to a system of singular integral equations with variable coefficients. The convergent iterative method for solving such a system is offered 
for various nonlinear strain models, including Ramberg-Osgood law. Numerical calculations are carried out for different values  
of non-linearity characteristic parameters for the inclusion material. Their parameters are analysed for the tensely-deformed matrix under 
loading a uniformly distributed shear stresses and for a balanced system of the concentrated forces. 
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1. INTRODUCTION 

Most materials contain numerous subtle defects in the form 
of cracks and inclusions of various origin (Savruk, 1981; Sulym, 
2007; Arhipenko and Kriviy, 2008; Hills et al., 1993). Quite often 
inclusions are used as structural elements for the reinforcement 
of machine parts and structures, including as filler composites. 
One of the characteristic examples of composition material are 
stratified structures, peculiar to soils (Sekine, 1982; Kit et al., 
2003; Ostryk and Ulitko, 2006). Such subtle structural heterogene-
ity has a complex structure considering possible viscosity, plastici-
ty and other nonlinear effects. The account of non-linearity sub-
stantially complicates the process of solving problems and re-
quires the use of various approximate methods even for the bod-
ies of simple geometry (Chernych,1998; Pasternak et al., 2012). 

Attempts to take into account non-linearity in an antiplane de-
formation problem for two compressed half-spaces with interfacial 
defects were made by different authors including examined sliding 
friction of contacting bodies (Johnson, 1985; Schmueser et al., 
1980; Sulym et al., 2015), boundary element approach (Pasternak 
et al., 2012). 

The aim of this article is a development of jump functions 
method and construction of adequate models of thin inclusions 
and layers, material of which has substantially non-linear elastic 
properties under various loading of body, including multistep 
or cyclic. 

2. PROBLEM STATEMENT 

Problem statement partly coincides with those considered ear-
lier in Piskozub and Sulym (2008), Sulym (2007) and Sulym et al. 
2015).  

Consider the isotropic solid consisting of two half-spaces with 
elastic constants 𝐺1, 𝐺2 and inclusion of small width 2ℎ  (ℎ ≪
𝑎), symmetric with respect to the middle line and situated along 

𝐿′ = [−𝑎;   𝑎] (Fig. 1) on the interface L of half-spaces. Here the 

system of co-ordinates 𝑂𝑥𝑦𝑧 is used, with its origin at the plane 
𝑥𝑂𝑧 of contact of half-spaces, 𝑥𝑂𝑦 is a cross-section of the solid 

perpendicular to a direction z of its longitudinal (out-of-plane) 
displacement. The half-spaces perpendicular to this axis form 
half-planes 𝑆𝑘   (𝑘 = 1,2), and their interface correspond to the 

abscissa L~x. 

 
Fig. 1. The loading and geometric scheme of the problem 

Suppose that resilient properties of inclusion material are or-
thotropic nonlinear and satisfy dependences: 

∂𝑤𝑖𝑛

∂𝑥
= 𝐴𝑥𝜎𝑥𝑧

𝑖𝑛(1 + 𝐵𝑥(𝜎𝑥𝑧
𝑖𝑛)𝑀𝑥),   

∂𝑤𝑖𝑛

∂𝑦
= 𝐴𝑦𝜎𝑦𝑧

𝑖𝑛 (1 + 𝐵𝑦(𝜎𝑦𝑧
𝑖𝑛)

𝑀𝑦
).  

                         (1) 
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(5) 

(9) 

Correlations (1) in general case may be presented in a form: 

σxz
in = Gx

in(σxz
in )

∂win

∂x
,   σyz

in = Gy
in(σyz

in )
∂win

∂y
            (2) 

with the variable shear modules Gx
in(σxz

in ), Gy
in(σyz

in ). In the case 

of Ms = ms − 1, As = 1 Gos⁄ , Bs = KsAs
ms−1, s = {x; y} 

correlation (1) coincides with the Ramberg-Osgood (Chernych, 

1998; Rice and Rosengren, 1968) strain model, where Gos, ms, 
Ks,   s = {x; y} are the nonlinear elastic parameters of the inclu-
sion material. 

Intensity and direction of action of the external power factors 
(stress at the infinity, concentrated forces, etc.) causes the quasi-
static stress strain state (SSS) in the bimaterial solid with inclu-
sion. Let the external loading of the problem be defined by the 
following factors: stresses σyz

∞ = τ, σxzk
∞ = τk uniformly distrib-

uted at the infinity; concentrated forces with magnitude Qk, and 

screw dislocations with Burgers vectors bk applied at the points 
z*k ∈ Sk(k = 1, 2). Concordantly (Sulym, 2007) tensions 

σxzk
∞ = τk must satisfy the condition τ2G1 = τ1G2 which pro-

vides the straightforwardness of the interface line on the infinity. 

The application of similar traditional notation for an axis z and 

a complex variable z = x + iy should not cause misunder-
standing in the solution of the problem. 

As well as in works (Bozhydarnyk and Sulym, 1999;  
Sulym, 2007; Piskozub and Sulim, 2008; Sulym and Piskozub, 
2004; Pasternak et al., 2010) the presence of thin defect (inclu-
sion) is modelled by stress and displacement discontinuity vectors 
at L′: 

[Φ] ≡ Φ
−
− Φ

+
= 𝐟(𝑥),           (3) 

where Φ(z) = {σyz, ∂w ∂x⁄ }(z) is vector of state; f(x) =

{f3 , f6 }(x) is jump vector. Notations [ϕ]h = ϕ(x, −h) −

ϕ(x, h), ⟨ϕ⟩h = ϕ(x, −h) + ϕ(x, h) are used hereinafter; 
indexes "+" and "-" match the boundary values of functions on the 
overhead and bottom edges of line L. 

Taking into account the Hooke's law expression (3) gives: 
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                         (4) 

𝑓3 (𝑥) = 𝑓6 (𝑥) = 0 , if 𝑥 ∉ 𝐿′. 

The model of thin inclusion is given in terms of interaction 
(Sulym, 2007; Piskozub and Sulim, 2008), which from the point of 
view of mathematical design are equivalent to the terms of imper-
fect contact between the opposite matrix surfaces adjacent to the 
inclusion. Proposed the thin object modelling techniques is based 
on the principle of integrating the defining relationships describing 
the physical and mechanical properties of the inclusion material 
with the following taking into account the smallness one of the 
linear dimensions of inclusion: 

{
𝐺𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) ⟨
∂𝑤𝑖𝑛

∂𝑥
⟩
ℎ
(𝑥) − 2𝜎𝑥𝑧

𝑖𝑛(−𝑎) − 
1

ℎ
∫ [𝜎𝑦𝑧

𝑖𝑛]
ℎ
(𝜉)𝑑𝜉 = 0,

𝑥

−𝑎

𝐺𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛)[𝑤𝑖𝑛]ℎ(𝑥) + ℎ⟨𝜎𝑦𝑧
𝑖𝑛⟩

ℎ
(𝑥) = 0.

 

Contact between the bimaterial medium components along 

a line L′′ = L\L′ and between medium components and inclu-
sion at L′ is supposed to be mechanically perfect: 

𝑤𝑖𝑛(𝑥, ±ℎ) = 𝑤𝑘(𝑥, ±ℎ),    𝑥 ∈ 𝐿′

𝜎𝑦𝑧
𝑖𝑛(𝑥, ±ℎ) = 𝜎𝑦𝑧𝑘(𝑥, ±ℎ).

                         (6) 

3. THE PROBLEM SOLUTION 

Using the known approach (Sulym, 2007; Piskozub and 
Sulym, 2008; Sulym et al., 2015) it is possible to get dependences 
according to which SSS components are defined by relations:   
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                        (7) 

Terms, marked an index "0" from above, characterize corre-
sponding terms in a solid without model heterogeneities (inclu-
sions, cracks, etc.) under the corresponding external loading 
(homogeneous solution). 

Hereinafter: 

𝜎𝑦𝑧
0 (𝑧) + 𝑖𝜎𝑥𝑧

0 (𝑧) = 𝜏 + 𝑖{𝜏𝑘 + 𝐷𝑘(𝑧) +

+(𝑝𝑘 − 𝑝𝑗)𝐷𝑘(𝑧) + 2𝑝𝑘𝐷𝑗(𝑧)},    

𝐷𝑘(𝑧) = −
𝑄𝑘+𝑖𝐺𝑘𝑏𝑘

2𝜋(𝑧−𝑧∗𝑘)
        

(𝑧 ∈ 𝑆𝑘, 𝑘 = 1, 2;   𝑗 = 3 − 𝑘),

                        (8) 

Using (7), (8) and boundary conditions (6) it is easy to get 
from the model (5) a system of singular integral equations (SSIE): 

{
(𝑝2 − 𝑝1)𝑓6(𝑥) + 2𝑝𝑔3(𝑥) −

1

ℎ𝐺𝑥
𝑖𝑛 ∫ 𝑓3(𝜉)𝑑𝜉

𝑥

−𝑎
= 𝐹3(𝑥),

(𝑝2 − 𝑝1)𝑓3(𝑥) + 2𝐶𝑔6(𝑥) −
𝐺𝑦
𝑖𝑛

ℎ
∫ 𝑓6(𝜉)𝑑𝜉
𝑥

−𝑎
= 𝐹6(𝑥),

𝐹3(𝑥) =
2

𝐺𝑥
𝑖𝑛 𝜎𝑥𝑧

𝑖𝑛(−𝑎) − (𝜎𝑥𝑧2
0 (𝑥) 𝐺2⁄ + 𝜎𝑥𝑧1

0 (𝑥) 𝐺1⁄ ),

𝐹6(𝑥) = ⟨𝜎𝑦𝑧
0 ⟩(𝑥) − 𝐺𝑦

𝑖𝑛 ⟨
𝜎𝑦𝑧𝑘
0 (𝑥)

𝐺𝑘
⟩ −

𝐺𝑦
𝑖𝑛

ℎ
[𝑤
0
] (−𝑎),

    

with the additional conditions on power balance and unambiguity 
of displacements while going round the thin defect: 

∫ 𝑓3 (𝜉)𝑑𝜉
𝑎

−𝑎
=  2ℎ(𝜎𝑥𝑧

𝑖𝑛(𝑎) − 𝜎𝑥𝑧
𝑖𝑛(−𝑎)),

∫ 𝑓6 (𝜉)𝑑𝜉
𝑎

−𝑎
= [𝑤](𝑎) − [𝑤](−𝑎).

                      (10) 

Here: 

⟨𝜎𝑦𝑧
0 + 𝑖𝜎𝑥𝑧

0 ⟩(𝑥) = 2𝜏 + 𝑖(𝜏1 + 𝜏2) +

+𝑖{(3𝑝1 + 𝑝2)𝐷2(𝑥) + (𝑝2 − 𝑝1)𝐷2(𝑥) +

+(3𝑝2 + 𝑝1)𝐷1(𝑥) + (𝑝1 − 𝑝2)𝐷1(𝑥)}.    

                      (11) 
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For partial cases SSIE (9) is simplify, in particular: 

 А) materials of the matrix are the same: 𝐺1 = 𝐺2 = 𝐺: 

{

1

𝐺
𝑔3 (𝑥) −

1

ℎ𝐺𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛)
∫ 𝑓3 (𝜉)𝑑𝜉
𝑥

−𝑎
= 𝐹3(𝑥),

𝐺𝑔6 (𝑥) −
𝐺𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛)

ℎ
∫ 𝑓6 (𝜉)𝑑𝜉
𝑥

−𝑎
= 𝐹6(𝑥),

                     (12) 

 В) crack: 𝐺𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛),   𝐺𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛) → 0: 

{
𝑔6 (𝑥) =

⟨𝜎𝑦𝑧
0 ⟩

ℎ
(𝑥)

2𝐶
,

𝑓3 (𝑥) = 0,
                        (13) 

 С) absolutely hard inclusion:  

{
∫ 𝑓6(𝜉)𝑑𝜉
𝑥

−𝑎
= − [𝑤

0
] (−𝑎) = 0   →   𝑓6(𝑥) = 0,

𝑔3(𝑥) = −
1

2ℎ
(𝜎𝑥𝑧2

0 (𝑥) 𝐺2⁄ + 𝜎𝑥𝑧1
0 (𝑥) 𝐺1⁄ ).

      (14) 

Cases В), С) have a close analytical solution which coincides 
with the known results (Comninou, 1977; Panasyuk et al., 1976; 
Schmueser et al., 1980; Savruk, 1981). 

A study of the characteristic part of SSIE (9), (12) proves that 
it does not depend on nonlinear terms. Solving of SSIE (9), (12) 
is more comfortable when we transform it to a dimensionless kind: 

{
𝛼𝑓6(�̃�) + 𝛽�̃�3(�̃�) − 𝜂3 ∫ 𝑓3(𝜉)𝑑𝜉

𝑥

−1
= �̃�3(�̃�, 𝜎𝑥𝑧

𝑖𝑛),

𝛼𝑓3(�̃�) + 𝛽�̃�6(�̃�) − 𝜂6 ∫ 𝑓6(𝜉)𝑑𝜉
𝑥

−1
= �̃�6(�̃�, 𝜎𝑦𝑧

𝑖𝑛),
          (15) 

where: 

𝛼 = (𝑝2 − 𝑝1),    𝛽 = 2�̃�,   𝜂3 = 1 ℎ̃�̃�𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛)⁄ ,

𝜂6 = �̃�𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛) ℎ̃⁄ , �̃� = 𝑥 𝑎,⁄ ℎ̃ = ℎ 𝑎,⁄ �̃� = 𝑦 𝑎⁄ ,

�̃�𝑥
𝑖𝑛 = 𝐺𝑥

𝑖𝑛 𝐺𝑔𝑎𝑣 ,⁄ �̃�𝑦
𝑖𝑛 = 𝐺𝑦

𝑖𝑛 𝐺𝑔𝑎𝑣⁄ ,

𝑓3 = 𝐺𝑔𝑎𝑣𝑓3, 𝑓6 = 𝑓6, �̃� = 𝐶 𝐺𝑔𝑎𝑣  ⁄ ,

 �̃�3 = 𝐹3 𝐺𝑔𝑎𝑣   ⁄ , �̃�6 = 𝐹6 𝐺𝑔𝑎𝑣⁄ ,    𝐺𝑔𝑎𝑣 = √𝐺1𝐺2.

 

Expanding the jump functions 𝑓𝑟(𝑥) as series of Chebyshev 
polynomials:  

𝑓𝑟(𝑥) =
1

√1−𝑥2
∑ 𝐵𝑗

𝑟𝑇𝑗(�̃�)
𝑛
𝑗=0 ,   (𝑟 = 3, 6)       (16) 

with the use of (16) and the known integrals we obtain: 

�̃�𝑟(�̃�) = ∑ 𝐵𝑗
𝑟𝑈𝑗−1(�̃�)

𝑛
𝑗=1 ,               (17) 

∫ 𝑓𝑟(𝜉)𝑑𝜉
𝑥

−1
= (

𝜋

2
+ arcsin�̃�) 𝐵0

𝑟 −

−√1 − �̃�2∑ 𝐵𝑗
𝑟𝑛

𝑗=1

𝑈𝑗−1(𝑥)

𝑗
,

                       (18) 

∫ 𝑓𝑟(𝜉)𝑑𝜉
1

−1
= 𝐵0

𝑟 .          (19) 

Substitution (16)-(19) in (15), (20) at the set of points xm =

cos
mπ

n+1
    (m = 1, n) gives the system of algebraic equations 

(SAE) of order 2n + 2 on unknown Bj
r: 

{
 
 

 
 
∑ 𝜒𝑚𝑗

3 𝐵𝑗
3𝑛

𝑗=0 + ∑ 𝜔𝑚𝑗𝐵𝑗
6𝑛

𝑗=0 = �̃�3(𝑥𝑚, �̃�𝑥𝑚
𝑖𝑛 ),

∑ 𝜔𝑚𝑗𝐵𝑗
3𝑛

𝑗=0 + ∑ 𝜒𝑚𝑗
6 𝐵𝑗

6𝑛
𝑗=0 = �̃�6(𝑥𝑚, �̃�𝑦𝑚

𝑖𝑛 ),

𝐵0
3 = 2ℎ̃(𝜎𝑥𝑧

𝑖𝑛(𝑎) − 𝜎𝑥𝑧
𝑖𝑛(−𝑎))/𝐺𝑔𝑎𝑣 ,   

𝐵0
6 = [�̃�](𝑎) − [�̃�](−𝑎),           𝑚 = 1, 𝑛 

                  (20) 

where are used denotations: 

𝜒𝑗𝑚
3 = −𝛿0𝑗

𝛾𝑚

�̃�𝑥𝑚
𝑖𝑛 + (1 − 𝛿0𝑗) (

𝜇𝑗𝑚

�̃�𝑥𝑚
𝑖𝑛 + 2�̃�) 𝜌𝑗𝑚,

𝜒𝑗𝑚
6 = −𝛿0𝑗�̃�𝑦𝑚

𝑖𝑛 𝛾𝑚 + (1 − 𝛿0𝑗)(�̃�𝑦𝑚
𝑖𝑛 𝜇𝑗𝑚 + 2�̃�)𝜌𝑗𝑚,

𝜔𝑗𝑚 =
(𝑝2−𝑝1)𝑇𝑗(𝑥𝑚)

√1−𝑥𝑚
2

, 𝜇𝑗𝑚 =
√1−𝑥𝑚

2

𝑗ℎ̃
,

𝛾𝑚 =
𝜋

ℎ̃
(1 −

𝑚

𝑛+1
),       𝜌𝑗𝑚 = 𝑈𝑗−1(𝑥𝑚),

�̃�𝑟𝑚
𝑖𝑛 = �̃�𝑟

𝑖𝑛(𝑥𝑚) ,               𝑟 = {3,6},

  

𝛿0𝑗 — Kronecker symbol. 

Dependence Gx
in(σxz

in ), Gy
in(σyz

in ) on current SSS generates 

serious complications in solving the problem because of its 
changeableness along L. The following strategy of calculation is 
proposed: 

 At the initial step values G0x
in , G0y

in  are used as Gx
in(σxz

in ),

Gy
in(σyz

in ). These values are the same in all collocation points 

xm    (m = 1, n). SAE is linear. 

 The external loading begins with some chosen variant 
of loading scheme (values τ, τk, Qk, z∗k, bk). Solve the 

SAE. Use obtained Bj
r  (r = 3,6;   j = 0, n) in correlations 

(16) -(19) to get from (7) components of SSS in each 
of collocation points.  

 Calculate the new current value of Gx
in(σxz

in ), Gy
in(σyz

in ) from 

(2). Checks whether the relation (1) executes at every 
collocation point. If so, then pass to the next step of loading, 
choosing corresponding for every collocation point obtained 

values Gx
in(σxz

in ), Gy
in(σyz

in ). If no, then minimize deviation 

of the calculated shear modulus in relation (2), repeating 
a calculation with new, obtained for this SSS in (1) by the 
values of the current shear modulus in every collocation point. 
Recalculation repeats until sufficient exactness is achieved. 
The iteration process is convergent (tested). Calculation for 

the next step loading begins with using of values Gx
in(σxz

in ),

Gy
in(σyz

in ) obtained on the previous step.  

Introduction of a system of polar co-ordinates (r, θ) with the 
origin near the right or the left tip of the inclusion z = ±r ⋅
exp(iθ) ± a (Fig. 1), makes it possible to obtain two-term as-
ymptotic expressions for the distribution of the stresses and dis-
placements in the vicinity of the tips (|z1| << 2a) (Sulym, Pis-
kozub, 1996; Sulym, 2007). Consider the generalized stress 
intensity factors (GSIF) introduced by expression: 

𝐾31 + 𝑖𝐾32 = lim
𝑟→0 (𝜃=0,𝜋)

√2𝜋𝑟(𝜎𝑦𝑧 + 𝑖𝜎𝑥𝑧).                      (21) 

Using (7), (16) –(19) it is simple to obtain the formulae:  

𝐾31
± + 𝑖𝐾32

± = 2√𝜋𝑎𝐺𝑔𝑎𝑣 ∑ (±1)𝑗(�̃�𝐵𝑗
6 − 𝑖𝑝𝑘𝐵𝑗

3)𝑛
𝑗=0 .     (22) 

4. THE NUMERICAL ANALYSIS 

For definiteness we accept the strain model as Ramberg– 
Osgood: 

∂𝑤𝑖𝑛

∂𝑥
=

𝜎𝑥𝑧
𝑖𝑛

𝐺0𝑥
(1 + 𝐾𝑥 (

𝜎𝑥𝑧
𝑖𝑛

𝐺0𝑥
)
𝑚𝑥−1

),   

 
∂𝑤𝑖𝑛

∂𝑦
=

𝜎𝑦𝑧
𝑖𝑛

𝐺0𝑦
(1 + 𝐾𝑦 (

𝜎𝑦𝑧
𝑖𝑛

𝐺0𝑦
)
𝑚𝑦−1

).  

                       (23) 
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Then from (2) one can get: 

𝐺𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) =
𝐺0𝑥

1+𝐾𝑥(𝜎𝑥𝑧
𝑖𝑛 𝐺0𝑥⁄ )

𝑚𝑥−1 ,

 𝐺𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛) =
𝐺0𝑦

1+𝐾𝑦(𝜎𝑦𝑧
𝑖𝑛 𝐺0𝑦⁄ )

𝑚𝑦−1,   
                        (24) 

or in the dimensionless kind: 

�̃�𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) =
�̃�0𝑥

1+𝐾𝑥(�̃�𝑥𝑧
𝑖𝑛 �̃�0𝑥⁄ )

𝑚𝑥−1 ,

�̃�0𝑥 = 𝐺0𝑥 𝐺𝑔𝑎𝑣⁄ ,     �̃�𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) = 𝐺𝑥
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) 𝐺𝑔𝑎𝑣⁄ ,

�̃�𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛) =
�̃�0𝑦

1+𝐾𝑦(�̃�𝑦𝑧
𝑖𝑛 �̃�0𝑦⁄ )

𝑚𝑦−1 ,

�̃�0𝑦 = 𝐺0𝑦 𝐺𝑔𝑎𝑣⁄ ,     �̃�𝑦
𝑖𝑛(𝜎𝑥𝑧

𝑖𝑛) = 𝐺𝑦
𝑖𝑛(𝜎𝑦𝑧

𝑖𝑛) 𝐺𝑔𝑎𝑣⁄ .   

          (25) 

Consider also the following dimensionless values, which sig-
nificantly reduce the amount of calculations without loss 
in generality: Gd = G2 G1⁄ ,τ̃k = τk Ggav⁄ ,τ̃ = τ Ggav⁄ , 

Q̃k = Qk aπGgav⁄ ,  z̃∗k = z∗k a =⁄ x̃∗k + iỹ∗k are the relation 

of matrix shear modulus, intensity of loading factors and co-
ordinates of the concentrated force application points, respective-
ly. 

Fig. 2-9 illustrates the changing of the dimensionless GSIF 

values K̃31 =
K31
+

2C̃Ggav√πa
, K̃32 =

K32
+

2p2Ggav√πa
 for some schemes 

of external loading: uniformly distributed at the infinity stress τ̃ 
(scheme 1), τ̃k (scheme 2), concentrated forces with magnitude 

Q applied at the points z̃k (scheme 3: Q2 = −Q1 = Q, z2 =
−z1 = iy2; scheme 4: Q2 = −Q1 = Q; z2 = −z1 = x2; 
scheme 5: Q2 = −Q1 = Q, z2 = z̅1 = x2 + iy) and parame-
ters of nonlinear resiliency. 

 
Fig. 2. Dependence of the stress intensity factors �̃�𝟑𝟏,�̃�𝟑𝟐 on the non-

linear elastic parameters 𝑲𝒚,𝑮𝒅 (scheme 1) 

As expected, nonzero values K̃32 appeared in scheme 1 only 
while Gd ≠ 1 (Fig. 2,3). The increase of the parameter Ky leads 

to the insignificant increase GSIF, unlike the influence of Gd. 

Scheme of loading 2 practically does not cause K̃31. Influence 

Ks, ms, s = {x; y} on K̃32 is unnoticeable in this scheme. 
As shown by the numerical experiment changing parameters 

G̃0x, Kx almost in any way not influence on GSIF K̃31, K̃32 when 
schema 3 is acting. Unlike of this, changing parameters Ky, Gd 

has more perceptible influence on the parameter of difference of 

matrix materials Gd (Fig. 4). Overall, in this case of loading K̃31 

diminishes at appearance of non-linearity, and on K̃32 is insignifi-
cant.  

 

Fig. 3. Dependence of the stress intensity factor �̃�𝟑𝟐 on nonlinear elastic 

parameter 𝑮𝒅 (scheme 2) 

 

Fig. 4. Dependence of the stress intensity factors �̃�𝟑𝟏,�̃�𝟑𝟐 on nonlinear 

elastic parameters 𝑲𝒚,𝑮𝒅 (scheme 3) 

 

Fig. 5. Dependence of the stress intensity factor �̃�𝟑𝟏 on nonlinear elastic 

parameters 𝑲𝒙,𝑮𝒅 (scheme 4) 

Results of calculations the loading scheme 4 demonstrate, 

that nonzero values K̃31 appear for the "hard" inclusion (G̃0y >

1), grow while Gd is increasing and diminish while Kx  is increas-

ing (Fig. 5). An analogical tendency is observed in this case 

of loading also for K̃32 (Fig. 6). 
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Fig. 6. Dependence of the stress intensity factor �̃�𝟑𝟐 on nonlinear elastic 

parameters 𝑲𝒙,𝑮𝒅 (scheme 4) 

 

Fig. 7. Dependence of the stress intensity factors �̃�𝟑𝟏,�̃�𝟑𝟐 on parame-

ters 𝒙𝟐,𝑮𝒅 (scheme 5) 

 

Fig. 8. Dependence of the stress intensity factors �̃�𝟑𝟏,�̃�𝟑𝟐 on nonlinear 

parameter 𝑲𝒚 (scheme 5) 

Fig. 7-9 illustrates the results of calculations for the loading 
scheme 5. On Fig. 7 the influence of displacement of co-ordinate 

x2 of the concentrated force application point on GSIF K̃31,K̃32 is 
represented for different values of the parameter of difference 

of matrix materials Gd. Notedly, that maximal values GSIF K̃31 

and K̃32 (only when Gd ≠ 1) are reached at x2 = 1, when a 
point of applying of the concentrated force is exactly above the tip 
of inclusion.  

 

Fig. 9. Dependence of the stress intensity factors �̃�𝟑𝟏,�̃�𝟑𝟐 on nonlinear 

parameter 𝒎𝒚 (scheme 5) 

The influence of parameters of non-linearity Ky, my on GSIF 

K̃31,K̃32 is showed on Fig. 8,9. It is detected that parameter Ky 

brings in greater changes in a result, than my. 

Thus, for loading where a constituent acts along axis Oy 

(schemas 1, 3, 5), an increase Ky increases a value GSIF. The 

increase of parameter my for the "soft" inclusion (G̃0y < 1) 

increases values of GSIF and for "hard" (G̃0y > 1) - diminishes 

it. 

5. CONCLUSIONS 

The model of thin inclusion with substantially nonlinear me-
chanical properties is built. Using methods of the coupling prob-
lem of boundary values of analytical functions we reduce the 
problem to SSIE with variable coefficients on jump functions. 
A consilient iterative numerical-analytical method is proposed to 
solve such SSIE by reducing it to linear SAE on each step.  

Numerical calculations enabled to analyse influence of the pa-
rameters of non-linearity in accordance to the Ramberg-Osgood's 
law of deformation on SSS of body at loading by the balanced 
system of concentrated forces and by a uniform shear on the 
infinity. 

The result for the considered configurations and tasks re-
vealed the following patterns: 1) the most perceptible influence 
on the GSIF makes the difference of matrix materials Gd; 2) the 

parameter of non-linearity Ks provides more perceptible effect on  

GSIF compared with ms, s = {x; y}; 3) for loading, where pre-
dominant contribution gives a constituent along axis Oy (schemas 

1, 3, 5), an increase Ky increases the value GSIF; 4) the perpen-

dicular direction (along an axis Ox) of predominant loading con-
stituent leads to reverse conclusion – increasing of Kx diminishes 

value of GSIF; 5) the increase of parameter my for the "soft" 

inclusion (G̃0y < 1) increases the value of GSIF and for "hard" 

(G̃0y > 1) - diminishes it; 6) the influence of the parameters of 

non-linearity is considerably more perceptible for the "soft" inclu-
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sion when Oy- directed predominant loading is acting, unlike the 

case of the Ox- directed predominant loading acting when "hard" 
inclusion  is more sensitive to the non-linearity. 
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