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Abstract: It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed 
and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance 
of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models 
and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented 
and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few 
MADM functions in Matlab. 

Key words: Mechatronics, Optimization, Poly-optimization, Evolutionary Algorithms, Artificial Intelligence, Genetic Algorithm,  
 Soft Optimization, Multi-Attribute Decision Making (MADM), Inverse Problem, Engineering Design, Fuzzy Control,  
 Linguistic Criteria, Mathematical Models, Pareto Solutions, Trade-Off Solutions, Compromise Solutions, Fuzzy Logic  

1. INTRODUCTION 

As for now, optimization techniques are not very popular in the 
real engineering, though they are taught at universities and are 
recognized as very useful in design and in management. Probably 
the main reason is that mathematical models of objects are diffi-
cult to determine, and what more, criteria may not be precisely 
defined.  

The goal of this paper is to demonstrate a special significance 
of optimization in mechatronic design, also the characteristic 
obstacles to formulate and solve solutions, and to present typical 
modern approaches and methods.  

Also, the goals are: (1) to argue that the design task mostly is 
an inverse problem and, if so then (2): to propose that the poly-
optimization approach is an efficient methodology to solve it. What 
is more, it may be a sound paradigm for devising CAD programs. 

2. STATEMENT OF THE OPTIMIZATION PROBLEM 

2.1. Particularities of Mechatronics as a Design Domain 

There are few peculiarities of the mechatronic design among 
other engineering domains. First, it has a shorter design tradition, 
so the designer’s experience is confined, as well as official stand-
ards for designing are currently limited. Second, a few science 
disciplines and engineering fields are engaged: mechanical, con-
trol, electronics etc. Third, mathematical models are complex. 
Thus, to effectively precede a design process a formal mathemat-
ical analysis and effective computer procedures are necessary. 
The optimization is a key action. 

2.2. Notions  

The following terms will be used: 
─ decision variables: parameters that are to be calculated 

in (poly-)optimization procedure; 
─ variant: a specific vector of decision variables; or a specific 

vector in performance parameters space; 
─ constraints: limits imposed on admissible variant decision 

variables and on performance parameters; they define the set 
of admissible variants; 

─ criteria: performance parameters, which must be at minimum 
or at maximum; 

─ optimization, optimality problem: searching for optimal deci-
sion variables; 

─ solution of the optimality problem: the optimal variant;  
─ compromise variant (equivalent names: a trade-off variant, 

Pareto-optimal variant; a poly-optimal variant): such permitted 
variant, which may not be improved on one criterion without 
violation on another criterion; 

─ solution of the poly-optimization (MADM, MCDM): set 
of compromise variants. 

 
2.3. General Structure of the Design Process 

Examples from the real life acknowledge that the design pro-
cess is strongly iterative. This concerns the micro–scale as well 
as the macro–scale of the process. It is due to the fact that design 
tasks are inverse problems, because either the direct problem 
in a specific design case may not be formulated or there are more 
unknown parameters than the number of equations in a mathe-
matical model. 

Multiple repetitions of a design procedure are time– and la-
bour–consuming, so in the design science methodological efforts 
are undertaken to convert the iterative structure to the linear one. 
In the next paragraphs some procedures are discussed.  

For planning and management purposes, and for realization of 
the design process it is broken to smaller actions, which constitute 
the process structure. If the actions are elementary, the structure 
is called a micro-structure (Tarnowski, 1997). It is presented 
graphically in Fig. 1. 
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Fig. 1. The micro-structure of the design process (Tarnowski, 1997): 1 – analysis of the need; 3 – definition of the design problem;  5 – specifications;  

7 – overall quality system; 9 – definition of the overall criterion of optimality; 11 – searching for possible variants of solution; 13 – selection  
of variants; 15 – definition of the quality measures; 17 – analysis and verification of feasibility of variants; 19 – definition of the criteria of optimality; 
21 – evaluation; 23 – optimization or poly-optimization or choice proposal of a variant to the design processing in the next step;  
25 – arbitrary decision. Rectangles denote elementary actions, circles denote results 

You may see that few different back loops are possible from 
the action 13 and from the final decision 25, also. These loops – if 
they are formalized as problems – are inverse problems. 

2.4. Decision Problem 

The standard optimality problem is when the triad is given: 
< 𝑥, 𝛷(𝑥), 𝛺(𝑥) >, where 𝑥 is the decision variables vector, 

𝛷(𝑥) is an overall optimality criterion and  𝛺(𝑥) is a set of con-
straints, defined in a fully mathematical form. If not, the formal 
optimization is not possible, as it is often practically the case, but 
still people try to find the best solution, and they do it intuitively. 

Another trouble may be, that even if the complete model 
of optimization is given or may be easily formulated, the computa-
tions are difficult (like in the case of the dynamic optimization) 
or time consuming (with plenty of decision variables – e.g. 
in design of machines or electronic devices) or the optimized 
object mathematical model is continuous in time and space. 

It is generally accepted that each decision should be optimal. 
But in the real practice in business, logistics, medicine, and even 
in engineering – where a decision–maker has for his/her disposal 
comparatively good unique mathematical models – it is very rarely 
the case. Various reasons of this situation were discussed 
in many publications (e.g. Tarnowski (2011)) 

A recognized cause is the lack of the adequate optimality cri-
terion definition for a specific case or even no practical possibility 
to formulate it as a mathematical function of decision variables 
(like cost, reliability and others). Besides, in many concrete situa-
tions people do not consent which performance parameter(s) 
should be minimal (or maximal), or which are only limit con-
straints. But still they make the decisions intuitively and they insist 
their resolutions are optimal or quasi–optimal, at least.  

2.5. Characteristics of a Design Parametric Problem 

Here are three main features of the design parametric prob-
lem. 

─ number of design parameters 𝑋 (which are to be found) 
strongly prevail over the number of performance parameters 
𝑌 (which are given); 

─ formal mathematical model only partly define relations be-

tween 𝑋  and 𝑌 (in another words it is not complete); remain-
ing relations are the matter of intuition and experience of de-
signer (they are heuristic); 

In practical cases the model is defined as Y = f(X) and it 
may not be converted to X = f −1(Y) 

Design tasks generally are inverse problems. 

2.6. Standard Inverse Design Problems in Engineering 
(Tarnowski et al., 2009)  

The considerations in this work are confined to the parametric 
design rather than to the conceptual design. So it may be as-
sumed that at the start of the design process a general idea 
(or a structure of the object) is defined, as well as objectives and 
requirements (or specifications) of the object. Hence the mathe-
matical model may be elaborated, even though it is usually non-
complete in the sense, that there are more unknown parameters 
then equations. What is more, we assume that constraints are not 
to restrictive, what means that the set of admissible variants is not 
empty. 

2.7. Procedure of the Inverse Problem Solution  
(Tarnowski et al., 2009) 

To solve a given problem – especially by an algorithm – we try 
to find formal relations between the variables. Then we can set 
some constraints and define a mathematical model of the given 
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task. In engineering the models are built on the basis of physics 
and economics.  

Let the mathematical model that may be formulated has the 
form: 

𝑌 = 𝑓(𝑋)                                           (1) 

In design 𝑌 is a vector of performance variables or perfor-
mance functions, and 𝑋 stands for design parameters. Symbol 𝑓 
denotes a functional relation. We assume, that the mathematical 
model is known (or may be elaborated).  

A direct problem is when 𝑋 is given and 𝑌 is to be determined 
(by computing the model, as a standard way). 

However, in the parametric design and in diagnostics Y is giv-

en and 𝑋  is to be found, and typically it is not possible to invert 
the model (Mainly for two reasons: (1) there are more unknowns 
𝑋 than givens 𝑌, (2) in engineering most relations are of experi-
mental origin and cannot be inverted – like in the stress-strain 
analysis, fluid mechanics, thermodynamics and others.)  

𝑋 = 𝑓−1(𝑌)          (1a) 

so a designer must solve an inverse problem (In publications the 
term inverse problem is used in narrower sense: usually refers to 
situations, where solutions are defined in a continuous space 
(usually 2D or 3D), e.g.  the mathematical model is built of partial 
differential equations – like in the pattern recognition problem.).  
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Fig. 2. General structure of the procedure of solving the direct problem 
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Fig. 3. General structure of the procedure of solving the inverse problem 

The direct problem is being solved by one ‘pass’, as it is 
shown on the flow chart on Fig. 2, to be contrasted with the flow 
chart on Fig. 3 which maps the solving procedure of the inverse 

problem. Accordingly to Eqn. (1a), now Y is given, which is here 

denoted as Y(0). The X is to be found. The first activity (block Z) 
is to set a hypothesis about a solution X, i.e. to propose a prelimi-

nary solution X(i) (symbol i stands  for the iteration number.). 
This may be a heuristic activity, completed by a human being 
based on his/her knowledge and/or intuition (even a guess). Or – 
as the opposed case – it may be fully algorithmic, aided by 
a computer (random sampling from a given set, for example). 
Typical is an optimization, by the gradient method, for example. 
In the last decade the Artificial Intelligence Methods are being 
developed for this purpose, like the Genetic Algorithms or Artificial 
Neural Algorithms.  

The second activity (block P) is a computation of a vector Y(i) 
for the current vector X(i), on the known mathematical model (1), 
or – in another words – it is solving a direct problem. 

The subsequent activity (the block denoted by ) is a compar-
ison of the obtained vector Y(i) with the given vector Y(0). For 

example, it may be computation of the optimality function F, as it 
is in classical optimization algorithms, or it may be a calculation of 
the fitness function like in Genetic Algorithms. In a general case it 
may be a quadratic deviation: 

𝐹(𝑖) = ∑ (𝑌(𝑗, 𝑖) − 𝑌(𝑗, 0))𝑗
2
,            (2) 

where F(i) is a total mean square deviation in i-th step, j is the 

index of a component of the vector Y.  
The last block is a decision; and three decisions are possible: 

NO – means that the next trial pass X(i + 1) is necessary, YES – 

that X(i) is acceptable as the solution of the inverse problem, and 

STOP – that the further continuation of the loop is aimless, what 
means that no acceptable solution can be found. 

Further in this paper it will be proposed and proven, that the 
poly-optimization can be an efficient and the adequate approach 
to solve the inverse problems. 

In engineering, inverse problems are formulated in design and 
in diagnosing. 

2.8. Objects of Design 

In engineering design it is possible to recognize three main 
groups of objects of design: 

─ design of (static) objects, like machines, buildings etc., 
and processes in steady states (for example a schedule 
of manufacturing process, like an assembly line, the bus-
ses network timetable etc.); in this case the mathematical 
model consists of algebraic equations and inequalities, 
sometimes it contains tables and diagrams, of a non–
analytical type; 

─ design of dynamic objects: especially processes of the 
transient states of objects (for example the control in the 
presence of disturbances, the control of the set–up pro-
cess of installations etc.); in this case the mathematical 
model contains, as a rule, non–linear differential equa-
tions, often partial differential equations, and what is more, 
some variables are time dependent; 

─ simultaneously design of a process and a machine to real-
ize this process; what is the most complex problem, with 
great many variables. 
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2.9. Typical Optimality Problems in Design 

 
─  Parametric design: a design idea is given, a great number of 

 continues design parameters are to be found, a few are dis-
crete, some are symbolic (names). There are numerous con-
straints, many  are nonlinear, some are fuzzy. Usually there 
are a few well defined but conflicted criteria of optimality. 
Some may be only estimated (like a cost). Typically there 
is an unlimited set of variants, defined by constraints. Exam-
ple: a gear transmission of a given design with an electric mo-
tor from a catalogue. 

─ Conceptual design: typically there is a few or dozen of de-
sign concepts, given as verbal outlines or drafts in a matrix 
form of fuzzy performance parameters.  Criteria and con-
straints are quantities or fuzzy and they define a fuzzy value 
system, and a set of constraints define a space of admissible 
solutions. Ranking of the concepts is to be presented to the 
designer for his final decision. Probably the effective decision 
aiding tool is AHP method. 

─ Process: functions in the time-space domain are to be found, 
like control and or shape functions. Examples: control function 
of a drive, or a shape of a pump rotor wing, a profile of a tur-
bine rotor leaf. This is the case of the dynamic programming 
problem. 

─ Design and Process: Combination of design and process 
in one common optimality problem. Examples: design of con-
trol system and a control function of the controller to get the 
highest efficiency and minimal cost of the process, or to find 
a profile of a control valve piston and the control signal func-
tion of the actuator to obtain a required break force of a car in 
a specific traffic situation. Another example is a flying object 
and its control function.  

─ Scheduling, deployment of resources: A discrete problem 
with a great number of binary parameters (decision variables) 
and a great number of constraints (usually linear). A Cartesian 
product is a set of variants (for example schedules or re-
sources). No mathematical analytical model is given. Se-
quence or combination of events is to be found, there are 
many simple constraints; example: schedule, procedure or 
plan of actions. Permutation is possible to generate variants. 
This case is not typical in mechatronic design. Examples: 
a schedule, a procedure, a  route. To find the best solution the 
discrete linear programming class methods are used, for ex-
ample the Branch and Bound (B@B) procedures are applied. 

 
2.10. Main Obstacles in Optimization 

There are two main problems (difficulties): one is a question 
of the mathematical formulation of the optimality problem and the 
other is a formal searching for a minimum of the optimality func-
tion. The value system is assumed by a decision maker, typically 
in a descriptive verbal form. 

2.11. Mathematical Formulation of the Optimality Problem 

First it is the criterion of optimality and constraints, all together 
these are a formal definition of the requirements.  

Typical troubles are: 
─ some decision variables are fuzzy (not defined) like a color 

or design shape; 
─ some constraints are fuzzy (like compatibility, safety,  aesthet-

ics, or weakly defined (like reliability); 
─ both: some parameters and some values are fuzzy; 
─ it is difficult to accurately formalize some physical or  econom-

ical relations – then an expert may define them in fuzzy terms; 
─ value system (criteria and preferences) may not be uniformly 

precisely defined as the unique optimality function. 

 
2.12. Value System 

The value system is a structure of criteria and constraints. 
It is a standard situation, that there are few criteria of optimiza-

tion, and they are in conflict (like the accuracy and velocity), 
and there is no clarity what in a specific design case is a criterion 
and what is a constraint (like energy consumption, effectiveness 
etc. etc). If a decision maker may not arbitrarily state what should 
be what, then he/she may: 
─ if a mathematical analytical model of criteria and constraints 

is available – poly-optimization or MADM techniques or using 
one artificial complex criterion as an artificial arbitrary function 
of criteria; 

─ if criteria are not properly defined as functions of decision 
variables – fuzzy; 

─ if one overall criterion may not be defined – soft constrained 
based optimization;  

─ if a discrete set of alternatives is given - complete the ranking 
of alternatives. 

3. SELECTED OPTIMIZATION METHODS 

3.1. Fuzzy Optimization (Tarnowski, 2011; 2015) 

In real decision situations, objectives (i.e. criteria and con-
straints) may not be well defined (like aesthetics, effectiveness or 
safety) or are defined but may have no accurate mathematical 
models (like costs, production effectiveness or reliability). Still 
decision makers need procedures to aid their decisions. 

A way to enhance an effective implementation of optimization 
and MADM techniques to a real practice is a fuzzy logic approach 
to modeling the optimization problem, if only an expert knowledge 
is at hand. It yields: a) avoiding the laborious and often not possi-
ble process of building an analytical model, b) makes possible to 
use fuzzy and imprecise notions and aspects, c) often considera-
bly accelerate computations. 

In Tarnowski (2015) it was proposed a procedure how to de-
vice and to handle such models in the MATLAB environment to 
get a Pareto set solutions, by the poly-optimization. The method-
ology is illustrated below on the example of a chemical reactor.  

3.1.1. Example 1: Poly-Optimization With Two Fuzzy Criteria 

The poly-optimal control parameters are to be found. First, 
having stated criteria, as fuzzy and/or non-fuzzy notions (product 
quality and  effectiveness, in the example), an expert arbitrarily 
defines decision variables (process temperature, time and mixing 
velocity), and their membership functions, then a mathematical 
model is established as a set of rules if – then  type. The given 
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object is a bio-chemical batch process executed in a heated con-
tainer which is provided with a rotating mixer. What we are looking 
for are: temperature, duration time of the process and the mixer 
velocity. These are decision variables. Their optimal values are to 
be found. 

Constraints are defined as arbitrarily ascribed admitted ranges 
of decision variables; for example: 
─ temperature:  [50, 150] Centigrade, 
─ time (process duration)  [1, 5] hrs, 
─ mixer velocity: [1, 10] rpm. 

For each decision variable a discrete set of linguistic values 
have been assigned, for example for temperature it is: [low, medi-
um, high]. Then, for each value a membership function has been 
defined, arbitrarily, be an expert. 

There are chosen two criteria: quality of a product and effec-
tiveness of the process. They are in conflict. Obviously they main-
ly are dependent on decision variables. In specific cases they both 
may be arbitrarily defined and measured, but in the present ex-
ample we take them as linguistic terms and formalize as fuzzy 
notions. Consequently,  it must be assumed that they are intuitive-
ly understand by an expert/decision maker and he/she is able to 
define a mathematical model of the process in a form of rules: IF 
… THEN … (Yager, 1993). 

For example, rule no 2 is: IF temperature is low AND process 
duration is short AND mixer velocity is slow THEN effectiveness is 
medium AND quality of the product is “1”. Mark “1” is here a score 
of the quality in a arbitrarily scale 0 – 5. In the example twelve 
rules has been defined. 

To each rule an importance factor may be assigned. On these 
data the fuzzy computer model has been built in Fuzzy Logic 
Toolbox within the MATLAB environment. A graphic interface is 
provided to do this, and a file of the type *.fis is created. Now, the 
poly-optimization [Multiple Criteria Decision Making] may be com-
pleted. Generally there are two approaches (Tarnowski, 2011):  
─ either by a survey of all possible solutions (Fig. 4) and reduc-

ing the set to the Pareto solutions (Figs. 5 - 7),  
─ or by a mathematical optimization algorithm.  

 
Fig. 4. All 64821 variants generated by the fuzzy system 

The first method may be time-consuming, especially if there 
are many decision variables, but it may be accelerated by random 
generation of values. The second method may be realized by any 
known optimization method, for example the gradient method 
(Venkataraman, 2009) or the genetic algorithm. 

In the example the first approach was applied, because this 
procedure does not impose any restrictions on the mathematical 
character of the model (it may be non-linear, incoherent, non-
monotonous etc.). Also, it may be expected to have some local 
minima. 

To conduct the first method a segmentation of the decision 
variables space was made for arbitrarily (𝑛1 = 251) 𝑥 (𝑛2 =
31) 𝑥 (𝑛3 = 41) elements, obtaining the set 𝑅 of all 64.821 
nodes representing admissible solutions. 

 
Fig. 5. Collection of 41 Pareto-optimal solutions in the criteria space:  
            effectiveness and quality  

 
Fig. 6. Collection RPar of 41 Pareto-optimal solutions in the decision 
            variables space: temperature within [50, 150] Centigrade,  
            time [1, 5] hrs and mixer velocity [2, 10] rpm 

 
Fig. 7. Collection RPar of 41 Pareto-optimal solution: quality vs. velocity 
            (example) 
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For each node of the grid the two criteria were calculated as 
fuzzy numbers, using the rules of fuzzy (linguistic) model. After 
de-fuzzyfication the set 𝑅 was calculated as numbers. Finally the 

set 𝑅 of all 64.821 permissible solutions may be plotted, as on 
Fig. 4. 

Now the Pareto subset 𝑅𝑃𝑎𝑟 of the poly-optimal solutions is 
to be extracted of R on its definition (Tarnowski, 2011). 41 Pareto-
optimal solutions were obtained (Figs. 5 – 7). 

The decision maker has to choose one final solution of the 
RPar set. This intuitive compromise decision may be easier if the 
decision maker has an ‘insight’ into this set in various coordinates, 
especially as a function of decision variables, like Fig. 6 or 7, for 
example. For easier evaluation the 3D drawings may be rotated. 

3.1.2. Conclusions On Fuzzy Poly-Optimization 

Basic advantages of the fuzzy poly-optimization are:  
─ linguistic criteria and linguistic constraints may be included to 

the mathematical model of optimization and multi-attribute op-
timization, only if an expert understands their linguistic mean-
ings, 

─ criteria must not be mutually independent (i.e. they may be 
mutually correlated), 

─ relations in the mathematical model may be nonlinear, 
─ the set of variants may be non-coherent. 

Also, in the MATLAB environment: 
─ fuzzy formalization of the poly(-optimization) model is easy 

and computations are simple for the user; 
─ intuitive evaluation of the Pareto set is supported by the ex-

tensive graphic presentation capacity; 
─ criteria may be fuzzy and/or numerical in one problem. 

 
3.2. Soft Multi-Attribute Optimization  

Now we present the second non-standard approach to poly-
optimization, it is an intuitive decision making without formal crite-
ria, a computer aided procedure – what we may call a soft optimi-
zation or constraints-based poly-optimization. 

The premise is that in real decision situations there are many 
various requirements that the chosen variant must or should meet, 
of various natures: economic, ergonomic, technological, etc. 
Some are to be extreme (minimal or maximal), these are criteria, 
and some are limitations, those are constraints. In the mathemati-
cal formulation of the optimization problem they must be recog-
nized and specified. However, most often a commissioner and 
decision-maker may have doubts about a membership and/or 
about an importance of a specific parameter on criteria or on 
constraints. 

It is blurring the distinction between criteria (which are to be 
minimized) and constraints (which are to fall into limits). For ex-
ample, when buying a bicycle, its cost may be a criterion, may be 
a constraint, or both. 

3.2.1. Example 2  

This example illustrates the usual complexity of relations and 
a conflict nature of criteria and constraints, what makes an intui-
tive holistic assessment rather difficult. 
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Fig. B                                       
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Fig. 8.  The set of poly–optimal solutions in the criteria space (a goal 

space) for uc= 20 (A) and uc= 8 (B), for various materials:  
a) bronze (kg=140 MPa, pdop= 250 MPa;), b) steel (kg= 160 MPa, 
pdop= 350 MPa;),  c) steel (kg=180 MPa, pdop= 90 MPa), d) steel 
(kg= 250 MPa, pdop= 780 MPa) 
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Fig. 9. Poly–optimal solutions in the decision space: the first criterion: 

efficiency (Fig. A) vs. u1 (u1 = (1...5, 7) and z1 (z1= (14, 92),  
and the second criterion (total volume) (Fig. B) vs. u1 (u1 = (1...5, 
7) and the coefficient of the tooth face width Ψ1  (Ψ1 = (14,  92),  
for n0=800 rpm, Nc=400 kW, Ψ2=40, m1=4 mm, m2=8 mm, µ=0.01, 
α0=200, uc=8 
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The object is a gear transmission. A poly–optimization has 
been completed and yields a numerous sets of Pareto solutions. 
But it is difficult for decision maker to grasp the play of constraints 
and to examine a conflict criteria situation, because there may be 
generated a great number of such diagrams. Exemplary Pareto 
solutions sets are presented in Fig. 8 and Fig. 9. 

However, the more flexible approach exists, broadly known as 
a trial–and–error procedure, and the objective of this chapter is to 
show a hierarchical procedure - especially extensively aided by 
computer method – as a completely rational technique. 

3.2.2.  Problem Recognition 

In most cases, the problem – which is a subject of the deci-
sion – is not quite new, e.g. the decision–maker has some (at 
least heuristic) knowledge of the field, so he/she may assess the 
quality of the specific variant. This evaluation may be done either 
on the scaled drawing displayed on a monitor or on printed charts 
(or diagrams) presenting performance characteristics of the vari-
ant.  

Typically, there will be many variants, so the decision–maker 
will be searching for a compromise. If it is possible to express the 
problem mathematically, it could be defined as a poly–
optimization or a multi–attribute decision problem. 

3.2.3. Terminology 

 
─ x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] – vector of decision variables, it is a 

variant of solutions, defined in the decision variables space;  
p = [𝑝1 , 𝑝2, . . . , 𝑝𝑟] – set of constant-value parameters; 

y = [𝑦1, 𝑦2, . . . , 𝑦𝐽] – set of performance variables; vector of 

performance parameters, it is a variant of solutions, defined in 
the performance (specifications) variables space;  

Ω𝑦 = {𝑔𝑗(y, p) ≤ 𝑏𝑗𝑗 = 1, . . . , 𝐽} – set of  functional con-

straints in the y space; 

─ Ω𝑥 = {𝑔𝑗(x, p) ≤ 𝑏𝑗𝑗 = 1, . . . , 𝐽} – set of  functional con-

straints in the x space; 

─ 𝐷 = [𝑥𝑖𝑙𝑜𝑤𝑒𝑟 , 𝑥𝑖𝑢𝑝𝑝𝑒𝑟]i = 1, . . . , n – set of lower and upper 

limits on decision variables. The decision–maker defines the 
limits by applying his experience, his/her common sense and 
obvious conditions (for example: dimensions must not be 
negative numbers). 
The permitted variant (acceptable solution) xpermit  is the one 

which satisfies inequalities 𝛺 and membership relations 𝐷, i.e. 
meets all requirements and constraints specified in specifications. 

The satisfying variant (or quasi-optimal) xsatisf  is a permitted 
variant accepted arbitrarily by a decision-maker. 

Generally, a decision–maker wants to identify the best 
solution. The “best” or optimal variant xopt is such permitted variant 
x, which has an extreme value (maximal or minimal, according to 
the meaning) of the optimality function F:  

x𝑜𝑝𝑡 = x ∈ 𝐷 ∩ Ω: {𝐹(x) = sup𝐹(x)
𝑥∈𝐷

}                                  (3) 

But what can be done if an optimality function F is not estab-
lished and not defined? The general idea of the soft optimization 
is to generate (by a computer) as many solutions 

x1, x2, . . . , xm ∈ D as possible, and then make a decision by 

a human expert.  Leaving the final decision to the human being 
has a meaning of empowerment and privilege, as well as an 
obligation. To facilitate this arbitrary decision each variant should 
be presented in the most adequate way for the human decision–
maker’s assessment, possibly graphically, and/or as a fuzzy 
numbers (values) set.  

3.2.4. Problem Definition 

It is assumed that a mathematical model of the object is given, 
as well as its all requirements and constraints. Besides, the deci-
sion-maker intuitively formulates some preferences and thus 
she/he is able to differentiate (evaluate) various submitted vari-
ants. 

Let assume, that in a specific case a set of acceptable and 
permitted solutions exists. The proposed methodology requires 

only < 𝑥, 𝛺(𝑥) >, but an expert (an experienced decision–
maker) is necessary to cooperate with the computer in a dialog 
mode. 

A decision maker may rank requirements (constraints) accord-
ing to their importance, the first criterion being crucial.  

3.2.5. Outline of the Soft Optimization Idea  

Decision-maker defines all constraints and applies computer 
to find any permitted solution and to visualize the variant and its 
characteristics. Then he/she arbitrarily change constraints and 
assesses a new variant, until he/she find a satisfying variant. 

A special attention must be given to dynamic systems, when 
the mathematical model is a set of differential equations regarding 
the independent variables, which are time and three space di-
mensions. 

3.2.6. Proposed Procedure  

The overall idea is an interactive manipulation of threshold 
values of constraints, bk’s. 

Below a flow diagram of the proposed procedure is shown 
(Fig. 10). As it has been assumed, some actions are heuristic – 
not fully formalized - and a human actor completes them. 
Diamond shape figures show decision actions. 
STEP 1: If in Step 6 a computer optimization procedure shall be 

used, set the optimality function 𝐹 = 𝑎 to be constant (for 
example a=0), as contrary to the standard optimization procedure;  
STEP 2: For functional properties define reasonable upper values 

of 𝑏𝑗𝑗 = 1, . . . , 𝐽 where bj are upper boundaries bj if the “ the less 

bj  the better quality” rule is applied; 
STEP 3: Choose one performance yk parameter as a provisional 

criterion: 𝑘 ∈ 𝑦; k is taken from the set y. 
Probably you start with the constraint imposed on the most 
important performance parameter (a quality criterion), and b is the 
acceptable upper value, if the less the better (as the energy 
consumption, for example); 
STEP 4: Set the provisional value bk;  the chosen parameter must 
satisfy 𝑘 ≤ 𝑏𝑘  condition; 

STEP 5: Set the initial vector of decision variables x0 for the 

deepest gradient method of optimization. Start with x0 ∈ 𝐷, 
unless you may define better starting point: x0 ∈ Ω𝑥  . When the 
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Genetic Algorithm is used, initial population and other required 
parameters should be determined. 
 

 
Fig. 10. Flow diagram of the ‘soft’ optimization algorithm 

STEP 6: Run optimization procedure, what is searching for 
permitted variant xpermit 

For each constraint a penalty function is defined: 

𝑜𝑔𝑗 = {
0𝑖𝑓𝑔𝑗 ≤ 0

𝑤𝑗 ⋅ 𝑔𝑗
2𝑖𝑓𝑔𝑗 > 0

              (4) 

where wj are arbitrarily chosen coefficients; typically wj ε = [0, .., 1]  
j = 1, 2, ... J (for normalization purposes). Then any optimization 
procedure may be applied with the penalty function as the 
optimality function, where a known penalty function may be 
applied: 

𝐹 = ∑ 𝑜𝑔𝑗
𝐽
𝑗=1                (5) 

The optimization is completed by a computer and may be ac-
complished by various techniques: 
─ The steepest gradient algorithm;  
─ Full survey of the decision space; 
─ Stochastic survey of the decision space; 
─ Finding and then applying an approximation function; 
─ Applying a trained artificial network; 
─ Applying the Genetic Algorithm; 

─ Typically it will be a gradient algorithm. 
For example, if this approach is used in MATLAB, the constr 

or fmincon function can be used, where all constraints are defined 
and the value of optimality function is declared as an arbitrarily 
defined constant.  

Observe how it proceeds; if not satisfactory, change the opti-
mization procedure. 
DECISION 7: If the optimization procedure does not converge 
successfully, go to  STEP 5 and change vector x0; if no feasible 
solution has been found, go to STEP 4 and set worse value 
(larger or smaller, what is the case) of bk 

DECISION 8: Note the active constraints AC. If  𝑘 ∉ 𝐴𝐶 go to 2 
If the current constraint is not an active constraint AC, it may be 
the evidence that the threshold value bk may be more restrictive – 
a better (smaller) value and/or other constraints are too restrictive 
(to “tight”). 
STEP 9: Note the values of criteria (constraints) gi; note the vector 
x; display the solution as a schematic drawing of the found object 
or as performance characteristics on the screen, to make easier 
assessment of the solution; then take the decision 10 
DECISION 10: Do you want to try further to improve the obtained 
solution against the current criterion k? If YES, lower the threshold 
bk: go to 4 and set a smaller value, otherwise go to Decision 11 
DECISION 11: Now you may try to improve the obtained solution 

against another criterion k: 𝑘 ∈ 𝑦.  If YES go to 3 and take 
another crucial constraint, if NO, the procedure stops. 
STEP 12: Obtained solution x is the satisfying decision: xsatisf 

3.2.7. Example 3 (Ociepa and Tarnowski, 2012) 

The object is a servomechanism with two feedback loops, an 
outer loop from the position and the other one from the velocity 
signal, with two controllers. The design optimization problem is to 
determine seven decision variables (three parameters of each 
PID-type controller and the gain coefficient of a tachometric trans-
ducer). In the example constraints refer to characteristics of the 
step response: an overshot, the response time and the gain of a 
closed loop. There are few possible definitions of the optimality 
criterion: each of performance parameters could be adopted; 
these are the response time, a few standard integrals of error, the 
power consumption and others.  

Following the proposed soft optimization algorithm, the re-
sponse time was selected as the first constraint criterion, with the 
exemplary limit bk = 60 s. In Fig. 10 exemplary step answers are 
depicted: by the proper optimality solution (Fig. 10A) and by a 
satisfactory solution (Fig. 10B)  – soft optimization. The second 
characteristic may seem a bit worse (longer transient process and 
a small overshoot), but it requires smaller energy (see the smaller 
velocity pick) and was obtained in six times shorter computation 
time. 

3.2.8. General Remarks on ‘Soft’ Optimization 

The above given examples illustrate that there may be formu-
lated various optimization problems, and various procedures may 
be applied to solve them.  

There are several possible approaches to the ‘soft’ optimiza-
tion. Typical ones are: 
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3.2.9. Searching for any Acceptable Solutions According 
only to the Given Constraints 

 Such approach may be justified by the fact, that typically the 
optimal solution is located on the edge of the acceptable solutions 
space (“on a constraint(s)”), although a question remains which 
one(s). Intuition and experience may suggest the limit: for exam-
ple, in mechanical objects it is the stress/strain restriction. In 
MATLAB the function constr or fmincons is a comfortable tech-
nique, which finds the solution on constraint, near to the starting 
point, if a constant value of optimality function is declared. The 
human operator provides only the starting point. 

Fig. A                           

 
Fig. B 

 

Fig. 10. Step answers of the servomechanism; A: the optimal on the ISE  
              optimality function (computation time 4625s),  B: ‘soft’ optimal  
              (computation time 797s) 

3.2.10. Trial–and–Error Procedure 

The session is carried on by an operator and may be stopped 
at any point. The operator submits each probable solution (values 
of all decision variables) for verification. 

3.2.11. Standard Analysis 

An operator proposes a specific solution (values of all decision 
variables), and his/her computer calculates all programmed char-
acteristics and/or a schematic view of the object. Example: a 
bridge or any other construction object – an architect is the opera-
tor and the computer completes computations of distribution of the 
stress/strain analysis; an automatic control system – the designer 
defines the structure and its parameters and the computer simu-
lates its operation and displays characteristics. 

In all cases an adequate mathematical model of the designed 

object is necessary. The resulted information about the decision 
(the selected variant i.e. the solution) should be displayed graph-
ically on the monitor, to make an assessment easier for the hu-
man operator. 

3.2.12. Conclusions about the Soft Poly-Optimization 

A quasi–optimization (in the absence of optimality function) 
may be completed in a dialog procedure. The presented idea is 
based on the interactive mode of decision–making, which is a 
constitutive and inherent feature of the CAD systems. The pro-
posed approach intends to encourage the interactive mode of the 
human–computer cooperation and make it more efficient. The 
quasi-optimal solution is achieved by tighten the constraints. The 
soft optimization may be especially efficient for objects with com-
plex models: typically those containing non–linear partial differen-
tial equations, with many decision variables and numerous con-
straints. 

The “soft” optimization creates a possibility for resolving non–
unique inverse problems (Tarnowski and Krzyżyński, 2009). 

The main advantages are: (1) no necessity to define an opti-
mality function, (2) shorter computations, (3) more reliable proce-
dure then the standard optimization.  

The interactive (dialog) procedure for finding a satisfying solu-
tion may be recommended when: 
─ there are many challenging requirements and a decision 

maker cannot or denies to define one global optimality func-
tion which may represent a compromise; 

─ the mathematical model of the designed object is quite com-
plex and difficult for computations, for example the model 
comprises non–linear differential (partial) equations; or there 
are many non–linear constraints and many decision variables. 
In such case the decision–maker may rather postpone formal-
izing and properly resolving a poly– optimization problem.  
The proposed soft–optimization procedure reduces the com-

putation time and does not require defining the optimality function. 
However, it needs a heuristic cooperation by a human operator, 
but yet this is also a feature of any other type of optimization. 

Often problems with many decision variables and many func-
tional constraints exist. Then optimization procedure is time con-
suming (for computations), especially when the model contains 
nonlinear differential partial equations, what is a rule for continu-
ous time dependent systems. 

3.2.13. Summary to the Soft Optimization 

If a decision is subjected to many constraints, it may be dis-
putable how to formalize an optimality function, and even multi–
attribute approach is not necessarily the solution of the decision 
problem, because decision maker may not intuitively grasp the 
play of criteria.  

In practical situations an optimality function may be difficult for 
standard optimization procedures (e.g. example of a pneumatic 
drive). What more, if the mathematical model contains non–linear 
partial differential equations, determining the Pareto solutions set 
may be a time–consuming process, and a decision maker may be 
discouraged to proceed. Then the dialog procedure of finding 
satisfactory solution may be recommended. In second part of this 
chapter, a kind of such interactive method called the “soft optimi-
zation” is proposed and presented. 
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4. Choice of the Minimization Algorithm 

Classical gradient algorithms have limited applicability for con-
tinuous problems, with differentiability functions, with one mini-
mum within the feasibility region. In the last decade a set of appli-
cable algorithms has been substantially increased. Many have 
been programmed, coded and implemented, typically in MATLAB.  

4.1. Poly-Optimization and Multi Attribute Optimization 
(MADM) 

Typically a designer (or other decision-maker) seeks for a 
compromise between many requirements rather than to nominate 
one functional constraint to be an optimality criterion. 

When a few criteria are to be adopted, there are possible two 
approaches: 
─ one is to build one artificial function of main constraints, and 

then to use it as the optimality function, what is usually called 
a multi-attribute optimization; 

─ and the other is to find a non-dominated variants and more-or-
less arbitrarily to decide which single solution is to be decided 
what is called a poly-optimization. 
The final result of poly-optimization is a set of non-dominated 

variants (decisions), then an arbitrary decision on one variant to 
further implementation must be taken by a human designer. This 
decision typically is made on heuristic premises, and is based on 
various paradigms, accordingly to specific believes of an individu-
al decision-maker. 

In Tarnowski (2011) there is a methodological discussion and 
many examples. 

Besides, In Matlab there are two specific algorithms imple-
menting the methodology: fgoalattain and fminimaxi. 

4.2. Function Fgoalattain  
(MATLAB reference documentation) 

It solves the multi-objective goal attainment optimization prob-
lem. Given are criteria, for each a preferable value is established 
(a vector goal) and its importance (weight).  

A weighting vector controls the relative underattainment or 
overattainment of the objectives in fgoalattain. When the values of 
goal are all nonzero, to ensure the same percentage of under- or 
overattainment of the active objectives, set the weighting function 
to abs(goal). (The active objectives are the set of objectives that 
are barriers to further improvement of the goals at the solution). 

4.3. Function Fminimax (MATLAB Reference Documentation) 

The Fminimax Matlab function attempts to solve the minimax 
solution of several functions Fi  and several  variables x, with 
nonlinear constraints imposed on functions and variables: 

𝑚𝑖𝑛
𝑥 

 
 𝑚𝑎𝑥

𝑖  
 𝐹𝑖 (𝑥) 

Criteria functions Fi  and decision variables x can be vectors or 
matrices. 

4.4. Particle Swarm Optimization (PSO) 

In computer science, Particle Swarm Optimization (PSO) is a 
computational method that optimizes a problem by iteratively 
trying to improve a candidate solution with regard to a given 
measure of quality. It solves a problem by having a population of 
candidate solutions, here dubbed particles, and moving these 
particles around in the search-space according to simple mathe-
matical formulae over the particle's position and velocity. Each 
particle's movement is influenced by its local best known position 
but, is also guided toward the best known positions in the search-
space, which are updated as better positions are found by other 
particles. This is expected to move the swarm toward the best 
solutions [Wikipedia]. Examples are in Tarnowski (2011). 

4.5. Analytic Hierarchy Process (AHP) (Saaty, 2008) 

Procedure AHP is dedicated for a discrete set of solution vari-
ants and many criteria, when a decision maker rather prefers to 
answer a set of simple questions about his/her feelings rather 
than to define a strict value system e.g. an overall optimality func-
tion. It was developed by Thomas L. Saaty in the 1970s and has 
been extensively studied and refined since then. It was developed 
to optimize decision making when one is faced with a mix of quali-
tative, quantitative, and sometimes conflicting factors that are 
taken into consideration. 

Tab. 1.  AHP matrix of ranking of variants 

Variant A1 A2 … Ai … An S 

A1 ---      𝑆1 

A2  ---     𝑆2 

…        

Aj    Vji   𝑆𝑗  

…        

An      --- 𝑆𝑛 

In the simplest case AHP may be used for ranking alternative 

design solutions. An empty square matrix A = {aji},  𝑛 𝑥 𝑛 of 𝑛 

alternatives is given. A decision maker puts his/her arbitrary opin-
ion about a force of preference of the 𝐴𝑗 over the 𝐴𝑖 in an arbi-

trary scale, for example [-10, 10]. The sum Sj of partial marks 𝑉𝑗𝑖: 

Sj = ∑ Vji
i=n
i=1  is a measure of value of the alternative 𝐴𝑗 within 

the set of all alternatives 𝐴. 
The advantage of this method is that no explicit criterion 

is necessary. 
 “Users of the AHP first decompose their decision problem into 

a hierarchy of more easily comprehended sub-problems, each of 
which can be analyzed independently. The elements of the hierar-
chy can relate to any aspect of the decision problem—tangible or 
intangible, carefully measured or roughly estimated, well or poorly 
understood—anything at all that applies to the decision at hand. 

Once the hierarchy is built, the decision makers systematically 
evaluate its various elements by comparing them to each other 
two at a time, with respect to their impact on an element above 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Thomas_L._Saaty
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them in the hierarchy. In making the comparisons, the decision 
makers can use concrete data about the elements, but they typi-
cally use their judgments about the elements' relative meaning 
and importance. It is the essence of the AHP that human judg-
ments, and not just the underlying information, can be used in 
performing the evaluations” [Wikipedia]. 

4.6. Dynamic Optimization (Dynamic Programming) 

An optimal function is to be found in the time-space space 
(decision space or control function space decision) rather than 
a vector of numerical values of decision variables, like in the static 
optimization. The space may be continuous or discrete. By seg-
mentation of a continuous coordinates we may transform a prob-
lem to easier formulation and then solve it by standard static 
optimization methods in recurrent procedure. 

There are two approaches to the dynamic optimization. 
A classic one based on the Pontryagin's maximum principle yields 
an optimal solution as a continues function in the time-space 
space. A stress-strain beam example by L. Mikulski is given in 
Tarnowski (2011). 

If a segmentation of the time-space space is possible, another 
group of simplified methods are at hand.   

4.7.  Bellman–Ford Algorithm 

A segmentation of the decision space is necessary. The Bell-
man–Ford algorithm is an algorithm that computes shortest paths 
from a single source vertex to all of the other vertices in a 
weighted digraph [ Wikipedia]. It is based on the principle of relax-
ation, in which an approximation to the correct distance is gradual-
ly replaced by more accurate values until eventually reaching the 
optimum solution [Wikipedia]. As an example is a long distance 
optimal route of an ocean motor-sail ship (in Tarnowski (2011)).  

4.8.  Transformation to Static Optimization 

All coordinates of the time-space space are segmented, and 
the Cartesian product is a discrete set of variants. Then the static 
optimization may be completed. As an example is a problem of an 
optimal car control (Tarnowski, 2009).  

Two optimal functions are found: the driving force and the 
breaking force between two points to get a minimal time and 
minimal power. Exemplary results of conflicted two-criteria are 
depicted on Fig. 12. 

5. CONCLUDING REMARKS 

Non-linearity of mathematical models, non-continuity of varia-
bles, fuzziness of parameters, relations and preferences, variety 
and conflicted preferences and objectives – these are reasons of 
difficulties of optimization, especially in mechatronic design.  

Inverted Problem approach is the way to build the design pro-
cedure. 

Variety of approaches to optimization and a broad spectrum of 
methods may discourage designers and the decision makers, but 
new nonconventional approaches and procedures may be a 

medium towards overcoming the discrepancy between real prac-
tice and socio-economical requirements. 

 
Fig. 12. Discrete set of the found compromise solutions, in the criteria 

space; kryt 1: time of the passage [sec]; kryt 2: used power  
for passing the car [kJ]: (+) after 65 iterations (generations)  
of a genetic algorithm, (*) after 130 and (o) after 200 iterations 

Mathematical models in Mechatronics are exceptionally diffi-
cult for computer analysis, thus non-conventional algorithms must 
be used (evolutionary ones, for example),  and a non-traditional 
formulation is necessary (e.g. fuzzy). Also, the definition of criteria 
in a concrete case may be questionable, so the MADM formula-
tion may be the answer.  

Presently new methods are being elaborated and implement-
ed, in two related domains: 
─ algorithms for minimization (for example: Długosz (2013)), 

where evolutionary based methods for multi-scale are pro-
posed), and  

─ novel approach for estimation of compromise solutions set (for 
example [13], where New measures are proposed for evalua-
tion a set of poly-optimal solutions, like a distance measure to 
the ideal solution combined with a nearest solution as well as 
a ranking index and a dominance numerator within the set, 
what is a ratio of a dominant variant to all admissible variants. 
Due to specific features of Mechatronic Design the optimiza-

tion is of a special meaning in Mechatronic Engineering Design. 
The main advantage of the poly-optimization is a possibility of an 
‘in-side’ to the problem of a conflict nature between requirements 
imposed on the design. Especially, it is possible to quantitatively 
understand a play of conditions and to estimate the sensitivity of 
influence of one criterion to the other one, and to find a rational 
compromise. This is particularly important in mechatronics, where 
the human intuition and experience may be unreliable, due to the 
short design tradition and to the complexity of co-operating vari-
ous physical processes. 

6. SUMMARY 

On the ground of the Design Methodology it was proved that 
each design task is an inverse problem. As such, optimality ap-
proach is a proper methodology to solve it. What more, optimiza-
tion may be applied as a methodological paradigm to build 
CAD/CAM systems. 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Weighted_digraph
https://en.wikipedia.org/wiki/Relaxation_(iterative_method)
https://en.wikipedia.org/wiki/Relaxation_(iterative_method)
http://pl.pons.com/t%C5%82umaczenie/angielski-polski/particularly
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Reasons that optimization in design is of a crucial importance, 
specifically in mechatronics are discussed. 

Typical classes of problems are specified. 
The typical problems of optimization in design in mechatronics 

are presented. And it has been proposed – or suggested – the set 
of adequate methods. 

7. FINAL NOTES 

The monograph “Optimization and Poly-optimization in Engi-
neering” by W. Tarnowski (2011)  may be recommended: it aids to 
formulate mathematically problems and comprises methods, 
illustrated on numerous examples. The poly-optimization theory 
and applications you may find there, also. 

For MATLAB implementation look the instructive reference 
manual book. 
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