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Abstract: Elastic waves used in Structural Health Monitoring systems have strongly dispersive character. Therefore it is necessary to de-
termine the appropriate dispersion curves in order to proper interpretation of a received dynamic response of an analyzed structure. The 
shape of dispersion curves as well as number of wave modes depends on mechanical properties of layers and frequency of an excited 
signal. In the current work, the relatively new approach is utilized, namely stiffness matrix method. In contrast to transfer matrix method or 
global matrix method, this algorithm is considered as numerically unconditionally stable and as effective as transfer matrix approach. How-
ever, it will be demonstrated that in the case of hybrid composites, where mechanical properties of particular layers differ significantly, ob-
taining results could be difficult. The theoretical relationships are presented for the composite plate of arbitrary stacking sequence and arbi-
trary direction of elastic waves propagation. As a numerical example, the dispersion curves are estimated for the lamina, which is made of 
carbon fibers and epoxy resin. It is assumed that elastic waves travel in the parallel, perpendicular and arbitrary direction to the fibers in 
lamina. Next, the dispersion curves are determined for the following laminate [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] and hybrid [Al, 90°, 0°, 
90°, 0°, 90°, 0°], where Al is the aluminum alloy PA38 and the rest of layers are made of carbon fibers and epoxy resin. 
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1. INTRODUCTION 

Nowadays layered composite materials are widely used in dif-
ferent structures. This is particularly evident in the aerospace 
industry. The main advantage of using composite materials is the 
fact that structures are substantially lighter in comparison with 
structures made of traditional isotropic materials, like steel or 
aluminum alloys. On the other hand, process of damage formation 
and evaluation in composite materials is much more complex. In 
order to detect the different kind of flaws (matrix cracking, fiber 
brakeage or delamination), sophisticated methods have to be 
applied. Some of them are based on an analysis of propagation of 
elastic waves, which travel through the investigated structure 
(Giurgiutiu, 2008). Generally, this kind of systems can be applied 
in two different configurations, namely pitch-catch and pulse-echo. 
First approach is based on the comparison of received signals for 
intact and interrogated structure. In the case when the signals are 
different, it means that inside the material there is a damage. It is 
worth stressing here that without the knowledge about an intact 
structure, the damage detection is impossible. This is the main 
disadvantage of this approach. The latter method is based on an 
analysis of received reflection of elastic waves from a flaw. Thus 
this approach can be utilized in the case when the dynamic re-
sponse of an intact structure is unknown. However, elastic waves 
have strongly dispersive nature (Royer and Dieulesaint, 2000). 
Moreover, depending on the frequency of the excitation signal, the 
different number of wave modes are present. Therefore, for ap-
propriate interpretation of a picked up dynamic response of the 
structure, the dispersion curves have to be determined. However, 
it could be a very difficult task in the case of composite structure. 

One of the first approach, known as the transfer matrix method 
was proposed by Thompson (1950). He introduced so called 
transfer matrix, which relates the displacement and stress at the 
top and bottom of the layer. The matrices for any number of iso-
tropic layers could be coupled into one. This approach was further 
corrected by Haskell (1953). Originally, this approach is limited to 
the materials where all layers are made of isotropic materials. 
Nayfeh (1991;1995) extended this method to the case, where 
layers are made of anisotropic materials. The transfer matrix 
method is relatively simple and easy to use. The first computer 
applications based on this algorithm were developed in the sixties 
of the last century (Press et al., 1961; Randall, 1967). However, 
this method is numerically unstable in the case of relatively high 
frequencies as well as thicker layers. This problem is well known 
in literature as "fd problem" (Lowe, 1995). An alternative to the 
transfer matrix algorithm is the global matrix method proposed by 
Knopoff (1964). In this approach the dynamic properties of a 
whole composite material are described by single matrix (global 
matrix). The size of this matrix directly depends on the number of 
layers. Besides, the fd problem is still present in this formulation. 
Initially, this method was applied in the case of isotropic layers 
(Schwab 1970; Schmidt and Tango, 1986). Nowadays, the global 
matrix method is also applied in the case of composites, which 
consist of anisotropic layers (Pant et al., 2014). There is also 
available a commercial program DISPERSE (Pavlakovic and 
Lowe, 2003), which is based on this approach. The third analytical 
method of dispersion curves determination was proposed by 
Kausel (1986) and further developed by Wang and Rokhlin (2001; 
2002a; 2002b). It is known as the stiffness matrix method. Accord-
ing to its authors, this method is numerically unconditionally sta-
ble. The mentioned above transfer matrix is replaced by a layer 
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stiffness matrix, which relates the stresses at the top and the 
bottom of the layer with the displacement at the top and bottom of 
the layer. Next, the global stiffness matrix for the whole composite 
material is obtained by the use of an effective, recursive algorithm. 
It is worth stressing here that the numerical stability is achieved by 
replacing the exponential terms from the diagonal of the stiffness 
matrix. Besides, this approach has the same dimension and is 
only slightly more computationally efficient in comparison with the 
transfer matrix method (Giurgiutiu, 2008). This approach is used 
by Kamal and Giurgiutiu (2014) in case of the multilayered aniso-
tropic composites. The authors also verify the stiffness matrix 
method with the use of the transfer matrix method, program 
DISPRESE and the semi-analytical finite element method (Soro-
han et al., 2011). It seems that nowadays the stiffness matrix 
method is the most effective analytical method, which enables the 
dispersion curves determination. However, in the case of compo-
sites, where there is a significant difference between the stiffness 
of the particular layer or there are strongly orthotropic layers, the 
numerical problems may be still present. Therefore, the main aim 
of this work is to estimate the dispersion curves for the compo-
sites, which consist of this kind of layer materials, namely fibers 
with epoxy resin (CFRP, Fibers T300, Matrix N5208) and alumi-
num alloy PA38. Moreover, the present work should be consid-
ered as the continuation of the previous studies (Barski and Pająk, 
2016). In that paper the dispersion curves obtained for a single 
lamina and for a multilayered composite material with quasi - 
isotropic mechanical properties are presented. The computations 
were made for the glass fibers GFRP E-glass and epoxy resin. 

2. THEORETICAL MODEL OF LAMB'S WAVES 
PROPAGATION IN MULTILAYERED MATERIALS 

Let us consider the composite layered material, which is 
shown in Fig. 1. It is assumed that the analyzed medium consists 
of n orthotropic layers. Mechanical properties of each layer are 

described in local coordinate system (x′1, x′2, x′3). It is worth 
stressing here that the origin of the local coordinate system is 
chosen to coincide with the top surface of the particular layer, 
what is shown in Fig 2. The thickness of k-th layer is equal to dk. 
The particular layers are stacked normal to the x3 axis of the 
global coordinate system. Thus, the plane of each layer is parallel 

to the (x1, x2) one of the global coordinate system. The wave is 

allowed to travel on arbitrary incident angle θ, which is measured 
with respect to the direction normal to the (x1, x2) plane, and 

along any angle φ. The angle φ is shown in Fig. 2. The theoreti-
cal model is formulated according to the following assumptions 
(Giurgiutiu, 2008; Lowe, 1995; Pant et al., 2014): 
1. All layers are perfectly bonded at their interfaces. 
2. The wave propagates along the x1 − x3 direction of the 

global coordinate system. Hence, the mechanical properties of 
each layer, which are defined in the local coordinate system 
have to be transformed to the global coordinate system 

3. In each monoclinic layer there are six partial waves, namely 

(+P, – P), (+SV, – SV) and (+SH, – SH) representing 
quasi – longitudinal (symmetric), quasi shear vertical and 
quasi – shear horizontal waves, respectively. The waves with 
plus sign are arriving from above of the interface of particular 
layer and the waves with the minus sign are leaving the 
interface. 

4. The Snell's law requires that all interacting particular waves 

must share the same frequency ω and spatial properties in x1 
direction at each interface. It results that in all equations, 
which describe the components of displacement and stress, 
there are the same circular frequency ω and k1 component of 

the wave vector. The k1  is the projection of the wave vector 
of the bulk wave onto the interface 

5. The analyzed composite material is surrounded by vacuum. In 
other words, it is assumed that the traveling wave doesn't 
interact with the external environment. Hence, on the top and 
bottom surface of the composite material the following 

components of stress are equal to 0: σi,3 =0, i=1,2,3. 

Most methods for solving the propagation of Lamb waves in 
an anisotropic medium are based on the partial wave technique. 
In this approach the superposition of the three upward and down-
ward propagating waves are assumed. Taking under considera-
tion the above assumptions, the formal solution for displacement 
can be proposed as follows (Hawwa, Nayfeh, 1995): 

(𝑢1, 𝑢2, 𝑢3) = (𝑈1, 𝑈2, 𝑈3)𝑒
𝑖ξ(𝑥1sinθ+α𝑥3−𝑐𝑡)   (1) 

where uj are the components of displacement, Ui are the ampli-

tudes of uj. ξ denotes the wave number, α is the unknown pa-

rameter (its value will be determined later) and c, t are the phase 
velocity and time, respectively. For the sake of simplicity, in the 

further discussion the θ angle is set to be equal to θ = 90º. 

 
Fig. 1. Composite material with a plane wave propagating in 
             𝑥1 − 𝑥3 direction (Giurgiutiu, 2008) 

 
Fig. 2. The 𝑘-th layered of thickness 𝑑𝑘  with local  

            and global coordinate system (Giurgiutiu, 2008) 

3. ELASTIC WAVES PROPAGATION  
IN SINGLE MONOCLINIC LAYER 

According to Giurgiutiu (2008), it is assumed that the relation-
ship between stress components and strain components in the 

case of single monoclinic layer of thickness dk can be written as 
follows: 
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{
 
 

 
 
σ11
σ22
σ33
σ23
σ13
σ12}

 
 

 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 𝐶16
𝐶12 𝐶22 𝐶23 0 0 𝐶26
𝐶13 𝐶23 𝐶33 0 0 𝐶36
0 0 0 𝐶44 𝐶45 0
0 0 0 𝐶45 𝐶55 0
𝐶16 𝐶26 𝐶36 0 0 𝐶66]

 
 
 
 
 

{
 
 

 
 
ε11
ε22
ε33
ε23
ε13
ε12}
 
 

 
 

.  (2) 

Note that the above relation is defined in the global coordinate 
system (Fig. 1). Next, the linear relationships between the compo-
nents of displacement and components of strain are given by: 

ε11 =
∂𝑢1
∂𝑥1

,    ε22 =
∂𝑢2
∂𝑥2

,    ε33 =
∂𝑢3
∂𝑥3

ε23 =
∂𝑢2
∂𝑥3

+
∂𝑢3
∂𝑥2

,    ε13 =
∂𝑢1
∂𝑥3

+
∂𝑢3
∂𝑥1

,

 (3) 

ε12 =
∂𝑢1
∂𝑥2

+
∂𝑢2
∂𝑥1

 

Finally, the equations of motion take the following form: 

∂σ11

∂𝑥1
+
∂σ12

∂𝑥2
+
∂σ13

∂𝑥3
= ρ

∂2𝑢1

∂𝑡2
,

∂σ21

∂𝑥1
+
∂σ22

∂𝑥2
+
∂σ23

∂𝑥3
= ρ

∂2𝑢2

∂𝑡2
,

∂σ13

∂𝑥1
+
∂σ23

∂𝑥2
+
∂σ33

∂𝑥3
= ρ

∂2𝑢3

∂𝑡2
.

   (4) 

Combining the equations (2), (3) and (4), the system of three coupled equations is obtained, namely: 

𝐶11
∂2𝑢1
∂𝑥1

2 + 𝐶66
∂2𝑢1
∂𝑥2

2 + 𝐶55
∂2𝑢1
∂𝑥3

2 + 2𝐶16
∂2𝑢1
∂𝑥1 ∂𝑥2

+ 𝐶16
∂2𝑢2
∂𝑥1

2 + 𝐶26
∂2𝑢2
∂𝑥2

2 + 𝐶45
∂2𝑢2
∂𝑥3

2 + (𝐶12 + 𝐶66)
∂2𝑢2
∂𝑥1 ∂𝑥2

+ (𝐶13 + 𝐶55)
∂2𝑢3
∂𝑥1 ∂𝑥3

+ (𝐶36 + 𝐶45)
∂2𝑢3
∂𝑥2 ∂𝑥3

= ρ
∂2𝑢1
∂𝑡2

 

𝐶16
∂2𝑢1
∂𝑥1

2
+ 𝐶26

∂2𝑢1
∂𝑥2

2
+ 𝐶45

∂2𝑢1
∂𝑥3

2
+ (𝐶12 + 𝐶66)

∂2𝑢1
∂𝑥1 ∂𝑥2

+ 𝐶66
∂2𝑢2
∂𝑥1

2
+ 𝐶22

∂2𝑢2
∂𝑥2

2
+ 𝐶44

∂2𝑢2
∂𝑥3

2
+ 2𝐶26

∂2𝑢2
∂𝑥1 ∂𝑥2

+ (𝐶36 + 𝐶45)
∂2𝑢3
∂𝑥1 ∂𝑥3

+ (𝐶23 + 𝐶44)
∂2𝑢3
∂𝑥2 ∂𝑥3

= ρ
∂2𝑢2
∂𝑡2

 

(𝐶13 + 𝐶55)
∂2𝑢1
∂𝑥1 ∂𝑥3

+ (𝐶36 + 𝐶45)
∂2𝑢1
∂𝑥2 ∂𝑥3

+ (𝐶36 + 𝐶45)
∂2𝑢2
∂𝑥1 ∂𝑥3

+ (𝐶23 + 𝐶44)
∂2𝑢2
∂𝑥2 ∂𝑥3

+ 𝐶55
∂2𝑢3
∂𝑥1

2
+ 𝐶44

∂2𝑢3
∂𝑥2

2
+ 𝐶33

∂2𝑢3
∂𝑥3

2

+ 2𝐶45
∂2𝑢2
∂𝑥1 ∂𝑥2

= ρ
∂2𝑢3
∂𝑡2

 

(5) 

Substituting the relationship (1) into (5) the system of three linear equations is obtained, namely: 

[

𝐶11 − ρ𝑐
2 + 𝐶55α

2 𝐶16 + 𝐶45α
2 (𝐶13 + 𝐶55)α

𝐶16 + 𝐶45α
2 𝐶66 − ρ𝑐

2 + 𝐶44α
2 (𝐶36 + 𝐶45)α

(𝐶13 + 𝐶55)α (𝐶36 + 𝐶45)α 𝐶55 − ρ𝑐
2 + 𝐶33α

2

] {

𝑈1
𝑈2
𝑈3

} = {
0
0
0
}                   (6) 

In order to obtain the nontrivial solution of (6) the determinant 
of coefficient matrix has to be equal  0. It results in a sixth degree 
polynomial equation, namely: 

𝐴α6 + 𝐵α4 + 𝐶α2 + 𝐷 = 0.   (7) 

There are six real or complex roots of this equation, namely α1 
= –α2, α3 = –α4 and α5 = –α6. Now, the components of displace-
ment and stress can be written as follows: 

(𝑢1, 𝑢2, 𝑢3) = ∑ (1, 𝑉𝑗 ,𝑊𝑗)𝑈1𝑗𝑒
𝑖ξ(𝑥1+α𝑗𝑥3−𝑐𝑡),6

𝑗=1   (8) 

(σ33, σ13, σ23) = 

∑ 𝑖ξ(𝐷1𝑗 , 𝐷2𝑗 , 𝐷3𝑗)𝑈1𝑗𝑒
𝑖ξ(𝑥1+α𝑗𝑥3−𝑐𝑡)6

𝑗=1   
  (9) 

where 

𝐷1𝑗 = 𝐶13 + 𝐶36𝑉𝑗 + 𝐶33𝑊𝑗α𝑗,

𝐷2𝑗 = 𝐶55(α𝑗 +𝑊𝑗) + 𝐶45𝑉𝑗α𝑗 ,

𝐷3𝑗 = 𝐶45(α𝑗 +𝑊𝑗) + 𝐶44𝑉𝑗α𝑗 .

        (10) 

𝑉𝑗 =
𝑈2𝑗

𝑈1𝑗
=

𝐾13(α𝑗)𝐾23(α𝑗)−𝐾12(α𝑗)𝐾33(α𝑗)

𝐾22(α𝑗)𝐾33(α𝑗)−𝐾23(α𝑗)𝐾23(α𝑗)
,

𝑊𝑗 =
𝑈3𝑗

𝑈1𝑗
=

𝐾12(α𝑗)𝐾23(α𝑗)−𝐾13(α𝑗)𝐾22(α𝑗)

𝐾22(α𝑗)𝐾33(α𝑗)−𝐾23(α𝑗)𝐾23(α𝑗)
.
       (11) 

The elements Kik(αj), i,k = 1,2,3 in Eq. (11) are the components of square matrix in relationship (6). Finally, relations (8), (9), (10) and (1) 
can be written in the matrix form:  

{
 
 

 
 
𝑢1
𝑢2
𝑢3
σ33
σ13
σ23}

 
 

 
 

=

[
 
 
 
 
 
1 1 1 1 1 1
𝑉1 𝑉1 𝑉3 𝑉3 𝑉5 𝑉5
𝑊1 −𝑊1 𝑊3 −𝑊3 𝑊5 −𝑊5

𝐷11 𝐷11 𝐷13 𝐷13 𝐷15 𝐷15
𝐷21 −𝐷21 𝐷23 −𝐷23 𝐷25 −𝐷25
𝐷31 −𝐷31 𝐷33 −𝐷33 𝐷35 −𝐷35]

 
 
 
 
 

 

[
 
 
 
 
 
𝑒𝑖ξα1𝑥3 0 0 0 0 0
0 𝑒𝑖ξα2𝑥3 0 0 0 0
0 0 𝑒𝑖ξα3𝑥3 0 0 0
0 0 0 𝑒𝑖ξα4𝑥3 0 0
0 0 0 0 𝑒𝑖ξα5𝑥3 0
0 0 0 0 0 𝑒𝑖ξα6𝑥3]

 
 
 
 
 

 

{
 
 
 

 
 
 
𝑈11𝑒

𝑖ξ(𝑥1−𝑐𝑡)

𝑈12𝑒
𝑖ξ(𝑥1−𝑐𝑡)

𝑈13𝑒
𝑖ξ(𝑥1−𝑐𝑡)

𝑈14𝑒
𝑖ξ(𝑥1−𝑐𝑡)

𝑈15𝑒
𝑖ξ(𝑥1−𝑐𝑡)

𝑈16𝑒
𝑖ξ(𝑥1−𝑐𝑡)}

 
 
 

 
 
 

               (12) 
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4. STIFFNESS MATRIX METHOD 

In order to avoid any numerical instabilities, which are the main disadvantages of the transfer matrix method, Kausel (1986), Wang and 
Rokhlin (2001) introduced the stiffness matrix method. Generally, SMM can be written as: 

{
{σ}𝑘−1
{σ}𝑘     

} = [𝐾]𝑘 = [𝐴]𝑘[𝐵]𝑘
−1
= [

[𝐷]− [𝐷]+[𝐻]+

[𝐷]−[𝐻]− [𝐷]+
] [
[𝑃𝑆]

− [𝑃𝑆]
+[𝐻]+

[𝑃𝑆]
−[𝐻]− [𝑃𝑆]

+ ]
−1

{
{𝑢}𝑘−1
{𝑢}𝑘    

}                (13) 

where subscript 'k-1' means the top surface of the k-th layer and subscript k means the bottom surface of the k-th layer. Matrices [D]–, [D]+ 
contain the coefficients associated with stresses and matrices [PS]–, [PS]+ represent the coefficients associated with displacements. These 
coefficients are described by relations (10) and (11). [H] denotes the diagonal matrix elements in equation (12). Finally, the matrices [A] and 
[B] take the following forms (Kamal and Giurgiutiu, 2014): 

[𝐴]𝑘 =

[
 
 
 
 
 
 
𝐷11 𝐷13 𝐷15     𝐷11𝑒

𝑖ξα1𝑑𝑘     𝐷13𝑒
𝑖ξα3𝑑𝑘     𝐷15𝑒

𝑖ξα5𝑑𝑘

𝐷21 𝐷23 𝐷25 −𝐷21𝑒
𝑖ξα1𝑑𝑘 −𝐷23𝑒

𝑖ξα2𝑑𝑘 −𝐷25𝑒
𝑖ξα5𝑑𝑘

𝐷31 𝐷33 𝐷35 −𝐷31𝑒
𝑖ξα1𝑑𝑘 −𝐷33𝑒

𝑖ξα2𝑑𝑘 −𝐷35𝑒
𝑖ξα5𝑑𝑘

𝐷11𝑒
𝑖ξα1𝑑𝑘 𝐷13𝑒

𝑖ξα3𝑑𝑘 𝐷15𝑒
𝑖ξα5𝑑𝑘 𝐷11 𝐷13 𝐷15

𝐷21𝑒
𝑖ξα1𝑑𝑘 𝐷23𝑒

𝑖ξα3𝑑𝑘 𝐷25𝑒
𝑖ξα5𝑑𝑘 𝐷21 𝐷23 𝐷25

𝐷31𝑒
𝑖ξα1𝑑𝑘 𝐷33𝑒

𝑖ξα3𝑑𝑘 𝐷35𝑒
𝑖ξα5𝑑𝑘 𝐷31 𝐷33 𝐷35 ]

 
 
 
 
 
 

                (14) 

[𝐵]𝑘 =

[
 
 
 
 
 
 
1 1 1             𝑒𝑖ξα1𝑑𝑘         𝑒𝑖ξα3𝑑𝑘         𝑒𝑖ξα5𝑑𝑘

𝑉1 𝑉3 𝑉5         𝑉1𝑒
𝑖ξα1𝑑𝑘     𝑉3𝑒

𝑖ξα2𝑑𝑘     𝑉5𝑒
𝑖ξα5𝑑𝑘

𝑊1 𝑊3 𝑊5     −𝑊1𝑒
𝑖ξα1𝑑𝑘 −𝑊3𝑒

𝑖ξα2𝑑𝑘 −𝑊5𝑒
𝑖ξα5𝑑𝑘

        𝑒𝑖ξα1𝑑𝑘     𝑒𝑖ξα3𝑑𝑘     𝑒𝑖ξα5𝑑𝑘     1     1     1
    𝑉1𝑒

𝑖ξα1𝑑𝑘 𝑉3𝑒
𝑖ξα3𝑑𝑘 𝑉5𝑒

𝑖ξα5𝑑𝑘     𝑉1     𝑉3     𝑉5
    𝑊1𝑒

𝑖ξα1𝑑𝑘 𝑊3𝑒
𝑖ξα3𝑑𝑘 𝑊5𝑒

𝑖ξα5𝑑𝑘 −𝑊1 −𝑊3 −𝑊5 ]
 
 
 
 
 
 

                (15) 

In order to obtain the stiffness matrix for the whole composite material, an advanced recursive algorithm has to be applied (Rokhlin and 
Wang, 2002a). Let us consider two adjoining layers (1, 2), namely: 

{
{σ}0
{σ}1

} = [
[𝐾]11

𝐴 [𝐾]12
𝐴

[𝐾]21
𝐴 [𝐾]22

𝐴 ] {
{𝑢}0
{𝑢}1

},    {
{σ}1
{σ}2

} = [
[𝐾]11

𝐵 [𝐾]12
𝐵

[𝐾]21
𝐵 [𝐾]22

𝐵 ] {
{𝑢}1
{𝑢}2

}                   (16) 

where subscripts denote the interfaces. By excluding {σ}1 and {u}1 from the first relation and substituting in the second one, the matrix, which 
relates {σ}0 {u}0 to {σ}2 {u}2, is obtained. This combined matrix is a stiffness matrix for these two bonded layers, namely: 

{
{σ}0
{σ}2

} = [
[𝐾]11

𝐴 + [𝐾]12
𝐴 ([𝐾]11

𝐵 − [𝐾]22
𝐴 )−1[𝐾]21

𝐴 −[𝐾]12
𝐴 ([𝐾]11

𝐵 − [𝐾]22
𝐴 )−1[𝐾]12

𝐵

[𝐾]21
𝐵 ([𝐾]11

𝐵 − [𝐾]22
𝐴 )−1[𝐾]21

𝐴 [𝐾]22
𝐵 − [𝐾]21

𝐵 ([𝐾]11
𝐵 − [𝐾]22

𝐴 )−1[𝐾]12
𝐵 ] {

{𝑢}0
{𝑢}2

}.                             (17) 

Denoting the stiffness matrix obtained by [K]A and the stiffness 
matrix for the third layer by [K]B, we can recursively apply the 
relation (17) to obtain the global stiffness matrix, which relates the 
stresses to the displacements for the top and bottom surface of 
the whole composite plate. The wave characteristic equation for 
the whole composite structure is obtained from the total stiffness 
matrix. Assuming that the components of stress on the top and 
bottom surface equal zero, in order to find the solution of (17), the 
determinant of the matrix 6x6 has to be computed. 

5. NUMERICAL EXAMPLES 

The dispersion curves are determined for thee different plates. 
The first plate consists of one layer, which is made of carbon 
fiber/epoxy resin, namely CFRP, Fibers T300, Matrix N5208. The 
total thickness of the plate is equal to d = 2 mm. The next plate 
consists of 8 layers with following stacking sequence [0°, 90°, 0°, 
90°, 0°, 90°, 0°, 90°]. Each layer is made of identical material, 
namely carbon fiber/epoxy resin. The layers have also identical 
thickness dk = 0.25 mm. Thus the total thickness of composite 
material is equal to d = 2 mm. The last plate is a hybrid composite, 
where the layers are as follows: [Al, 90°, 0°, 90°, 0°, 90°, 0°]. 

Al denotes aluminum alloy PA38 and the rest of layers are made 
of carbon fibers/epoxy resin. The thickness of aluminum alloy 
layer is equal to d1=0.5mm. The rest layers have identical thick-
ness dk = 0.25 mm. The total thickness of the plate is also equal to 
d = 2 mm. The material properties of the aluminum alloy PA38 
are: E = 69.5 GPa, v = 0.33 and density ρ = 2700 kg/m³ and car-
bon fibers/epoxy resin lamina are: E1 = 181 GPa, E2 = 10.3 GPa, 
G12 = 7.17 GPa, v12 = 0.28 and density ρ = 1.6 kg/m³. It is worth 
stressing here that the carbon layers are strongly orthotropic. It 
could cause some difficulties in numerical calculation. In order to 
find the solution of the studied problem an appropriate computer 
program is developed with the aid of SCILAB free software. In 
order to find the solution of the wave characteristic equation the 
bisection method is applied. 

5.1. Single Lamina  

In Fig. 3 there are shown the wave dispersion curves (phase 
and group velocities) obtained for a single lamina, where the 
waves propagate along the material principle direction x1, φ = 0° 
(Fig. 1). In these figures the fundamental symmetric P0, shear 
vertical SV0 and shear horizontal SH0 modes are highlighted. 
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Additionally, the four higher modes are present in the considered 
range of frequency. Unfortunately, the applied method does not 
allow the full identification of what kind of wave mods are. From 
the practical point of view the most important are the fundamental 
ones, namely P0, SV0, SH0. The highest phase velocity is ob-
served in the case of symmetric mod P0, c ≈ 10660 m/s. Moreo-
ver, its phase velocity is almost constant while the frequency is 
less then 500 kHz. For the greater frequency the significant 
change is observed. The SH0 mod is constant in the whole studied 
range of frequency. To the contrary of the P0 and SH0 modes, the 
SV0 one is strongly dispersive for the relatively small values of 
frequency. For frequency f = 400 kHz the phase velocity of this 
mode is also almost constant. It is worth noting that the all funda-
mental modes are convergent to the phase velocity equal to c ≈ 

2000 m/s. Thus in the experiment for the sufficiently large fre-
quency of the excited signal, the identification of these modes 
could be very difficult 
In the Fig. 4 there are depicted the characteristic dispersion 
curves for the elastic waves, which travels in the direction which is 
perpendicular to the x1 material principal direction, φ = 90°. Now 
the initial phase velocity of the P0 symmetric fundamental mode is 
significantly smaller c ≈ 2540 m/s due to the reduced stiffness of 
the lamina in this direction (E2=10.5 GPa). The maximum value of 
the phase velocity in the case of the SV0 mode is also reduced. 
The phase velocity of SH0 mode is constant and identical as 
before. It is worth noting here that the number of higher modes is 
also changed. Now the seven higher modes are present in the 
considered range of frequency. 

 
Fig. 3. Phase and group velocities. Single lamina, angle of waves propagation φ=0º 

 
Fig. 4. Phase and group velocities. Single lamina, angle of waves propagation φ=90 º 

 
Fig. 5. Phase and group velocities. Single lamina, angle of waves propagation φ=45º



Marek Barski, Piotr Pająk                         DOI 10.1515/ama-2017-0019 
Determination of Dispersion Curves for Composite Materials with the Use of Stiffness Matrix Method 

126 

However quite different dispersion curves are obtained in the 
case of waves propagation angle φ = 45°, what is depicted in the 
Fig. 5. The initial (low frequency) phase velocity of the fundamen-
tal symmetric mode P0 is equal to c ≈ 7700 m/s. Moreover, for 
frequency f ≈ 500 kHz as well as in the previous cases, the sud-
den change of the phase and group velocity is observed. The 
shear horizontal mode SH0 is not constant any more. The slight 
variation is also observed. The initial SH0 phase velocity is equal 
to c ≈ 2300 m/s. The shear vertical SV0 is strongly dispersive for 
the low values of frequency. For the higher frequencies, great 
then f > 1.2 MHz the phase velocity of this mode is almost identi-
cal in comparison with SH0 one. The most significant difference is 
observed in number of higher modes. Now ten higher modes are 
present. The first of them appears for the frequency equal to f ≈ 4 

kHz. It is relatively low value of frequency in comparison with the 
previous cases. Finally, in Fig. 6 there are presented the relation-
ships between the fundamental modes P0, SH0 and SV0 and the 
waves propagation angle φ. These graphs are created for the 
fixed value of frequency f = 250 kHz. According to the authors of 
this work, the frequency equal to f = 250 kHz of the excitation 
signal is the most reasonable value from the practical point of 
view. The strongest dependency is observed in case of the sym-
metric mode P0. The shear modes are not so sensitive on the 
wave propagation angle φ. It is worth noting that the SH0 mode is 
almost insensitive on the angle φ. Moreover, the values of the 
phase and group velocities for assumed frequency are very simi-
lar. 

 
Fig. 6. Phase and group velocities with respect to angle of wave propagation. Fixed frequency f = 250 kHz. 

5.2. Layered composite [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°] 

In the case of the layered composite, when the waves propa-
gation angle φ = 0°, the fundamental symmetric mode P0 has 
initial phase velocity c = 7750 m/s. It is worth noting that this value 
is smaller in comparison with the initial phase velocity obtained in 
the case of single lamina. In contrast to the previously discussed 
cases, now this mode is slight dispersive in the initial range of 
frequency. For the frequency value f ≈ 500 kHz the sudden 

change is observed. Similar effect has been described in the case 
of a single lamina. For the frequency f > 1.2 MHz the mode P0 is 
almost constant. The shear horizontal SH0 mode is constant in the 
whole investigated range of frequency. Its phase velocity is equal 
to c = 2120 m/s. The shear vertical SV0 mode is very similar to 
those, which are obtained for the single lamina. Additionally, 
seven higher modes are observed in the studied range of fre-
quency. It should be stressed here that for the waves propagation 
angle φ = 90°, the obtained results are identical. 

 
Fig. 7. Phase and group velocities. Layered composite [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°]. Angle of waves propagation φ = 0°, 90° 

For the waves propagation angle φ = 45°, the obtained dis-
persion curves in the case of P0 and SV0 modes are similar to 

those, which are presented in the previous cases, what is depict-
ed in Fig. 8. The initial phase velocity for P0 mod is equal to c = 
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5950 m/s. However, behavior of the fundamental shear horizontal 
mode SH0 is qualitatively different. It is rather similar to the P0 
mode. Additionally, its initial velocity c = 5400 m/s. For the fre-
quency f > 1.2 MHz the sudden drop is visible, what remains the 
fundamental symmetric mode P0 with frequency f > 500 kHz. It is 
also characteristic in the case of group velocities of modes P0 and 
SH0. The number of higher modes increases and now it is equal to 
eight. The shapes of the higher modes dispersion curves are also 
substantially different in comparison with those, which are pre-
sented in Fig. 7. 

The phase and group velocities for the fixed frequency f = 250 
kHz are presented in Fig. 9. It should be stressed here that the 

these graphs are also substantially different in comparison with 
those which are presented in Fig. 6. The shear vertical mode SV0 
seems to be insensitive on the waves propagation angle φ. The 
symmetric mode P0 varies not significantly with respect to this 
parameter. However the phase and group velocity of the shear 
horizontal mode SH0 strongly depends on the angle φ. For the 
values of the angle φ equal to 45°, 135°, 225° and 315° the dis-
cussed velocities have the highest values. The maximal value of 
the phase velocity is over two times larger in comparison with the 
minimal one. 

 
Fig. 8. Phase and group velocities. Layered composite [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°]. Angle of waves propagation φ = 45° 

 
Fig. 9. Phase and group velocities with respect to angle of wave propagation. Fixed frequency f = 250 kHz. Layered composite [0°, 90°, 0°, 90°, 0°, 90°, 0°, 
90°] 

5.3. Hybrid composite [Al, 90°, 0°, 90°, 0°, 90°, 0°]  

It should be stressed here that in the previously presented 
cases there has been no any numerical instabilities and the relia-
ble numerical solution of the wave characteristic equation can be 
always obtained. Unfortunately, in the case of hybrid composite 
the dispersion curves are determined only for the waves propaga-
tion angle φ = 0°. In the case of the other values of φ the prob-
lems are met even in estimation of the fundamental modes SH0 
and P0. According to the authors experience it could be caused by 
the fact that these modes are very close to each other and it is 
impossible to extract them. Additionally, there is a significant 
difference between the Young's modulus of the aluminum alloy 
and carbon fibers. This difference could cause some disturbances 

with propagation of elastic waves through the interface of alumi-
num layer and carbon fiber layer.  

In Fig. 10 there is presented the dispersion curves. These 
curves are computed for the waves propagation angle φ = 0°. 
Generally, the obtained curves are similar to those which are 
presented above. The initial value of the phase velocity of the 
symmetric mode P0 is equal to c = 6990 m/s. The shear horizontal 
mode SH0 slightly varies with respect to the frequency. However, 
the group velocity of this mode for frequency equal to f = 1.48 
MHz suddenly changes. The shear vertical mode SV0 is very 
regular and it remains the curves, which are presented above. 
Besides, there are nine higher modes. To the contrary to previ-
ously presented cases, now it possible to identify the higher shear 
horizontal modes, namely from SH1 to SH4. 
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Fig. 10. Phase and group velocities. Hybrid composite [Al, 90°, 0°, 90°, 0°, 90°, 0°]. Angle of waves propagation φ = 0° 

6. CONCLUSIONS  

In the present work the dispersion curves are estimated for a 
different composite materials, namely: single lamina, multilayered 
composite with quasi - isotropic mechanical properties and hybrid 
composite material. In the case of single lamina and quasi - iso-
tropic composite all layers are made of carbon fiber/epoxy resin. 
In the latter case, the investigated material consists of carbon 
fiber/epoxy resin and single layer, which is made of aluminum 
alloy Pa38. The main conclusion is that if the all layers of studied 
composite are made of identical material, the stiffness matrix 
approach in an effective tool for determining the dispersion 
curves. It is relatively simple and easy to use in comparison with 
other method, like transfer matrix method or global matrix method. 
However, if the composite contains the layers, which are made of 
different materials, the obtaining of dispersion curves could be 
very difficult or even impossible. According to the authors experi-
ence, this effect is caused by the significant difference between 
the mechanical properties of the layers (the values of Young's 
modulus). Generally, the shape and the number of elastic wave 
modes, which are present in the investigated range of frequency, 
strictly depends on the mechanical properties of the whole com-
posite structure as well as on the waves propagation angle φ. For 
the angle φ different than 0° and 90°, the number of higher modes 
is the largest. Qualitatively, the behavior of the fundamental 
modes are similar in all investigated cases. For the low frequency 
the highest phase and group velocity has always the symmetric 

mode P0. 
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