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Abstract: Neidhart type suspension units composed of metal-elastomer torsion springs can be a good alternative to steel helical springs 
in applications such as vibration absorbers or vehicle suspension systems. Assembling this type of spring requires initial preload of the 
elastomeric working elements, which determines their operating properties.The results of experimental tests and numerical simulations 
concerning the preload of elastomeric working elements in Neidhart type suspension units are presented in the paper. The performed re-
search made it possible to propose a new calculation model for determining the preload force value acting on the elastomeric cylindrical 
elements applied in this type of suspension unit. The results obtained using the proposed model exhibit good convergence with FEM simu-
lation results within the range of the tested geometrical and material properties.  
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1. INTRODUCTION 

Metal-elastomer elastic joints exhibit, as opposed to metal 
springs, good damping properties, which is the reason behind 
their wide application in vibration reduction systems or rotating 
machinery suspension systems, among others. Generally, this 
type of joint consists of rectangular shaped elastomeric elements 
bonded to rigid plates (Gent et al., 2007). However, such a con-
struction has significant limitations, because, in the case of com-
pression loading, nonuniform stress distribution in elastomeric 
elements causes a risk of extensive heat generation (Banić et al.,  
2012), stress concentration and, as a result, damage of the ele-
ment. These phenomena are the reasons why, in the design 
practice for vibration isolators, deformations of compression-
loaded elastomeric elements are limited to about 10-15% of the 
elastomeric component thickness (Rivin, 2003). Significantly 
preferable stress distributions can be obtained when an elasto-
meric element has a cylindrical shape and is loaded radially by 
two rigid plates (Neidhart R., 1969). Rivin and Lee demonstrated, 
by means of experiment (1994) and by numerical calculations 
(1996), that elastic joints of such a construction can withstand 
deformations in the compression mode even as high as 40%, 
without the risk of the unfavorable phenomena described above. 
An example of the practical application of such a construction 
is the Lastosphere vibration isolator, produced for many years by 
the Lord Corporation.  

It should be noted, however, that these structures were not 
able to compete with coil springs in terms of the maximum 
achievable deformation. Only the metal-elastomer torsion joint 
patented by Hermann Neidhart and its later modifications have 
made it possible to obtain deformations characteristic for helical 
springs, and damping properties characteristic for rubber-like 
materials.  

The construction of a metal-elastomer torsion spring, called – 
from the name of its inventor – a Neidhart spring, was patented in 
1955 (Neidhart H., 1955) and was a development of structures 
applied earlier in vehicle suspension systems. Over the years, the 
number of applications of Neidhart springs has increased and the 
field of their utilization also include the examples outside the 
automotive industry. Currently, among the numerous examples of 
this solution's applications, supports of vibrating machinery (vibrat-
ing screens, vibrating conveyors), belt and chain tensioners, 
vibration isolators, pressure rollers and so on can be mentioned 
(Fig.1). 

 
Fig.1. Examples of typical applications of Neidhart springs: a) vibration 

isolation; b) transmission belt tensioner (http://www.rosta.ch) 

Although Neidhart springs have been used for more than six 
decades, no extensive analysis of this construction can be found 
in the literature (Wodziński, 2003). The current situation is not 
conducive to the popularization of this solution, due to the lack of 
information concerning the rules for designing such springs and 
the influence of geometrical and material parameters on their 
operating properties. The static and dynamic properties of metal-
rubber torsion springs depend on their geometry and the composi-
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tion of the rubber compound (Samaca Martinez et al., 2013; Has-
san et al., 2012; Chokanandsombat and Sirisinha, 2013) used to 
manufacture working cylinders. By making modifications in these 
two fields, one can obtain such spring properties that are most 
suitable in certain applications. Therefore, the article shows the 
results of experimental tests conducted in order to define the 
characteristics of rubber compounds used to produce the working 
elements of the tested springs. In the second part of the article, 
the relation between dimensions of the spring elements and the 
lateral force required to exert initial deformation of rubber cylin-
ders is developed. There are, to the knowledge of the authors, no 
such formulas available in the literature that would allow one to 
approximate the relation between the geometric parameters  
of Neidhart type springs and assembly preload force. Knowledge 
of this force may be utilized in the design process of springs with 
specified reaction torque characteristics. 

The aim of the study is to analyze the influence of the geomet-
rical and material parameters of metal-elastomer torsion springs 
on the value of the preload reaction force between the rigid metal 
elements of the spring and elastomeric working elements. 

2. CONSTRUCTION OF NEIDHART SPRINGS 

A typical Neidhart type spring consists of an outer square 
tube, inner square shaft and four cylindrical elastomeric elements 
that are mounted between the tube and shaft in such a way that 
the shaft is rotated with respect to the tube by 45°, as shown in 
Fig. 2. It can be seen in Fig. 2a that elastomeric cylinders are 
significantly compressed in a radial direction, which provides the 
initial preload of the spring.  

 
Fig.2. Construction of the metal-elastomer spring: a) unloaded spring; b) 

loaded spring; A – inner dimension of the square tube, B – outer 
dimension of the shaft, C – elastomeric working element 

As shown in Fig. 2b, the spring transfers torsional loads, how-
ever, it can also withstand lateral loads. The angular movement 
of the shaft with respect to the tube should be limited to only about 
30° due to the risk of unacceptably high deformation and strain 
of the elastomeric elements. The spring units shown in Fig. 2 can 
be mounted into sets as shown in Fig. 1a to transfer lateral 
movements. 

3. HYPERELASTIC MATERIAL MODEL 

Rubber, being an elastomer, is classified as a hyperelastic 
material. In the literature, one can find many models of such 
materials, of which the best known are the Neo-Hookean, 
Mooney-Rivlin, Arruda-Boyce and Ogden models (Bower, 2010; 
Boyce and Arruda, 2000; Kim et al., 2012). Besides the listed 
ones, due to significant differences in the properties of hyperelas-

tic materials, there are many other models that have been devel-
oped for specific groups of materials (Lu et al., 2010). 

Elastomeric material models are usually presented as a func-
tion of the elastic strain energy density. This is a starting point to 
determine the stress in a given state of load. To determine the 
parameters of the elastomer material, the static test of axial ten-
sion, compression or shear of an appropriately shaped test sam-
ple should be performed on a material testing machine. The cho-
sen material model parameters can be obtained by fitting the 
theoretical curve to the experimental one. 

The Mooney-Rivlin model (Mooney, 1940; Rivlin, 1948; Bar-
anowski et al., 2012) is utilized in this paper. In this model, the 
strain energy density function U can be expressed in the form 
(Bower, 2010): 

𝑈(𝐼1̅, 𝐼2̅) = 𝐶10 ∙ (𝐼1̅ − 3) + 𝐶01 ∙ (𝐼2̅ − 3) 

+𝐷1 ∙ (𝐽 − 1)2  (1) 

where: 𝐶10, 𝐶01, 𝐷1 – material constants in MPa. 

𝐼1̅ = 𝐽−2
3⁄ ∙ 𝐼1 

𝐼2̅ = 𝐽−4
3⁄ ∙ 𝐼2  

where: 𝐼1, 𝐼2 – invariants of the left Cauchy-Green tensor B. 

𝐁 = 𝐅 ∙ 𝐅𝑇 = [

𝜆1
2 0 0

0 𝜆2
2 0

0 0 𝜆3
2

] 
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𝐼𝟐 =
1

2
[(𝑡𝑟 𝑩)2 − 𝑡𝑟 (𝑩𝟐)] = 𝜆1

2𝜆2
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𝑭 =  [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]  

𝐽 = 𝑑𝑒𝑡(𝑭) = 𝜆1 ∙ 𝜆2 ∙ 𝜆3 

where: F – deformation gradient tensor, 𝜆1, 𝜆2, 𝜆3 – principal 
stretches. 

 
Fig. 3. Coordinate system for a cylindrical sample 

Material testing of the rubber samples was based on an uniax-
ial compression test in direction 1 (Fig. 3). For such a case, it can 

be assumed that 𝜆2 = 𝜆3: 

𝜆2 = 𝜆3 = √
𝐽

𝜆1

= √
𝐽

𝜆
 

𝜆1 = 𝜆 

To simplify the material model, a specimen was treated as be-

ing made from an incompressible material thus 𝐽 = 1. This as-
sumption is very close to reality in the case of rubber. True princi-
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pal stresses can be obtained from the formulas presented below 
(Bower, 2010): 

𝜎𝑖�̃� = 2 [(
𝜕𝑈

𝜕𝐼1

+ 𝐼1

𝜕𝑈

𝜕𝐼2

) 𝐵𝑖𝑗 − (𝐼1

𝜕𝑈

𝜕𝐼1

+ 2𝐼2

𝜕𝑈

𝜕𝐼2

)
𝛿𝑖𝑗

3
 

−
𝜕𝑈

𝜕𝐼2

𝐵𝑖𝑘𝐵𝑘𝑗] + 𝑝𝛿𝑖𝑗 

𝜎11̃ =
4

3
[𝐶10 ∙ (𝜆2 −

1

𝜆
) + 𝐶01 ∙ (𝜆 −

1

𝜆2)] + 𝑝  

𝜎22̃ = 𝜎33̃ = −
2

3
[𝐶10 ∙ (𝜆2 −

1

𝜆
) + 𝐶01 ∙ (𝜆 −

1

𝜆2)] + 𝑝  

𝑝 =
𝜎11̃ + 𝜎22̃ + 𝜎33̃

3
 

Because the specimen sidewall is unconstrained therefore 

𝜎22̃ = 𝜎33̃ = 0 and true stress in the direction of the compres-
sion axis is described by: 

𝜎11̃ = 2𝐶10 ∙ (𝜆2 −
1

𝜆
) + 2𝐶01 ∙ (𝜆 −

1

𝜆2) (2) 

After dividing both sides of (2) by 𝜆, the engineering stress 
was obtained: 

𝜎11 = 2𝐶10 ∙ (𝜆 −
1

𝜆2) + 2𝐶01 ∙ (1 −
1

𝜆3) (3) 

𝜆 = 1 + 휀 

휀 =
𝑧 − 𝑧0

𝑧0

 

where (Fig. 4a): 휀 – strain, 𝑧0 – initial sample height, 𝑧 – sample 
height during test. 

The relationship (3) for compressive stress on a central axis is 
necessary for determining the rubber material constants. Compar-
ing equation (3) with the results obtained from a compression test 
would allow the values of C10 and C01 to be estimated. 

4. ESTIMATION OF MATERIAL CONSTANTS 

Experiments were carried out on an MTS 810 testing machine 
(Fig. 4c) and based on the ISO 7743 standard. Cylindrical sam-
ples were made of a chloroprene rubber CR with a diameter of 29 
mm and length of 13 mm. Specimens were axially compressed 
under a strain control with the rate of 10 mm/min till the axial 

strain ε≈-0.3  was reached. It corresponded with the absolute 

change in the height by Δz≈4 mm. Next the strain was relieved 

with the same rate. Contact surfaces between the sample and 
testing machine plates were coated with a lubricant. This allowed 
friction force to be reduced during a radial expansion of the mate-
rial and prevented specimen deformation into a barrel shape 
during compression (Fig. 4b). The described loading cycle was 
repeated three times for each sample. In total, there were 15 
samples. The relation between the stress and strain recorded 
during the single experiment is presented in Fig. 5. It shows an 
elastic hysteresis of the tested rubber. The compression curve 
changes during the experiment and stabilizes after the first load-
ing cycle. The stress value at the maximum strain is reduced in 
the second cycle. The relaxation time of the compressed material 
is quite long, because stress increases in the second and third 

cycles can be observed for strains larger than ε≈0,04 which 

means that lasting deformations took place. 
 

 
Fig. 4. Experimental technique: a) specimen dimensions;  
             b) specimen Ø29x13 during test, c) test stand 

 
Fig. 5. An example of an elastic histeresis for a tested rubber sample 

 
Fig. 6. Comparison between Mooney-Rivlin model curve  
           and experimental results for the compression test 
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Material constant estimations were based on the compression 
curve from the third loading cycle. The reason is that the last 
curve should be similar to a stabilised material compression re-
sponse in the working spring. When the object of interest is the 
force needed for an initial deformation of the rubber cylinders 
directly during spring assembly, the curve from the first cycle 
should be used instead. The material constants C10 and C01 were 
determined using the least squares method by fitting function (3) 
to the experimental curves.  For further analysis, the mean values 
of C10 and C01 from all 15 samples  were used. Their values were 
equal to C10=0.2461 and C01=0.3271. In Fig. 6, a theoretical curve 
for the Mooney-Rivlin model was compared with the experimental 

results. Strain values visible in fig. 6 were shifted by ε≈0.04 com-

pared to Fig. 5 due to the lasting deformation occurring in the third 
cycle. 

5. SPRING ASSEMBLY PRELOAD FORCE 

An elastic reaction force exerted by a single rubber cylinder in 
an unloaded Neidhart spring could be recreated by pushing a 
cylinder sample into the 90° V groove, as it is shown in Fig. 7. 
Considering only one rubber element instead of all four at the 
same time is possible because of the two symmetry planes that 
exist in the examined spring. Elastic deflection of the sample is 

described by the variable Δh=h0-h. For the compressed cylindrical 

sample of the dimensions Ø10x42 Δh is equal to ca. 3 mm, which 

corresponds to the deflection in typical Neidhart rubber springs. 

 
Fig. 7. Alternative setting for a quarter of Neidhart rubber spring:  

 1 – pressure plate, 2 – rubber cylinder, 3 – plate with groove 

 

Fig. 8. Sample Ø10x42 on testing stand 

The experiment was prepared and carried out to simulate the 
situation above. A cylindrical sample of the dimensions Ø10x42, 
placed horizontally in the V groove cut in the steel plate (Fig. 8), 
was compressed along its axis. The test was repeated for four 
samples on the same testing machine, like in the previous exper-

iment. During the test, compression force and deflection Δh were 

recorded. Each sample underwent three identical loading cycles 

where Δh reached a maximum value of 3 mm. For further analy-

sis, only the compression curve P(Δh) from the last cycle, after 

stabilization of the sample response, was used. 

6. FEM SIMULATIONS 

Based on the previous experiment, the exact system was rec-

reated in the ANSYS 16 version FEM simulation program. The 
simulation model (Fig. 9) consists of two rigid bodies (grooved 
plate and pressure plate) and a deformable body (cylindrical 
rubber element). Material constants for the CR rubber necessary 
to carry out the simulation were assumed according to the mean 
values C10 and C01 presented in the earlier section. The existence 
of two symmetry planes in the model – longitudinal and transverse 
– allows only a quarter of the whole system to be recreated. In the 
place of the removed fragment, the symmetry boundary conditions 
have to be placed on specific surfaces. Thanks to this simplifica-
tion, the computing resources and time needed for performing the 
simulation were reduced. The model of the single rubber cylinder 
visible in Fig. 9 was divided into 17,000 finite elements of the type 
SOLID285. On the section surfaces of each of the three parts, the 
symmetry condition was assigned. The grooved plate was fixed in 
place and loading was exerted by a pressure plate with displace-
ment applied vertically. The force necessary for deformation of the 

sample by the given value (Δh=3 mm) was recorded as a reaction 

force on the pressure plate during the simulation.   
A comparison of the simulation and experimental results is 

presented in Fig. 10. Similar progress of the compressive force as 

a function of Δh for FEM and experimental values allows one to 

assume that the prepared simulation reflects the actual physical 
process to a satisfactory degree. Consequently, it is justified to 
continue analysis for different geometrical dimensions of cylindri-
cal samples, based further only on FEM simulations. 

 
Fig. 9. FEM simulation of cylindrical sample compression. Results shown  

 as maximum principal elastic strain of material 

 
Fig. 10. Comparison of experimental results with the FEM simulation  

   of pressing cylindrical rubber sample into groove 
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The maximum amplitudes of the load for elastomeric parts are 
important in terms of their fatigue durability (Luo and Mortel, 
2009). The maximum principal elastic strain of the sample is 
shown in Fig. 9. It can be used as a measure of the material 
equivalent load in complex loading situations (Mars and Fatemi, 
2002). Analysing the distribution of the mentioned strain shows 
that the most loaded area is the sample interior near the contact 
with the pressure plate. Moreover, because of the material expan-
sion along the groove, the face of the sample begins to bulge, 
which leads to the collapse of the face edge during contact be-
tween the sample and both plates. Increases in material load 
because of this are more significant for contact with the pressure 
plate. 

7. RELATION BETWEEN RUBBER CYLINDER DIMENSIONS 
AND ELASTIC REACTION FORCE 

The next step was an attempt to devise a functional relation 
between the force P resulting from an initial deformation of rubber 
cylinders in a Neidhart spring and their dimensions – diameter d 
and length L. For this purpose, FEM simulations were carried out 
for a limited range of cylinder dimensions. It was assumed that the 
diameters would fit in the range from 10 to 30 mm and length from 
40 to 80 mm. Since the sample diameters are different compared 
to the ones that were tested earlier, it was necessary to define the 

value of Δh for other cases of diameter. It has been assumed that 

an elastic deflection Δh, being the result of an initial deformation 

of rubber cylinders, will be equal to 30% of the diameter size d: 

∆ℎ = 0.3𝑑  

 
Fig. 11. FEM simulation results for compressive force P as a function  

   of rubber cylinder diameter d and length L, and approximation  
   of those results  by the polynomial function 

The proposed value corresponds to the initial deflection value 
in typical Neidhart springs. In total, 25 simulations were carried 
out for 5 values of diameter d and 5 values of length L from the 
range that was mentioned earlier. FEM simulation results are 
presented in the form of a 3D scatter plot in Fig. 11. It shows the 

values of the compressive force P for the initial deflection Δh=0.3d 

for given values of rubber cylinder dimensions. 
Further, the obtained FEM results were approximated. The re-

lation describing the compressive force P as a function of two 
variables P(d, L) was introduced as a polynomial function due to 

its versatility and ease of use in practical applications: 

𝑃(𝑑, 𝐿) = ∑ 𝑝𝑖𝑗  𝑑𝑖  𝐿𝑗𝑖+𝑗=𝑁
𝑖+𝑗=0  (4) 

where: 𝑁 = 2, 𝑖 = {0,1}, 𝑗 = {0, 1 , 2}. 

After expanding (4) for given values of N, i and j, the result is: 
 

𝑃(𝑑, 𝐿) = 𝑝00 + 𝑝10 𝑑 + 𝑝01 𝐿 + 𝑝11 𝑑 𝐿 + 𝑝02 𝐿2 (5) 
 

Following the approximation of FEM results, the polynomial 
coefficients presented below were obtained: 

𝑝00 =  −155.6 𝑁 

𝑝10  = 6.02 
𝑁

𝑚𝑚
 

𝑝01  = 4.8 
𝑁

𝑚𝑚
 

𝑝11  = −0.51 
𝑁

𝑚𝑚2
 

𝑝02  = −0.077 
𝑁

𝑚𝑚2
 

The correlation coefficient for data received from the FEM 
simulation and equation (5) was R2=0.9967 and root mean square 
error  RMSE=0.018. Function (5) for the given input of the rubber 
cylinder diameter and length allows the value of compressive 
force to be estimated, which is also the elastic reaction force 
needed for an initial deformation of the rubber cylinders used in 
Neidhart springs. This is presented as a surface plot in Fig. 11. 
The developed relationship applies only to elastic elements made 
of chloroprene rubber CR, whose material constants were esti-
mated in this paper. 

8. CONCLUSIONS 

The elements to which a Neidhart spring owes its elastic 
properties are rubber cylinders. To analyse spring construction 
and operation, knowledge about the characteristics of the material 
used for cylinders is necessary. The conducted tests of axial 
compression for cylindrical rubber samples allow the material 
constants of the Mooney-Rivlin model to be determined, which 
was utilised for further work. One of the features specific 
for a Neidhart spring is its preload. This is the effect of initial de-
formation of rubber elements during spring assembly. Preload 
depends mainly on the geometry of rubber parts and the type 
of material used for their manufacture. The result of the conducted 
experiments and numerical simulations was the development 
of a functional relation which, for a given diameter and length 
of rubber cylinder, allows its elastic force reaction in the assem-
bled spring to be estimated. The presented methodology is uni-
versal, because it can also be applied for cylindrical elements 
made of a different rubber type than that specified in this paper. 
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