$u(x, t),(x, t) \in \bar{Q}$, that satisfies (in some sense) the homogeneous wave equation
$\frac{\partial^{2} u(x, t)}{\partial t^{2}}-\Delta u(x, t)=0, \quad(x, t) \in Q$,
homogeneous initial conditions
$u(x, 0)=0, \quad \frac{\partial u(x, 0)}{\partial t}=0, \quad x \in \Omega$,
and the Neumann boundary condition
$\partial_{\boldsymbol{v}(x)} u(x, t)=g(x, t), \quad(x, t) \in \Sigma$.
Here Δ is the Laplacian and ∂_{v} denotes the normal derivative.
To solve the problem (1)-(3) we use the retarded double layer potential
(D) λ) $(x, t):=\left.\frac{1}{4 \pi} \int_{\Gamma} \partial_{\boldsymbol{v}(y)}\left(\frac{\lambda(z, t-|x-y|)}{|x-y|}\right)\right|_{z=y} d \Gamma_{y},(x, t) \in Q$,
where $\lambda: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ is a density. It is known (see, e.g., Bamberger and Ha-Duong, 1986a or Polozhyy, 1964) that if an arbitrary function $\lambda(y, \tau),(y, \tau) \in \Gamma \times \mathbb{R}$, is smooth enough and $\lambda(y, \tau)=$ 0 when $y \in \Gamma, \tau \leq 0$, then function
$u(x, t):=(\mathcal{D} \lambda)(x, t), \quad(x, t) \in Q$,
satisfies (in the classical sense) the wave equation and initial conditions (2).

Note that for a sufficiently smooth density λ and surface Γ we can express the operator $\partial_{\boldsymbol{v}}$ as $\partial_{\boldsymbol{v}(x)} u(x, \cdot)=\boldsymbol{v}(x) \cdot \nabla_{x} u(x, \cdot)$, where ∇_{x} is the gradient operator. Then there exists the following limit
$(\mathcal{W} \lambda)(x, t):=$
$\left.\frac{1}{4 \pi} \boldsymbol{v}(x) \cdot \lim _{x^{\prime} \rightarrow x} \nabla_{x^{\prime}} \int_{\Gamma} \boldsymbol{v}(y) \cdot \nabla_{y}\left(\frac{\lambda\left(z, t-\left|x^{\prime}-y\right|\right)}{\left|x^{\prime}-y\right|}\right)\right|_{z=y} d \Gamma_{y}$,
where $x^{\prime}:=x-\varepsilon \boldsymbol{v}(x) \in \Omega, \varepsilon>0$, denotes a point close to the point $x \in \Gamma$. We say that x^{\prime} approaches $x, x^{\prime} \rightarrow x$, when $\varepsilon \rightarrow 0$. The function u satisfies the boundary condition (3), if the function λ is a solution of the retarded potential integral equation (RPIE)
$(\mathcal{W} \lambda)(x, t)=g(x, t),(x, t) \in \Sigma$.
We shall briefly give the essential notions of the Laguerre transform in the weighted Lebesgue space $L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ with some parameter $\sigma>0$ and weight $\rho_{\sigma}(t)=e^{-\sigma t}, t \in \mathbb{R}_{+}$. Here X is a Hilbert space with an inner product $(\because \cdot)_{X}$ and an inducted norm $\|\cdot\|_{X}$. Elements $v \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ are measurable functions $v: \mathbb{R}_{+} \rightarrow X$ such that $\int_{\mathbb{R}_{+}}\|v(t)\|_{X}^{2} e^{-\sigma t} d t<\infty$. This space is equipped with the inner product
$(v, w)_{L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)}:=\int_{\mathbb{R}_{+}}(v(t), w(t))_{X} e^{-\sigma t} d t, v, w \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$,
and the norm
$\|v\|_{L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)}:=\sqrt{(v, v)_{L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)}}, \quad v \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$.
It is well-known (Reed and Simon, 1977) that the space $L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ is complete. We will assume that the elements of space $L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ are extended with zero for non-positive arguments.

For any $m \in \mathbb{N}$ (set of natural numbers) let us denote the weighted Sobolev space as
$H_{\sigma}^{m}\left(\mathbb{R}_{+} ; X\right):=\left\{v \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right) \mid v^{(k)} \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right), k=\overline{1, m}\right\}$
with the norm $\|v\|_{H_{\sigma}^{m}\left(\mathbb{R}_{+} ; X\right)}:=\left(\sum_{k=0}^{m}\left\|v^{(k)}\right\|_{L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)}^{2}\right)^{1 / 2}$. Here derivatives $v^{k}(k \in \mathbb{N})$ are understood in terms of the space $\mathcal{D}^{\prime}\left(\mathbb{R}_{+} ; X\right)$, elements of which are distributions with values in the space X.

We introduce a couple of notations. As the sequence of elements of set X we understand a vector-column $\boldsymbol{v}:=\left(v_{0}, v_{1}, \ldots\right)^{T}$. All possible sequences of elements of the set X are denoted by X^{∞}. We consider the Hilbert space $l^{2}(X):=\left\{\boldsymbol{v} \in X^{\infty} \mid \quad \sum_{j=0}^{\infty}\left\|v_{j}\right\|_{X}^{2}<+\infty\right\}$ with the inner product $(\boldsymbol{v}, \boldsymbol{w})=\sum_{j=0}^{\infty}\left(v_{j}, w_{j}\right)_{X}, \boldsymbol{v}, \boldsymbol{w} \in l^{2}(X)$, and the norm $\|\boldsymbol{v}\|_{l^{2}(X)}:=$ $\left(\sum_{j=0}^{\infty}\left\|v_{j}\right\|_{X}^{2}\right)^{1 / 2}, v \in l^{2}(X)$. Recall that for $X=\mathbb{R}$ we have $l^{2}(\mathbb{R})=l^{2}:=\left\{\left.\boldsymbol{v} \in \mathbb{R}^{\infty}\left|\quad \sum_{j=0}^{\infty}\right| v_{j}\right|^{2}<+\infty\right\}$.

Now let us give the definition of the Laguerre transform and outline some of its properties (Litynskyy and Muzychuk, 2015b). Consider a mapping $\mathcal{L}: L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right) \rightarrow X^{\infty}$ which operates according to the rule
$f_{k}:=\sigma \int_{\mathbb{R}_{+}} f(t) L_{k}(\sigma t) e^{-\sigma t} d t, \quad k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$,
where $\left\{L_{k}(\sigma \cdot)\right\}_{k \in \mathbb{N}_{0}}$ are Laguerre polynomials, which form orthogonal basis in the space $L_{\sigma}^{2}\left(\mathbb{R}_{+}\right)$(Keilson et al., 1980). Also consider the mapping $\mathcal{L}^{-1}: l^{2}(X) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$, which maps an arbitrary sequence $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{k}, \ldots\right)^{T}$ to a function
$h(t):=\left(\mathcal{L}^{-1} \boldsymbol{h}\right)(t)=\sum_{k=0}^{\infty} h_{k} L_{k}(\sigma t), t \in \mathbb{R}_{+}$.

Proposition 2.1 (theorem 2 from Litynskyy and Muzychuk, 2015b) The mapping $\mathcal{L}: L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right) \rightarrow X^{\infty}$ that maps the arbitrary function f to the sequence $\boldsymbol{f}=\left(f_{0}, f_{1}, \ldots, f_{k}, \ldots\right)^{T}$ according to the formula(10), is injective and its image is the space $l^{2}(X)$, and
$\|f\|_{L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)}^{2}=\frac{1}{\sigma} \sum_{k=0}^{\infty}\left\|f_{k}\right\|_{X}^{2}$.
In addition, for the arbitrary function $f \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ we have an equality
$\mathcal{L}^{-1} \mathcal{L} f=f$,
where the mapping $\mathcal{L}^{-1}: l^{2}(X) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$ is the inverse to \mathcal{L} and maps the arbitrary sequence $\boldsymbol{h}=\left(h_{0}, h_{1}, \ldots, h_{k}, \ldots\right)^{T}$ to the function h according to the formula (11).

Definition 2.2 (Litynskyy and Muzychuk, 2015b) Let $\sigma>0$ and X be a Hilbert space. Mappings $\mathcal{L}: L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right) \rightarrow$ $l^{2}(X)$ and $\mathcal{L}^{-1}: l^{2}(X) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}_{+} ; X\right)$, mentioned in Proposition 2.1, are called, respectively, direct and inverse Laguerre transforms, and the formula (12) is an analogue of the Parseval equality.

Definition 2.3 (Litynskyy et al., 2009) Let X, Y, Z be arbitrary sets and $q: X \times Y \rightarrow Z$ be some mapping. By a q-convolution of sequences $\boldsymbol{u} \in X^{\infty}$ and $\boldsymbol{v} \in Y^{\infty}$ we understand the sequence $\boldsymbol{w}:=\left(w_{0}, w_{1}, \ldots, w_{j}, \ldots\right)^{T} \in Z^{\infty}$, whose elements are obtained by the rule
$w_{j}:=\sum_{i=0}^{j} q\left(u_{j-i}, v_{i}\right) \equiv \sum_{i=0}^{j} q\left(u_{i}, v_{j-i}\right), \quad j \in \mathbb{N}_{0} ;$
the q-convolution of \boldsymbol{u} and \boldsymbol{v} is shortly written in the form $\boldsymbol{w}=$ $\boldsymbol{u}{ }_{q} \boldsymbol{v}$.

If $X=\mathcal{L}(Y, Z)$ is the space of linear operators acting from the space Y into the space Z and $q(A, v):=A v, A \in \mathcal{L}(Y, Z), v \in Y$, then for components of the q-convolution of arbitrary sequences
$\boldsymbol{A} \in(\mathcal{L}(Y, Z))^{\infty}$ and $\boldsymbol{v} \in Y^{\infty}$ we will have the following formula
$w_{j}=\sum_{i=0}^{j} A_{j-i} v_{i}, \quad j \in \mathbb{N}_{0}$,
and will write $\boldsymbol{w}:=\boldsymbol{A}{ }_{Z} \boldsymbol{v}$.
Now let's consider a sequence of functions
$e_{0}(z):=\frac{e^{-\sigma|z|}}{4 \pi|z|}, \quad e_{k}(z):=\frac{e^{-\sigma|z|}}{4 \pi|z|}\left(L_{k}\left(\sigma|z|-L_{k-1}(\sigma|z|)\right), \quad k \in \mathbb{N}\right.$,
$z \in \mathbb{R}^{3} \backslash\{0\}$.
Based on the above, in the space $H^{1}(\Omega):=\left\{v \in L^{2}(\Omega)| | \nabla v \mid \in\right.$ $\left.L^{2}(\Omega)\right\}$ we can define a function sequence
$\boldsymbol{u}(x):=\left(\boldsymbol{D} \underset{H^{1}(\Omega)}{\circ} \boldsymbol{\lambda}\right)(x), \quad x \in \Omega$,
where $\lambda=\mathcal{L} \lambda$ for any $\lambda \in L_{\sigma}^{2}\left(\mathbb{R}_{+} ; H^{1 / 2}(\Gamma)\right)$ and the sequence \boldsymbol{D} is composed of operators $D_{k}: H^{1 / 2}(\Gamma) \rightarrow H^{1}(\Omega, \Delta), k \in \mathbb{N}_{0}$, given by the rule
$\left(D_{k} \xi\right)(x):=\frac{1}{4 \pi} \int_{\Gamma} \xi(y) \boldsymbol{v}(y) \cdot \nabla_{y} e_{k}(x-y) d \Gamma_{y}$.
Here $H^{1}(\Omega, \Delta):=\left\{v \in H^{1}(\Omega) \mid \Delta v \in L^{2}(\Omega)\right\}, H^{1 / 2}(\Gamma)$ denotes a space of traces of elements of $H^{1}(\Omega)$ on the surface Γ and $H^{-1 / 2}(\Gamma):=\left(H^{1 / 2}(\Gamma)\right)^{\prime}$. If u is expressed by the retarded double layer potential (4) with some density λ then the sequence (17) represents the transformation $\boldsymbol{u}=\mathcal{L} u$ (Litynskyy and Muzychuk, 2016). Similarly, applying the LT to the equation (7), we obtain a BIE system
$\boldsymbol{W}_{H^{-1 / 2}(\Gamma)}^{\circ} \boldsymbol{\lambda}=\boldsymbol{g}$ in $l^{2}\left(H^{-1 / 2}(\Gamma)\right)$,
where $\boldsymbol{g}=\mathcal{L} g$ and $\boldsymbol{W}: l^{2}\left(H^{1 / 2}(\Gamma)\right) \rightarrow l^{2}\left(H^{-1 / 2}(\Gamma)\right)$ is a sequence of boundary operators
$\left(W_{k} \xi\right)(x):=\frac{1}{4 \pi} \boldsymbol{v}(x) \cdot \lim _{x^{\prime} \rightarrow x} \nabla_{x^{\prime}} \int_{\Gamma} \xi(y) \boldsymbol{v}(y) \cdot \nabla_{y} e_{k}\left(x^{\prime}-y\right) d \Gamma_{y}$,
$k \in \mathbb{N}_{0}$.
After finding the solution $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots\right)^{T}$ of the BIEs (19), the generalized solution of the problem (1)-(3) can be presented as a sum of the series
$u(x, t)=\sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} D_{k-i} \lambda_{i}(x)\right) L_{k}(\sigma t), \quad(x, t) \in Q$.

Proposition 2.4 (theorem 2.4 from Litynskyy and Muzychuk, 2016) Let $g \in H_{\sigma_{0}}^{m+4}\left(\mathbb{R}_{+} ; H^{-1 / 2}(\Gamma)\right)$ for some $\sigma_{0}>0$ and $m \in \mathbb{N}_{0}$. Then there exists a unique generalized solution of the problem (1)-(3), it belongs to the space $H_{\sigma_{0}}^{m+1}\left(\mathbb{R}_{+} ; H^{1}(\Omega)\right)$ and for any $\sigma \geq \sigma_{0}$ such an inequality holds
$\|u\|_{H_{\sigma}^{m+1}\left(\mathbb{R}_{+} ; H^{1}(\Omega)\right)} \leq C\|g\|_{H_{\sigma}^{m+4}\left(\mathbb{R}_{+} ; H^{-1 / 2}(\Gamma)\right)}$,
where $C>0$ is a constant that is not dependent on g.
In addition, the generalized solution of the problem (1)-(3) can be obtained by the inverse transform $u=\mathcal{L}^{-1} \boldsymbol{u}$, where $u_{j} \in$ $H^{1}(\Omega, \Delta)\left(j \in \mathbb{N}_{0}\right)$ are the corresponding components of the q convolution (17), and elements of the sequence $\lambda \in l^{2}\left(H^{1 / 2}(\Gamma)\right)$ are solutions of BIE system (19), in which $\boldsymbol{g}=\mathcal{L} g$.

3. BEM FOR THE INFINITE BIE SYSTEM

We have now the new representation (21) of the solution of the problem (1)-(3) and the infinite BIE system (19) with unknown functions $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots\right)^{T}$. It is easy to see that the sys-
tem (19) can be rewritten as a sequence of BIEs

with recursive right-hand sides
$\tilde{g}_{k}:=g_{k}-\sum_{i=0}^{k-1} W_{k-i} \lambda_{i}, \quad k \in \mathbb{N}$.
For every $k \in \mathbb{N}_{0}$ the corresponding k-th equation of (23) is a hypersingular equation that has the form
$W_{0} \eta=f$ in $H^{-1 / 2}(\Gamma)$.
It has a unique solution $\eta \in H^{1 / 2}(\Gamma)$ for an arbitrary function $f \in H^{-1 / 2}(\Gamma)$ (Hsiao and Wendland, 2008). We can choose (by some criteria) value N and find from (23) the first components $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{N}$. Then the approximate solution of the problem (1)-
(3) is the partial sum
$u^{N}(x, t)=\sum_{j=0}^{N}\left(\sum_{i=0}^{k} D_{k-i} \lambda_{i}(x)\right) L_{k}(\sigma t), \quad(x, t) \in Q$.
We are now in position to apply the BEM for finding unknown functions. Consider in $H^{1 / 2}(\Gamma)$ a sequence of finite-dimensional subspaces $X^{M} \subset H^{1 / 2}(\Gamma), M \in N$, assuming that $\left\{\phi_{i}\right\}_{i=1}^{M}$ is a basis of X^{M}. The numerical solution of the equation (25) can be presented as a linear combination
$\eta^{M}:=\sum_{i=1}^{M} \eta_{i} \phi_{i} \in X^{M}$
that is a solution of such variational equation
$\left\langle W_{0} \eta^{M}, \eta\right\rangle_{\Gamma}=\langle f, \eta\rangle_{\Gamma} \quad \forall \eta \in X^{M}$.
Applying the Galerkin method, that is taking the elements of the basis ϕ_{j} as test functions in order to find the vector of unknown coefficients $\boldsymbol{\eta}^{[M]}:=\left\{\eta_{i}\right\}_{i=1}^{M} \in \mathbb{R}^{M}$, we will get a system of linear algebraic equations (SLAE)
$W_{0}{ }^{[M]} \boldsymbol{\eta}^{[M]}=\boldsymbol{f}^{[M]}$.
where $W_{0}^{[M]}[j, i]:=\left\langle W_{0} \phi_{i}, \phi_{j}\right\rangle_{\Gamma}, \quad f_{j}^{[M]}:=\left\langle f, \phi_{j}\right\rangle_{\Gamma}, \quad i, j=\overline{1, M}$. As a result of the $H^{1 / 2}(\Gamma)$-ellipticity of the operator W_{0}, the matrix $W_{0}^{[M]}$ is positive definite (Costabel M., 1988; Hsiao and Wedland, 1977; Schtainbah, 2008). Therefore, the system (29) has a unique solution for an arbitrary right-hand side $\forall M \in N$.

Let $\Gamma_{\widetilde{M}}=\cup_{l=1}^{\widetilde{M}} \bar{\tau}_{l}$ be some approximation of the boundary Γ composed of triangular boundary elements $\left\{\tau_{l}\right\}_{l=1}^{\tilde{M}}$ with vertices $\left\{x^{\left[l_{1}\right]}, x^{\left[l_{2}\right]}, x^{\left[l_{3}\right]}\right\}$. We assume that vertices of all triangles have a global numbering $\left\{x_{k}\right\}_{k=1}^{M^{*}}$ and for each point x_{k} there exists an associated set $\mathcal{J}(k)$ of numbers of those triangles that have this point as a vertex. We treat the value $h:=\max _{l=1, \tilde{M}}\left(\int_{\tau_{l}} d s\right)^{1 / 2}$ as the parameter of the spatial approximation.

Note that each triangle can be projected on a "standard" triangle $\tau:=\left\{\xi:=\left(\xi_{1}, \xi_{2}\right) \in R^{2}: 0<\xi_{1}<1,0<\xi_{2}<1-\xi_{1}\right\}$. Following Dautray and Lions (1992) and Schtainbah (2008), functions $\phi_{1}^{1}(\xi)=1-\xi_{1}-\xi_{2}, \phi_{2}^{1}(\xi)=\xi_{1}$ and $\phi_{3}^{1}(\xi)=\xi_{2}$, defined locally on the triangle τ, form a set $\left\{\varphi_{i}^{1}\right\}_{i=1}^{M}, M=M^{*}$, that contains linearly-independent on $\Gamma_{\widetilde{M}}$ functions. Moreover, $\operatorname{supp} \varphi_{i}^{1}=$ $\mathrm{U}_{l \in \mathcal{J}(i)} \bar{\tau}_{l}=: \tau_{i}^{*}$. Then the numerical solution $\lambda^{h}:=\left(\lambda_{0}^{h}, \lambda_{1}^{h}, \ldots\right)^{T}$ of the BIE system (23) is sought in the form
$\lambda_{k}^{h}=\sum_{l=1}^{M} \lambda_{k, l}^{h} \varphi_{l}^{1} \quad \in S_{h}^{1}(\Gamma):=\operatorname{span}\left\{\varphi_{i}^{1}\right\}_{i=1}^{M}, k \in N_{0}$,

DE GRUYTER
where $\left\{\lambda_{k, l}^{h}\right\}_{l=1}^{M}$ are the unknown coefficients. In order to find the vector $\lambda_{k}^{h}:=\left\{\lambda_{k, l}^{h}\right\}_{l=1}^{M} \in \mathbb{R}^{M}$ we obtain the following SLAE from (29)
$\boldsymbol{W}_{0}^{h} \lambda_{k}^{h}=\boldsymbol{g}_{k}^{h}-\sum_{i=0}^{k-1} \boldsymbol{W}_{k-i}^{h} \lambda_{i}^{h}, \quad k \in N$,
where
$W_{j}^{h}[i, l]=\int_{\tau_{i}^{*}} \varphi_{i}^{1}(x) \partial_{v(x)} \int_{\tau_{l}^{*}} \varphi_{l}^{1}(y) \partial_{v(y)} E_{j}(x-y) d s_{y} d s_{x}, j=$
$\overline{0, k}$,
$g_{k}^{h}[i]=\int_{\tau_{i}^{*}} \varphi_{i}^{1}(x) \tilde{g}_{k}(x) d s_{x}, \quad i, l=\overline{1, M}$.
After finding the consequent vector $\lambda_{\mathrm{k}}^{\mathrm{h}}$ we can compute the corresponding element of the sequence $\boldsymbol{u}^{h}:=\left(u_{0}^{h}, u_{1}^{h}, \ldots, u_{k}^{h}, \ldots, u_{N}^{h}, 0, \ldots\right)^{T}$:
$u_{k}^{h}(x)=\sum_{j=0}^{k}\left(D_{j} \lambda_{k-j}^{h}\right)(x), x \in \Omega$.
Having \boldsymbol{u}^{h}, the numerical solution of the Neumann problem is found by the formula
$u^{N, h}(x, t)=\sum_{j=0}^{N} u_{k}^{h}(x) L_{k}(\sigma t), \quad(x, t) \in Q$.
Let us obtain, following Hsiao and Wedland (1977), an a priory error estimate of the numerical solution after the introduction of Sobolev spaces of piecewise-smooth on the boundary Γ functions. Let Γ be a union $\Gamma=\mathrm{U}_{i=1}^{\widetilde{N}} \bar{\Gamma}_{i}$ of surfaces $\Gamma_{i}\left(\Gamma_{i} \cap \Gamma_{j}=\varnothing\right.$ when $i \neq j$), each of which has a sufficiently smooth parameterization $\Gamma_{i}:=\left\{x \in R^{3}: x=\tilde{\chi}_{i}(\xi), \xi \in \tilde{\tau}_{i} \subset R^{2}\right\}$. Then, using the set of the non-negative functions $\phi_{i} \in C_{0}^{\infty}\left(R^{3}\right)$ such that $\sum_{i=1}^{\widetilde{N}} \phi_{i}(x)=1 \quad \forall x \in \Gamma, \quad \phi_{i}(x)=0 \quad \forall x \in \Gamma \backslash \Gamma_{i}$, an arbitrary piecewise-smooth function can be given in a form
$v(x)=\sum_{i=1}^{\widetilde{N}} \phi_{i}(x) v(x)=\sum_{i=1}^{\widetilde{N}} v_{i}(x) \quad \forall x \in \Gamma$,
where $v_{i}(x):=\phi_{i}(x) v(x) \quad \forall x \in \Gamma_{i}$. Taking into account the parameterization of the fragments Γ_{i}, we consider Sobolev spaces $H^{s}\left(\tilde{\tau}_{i}\right)$, elements of which are functions $\tilde{v}_{i}(\xi):=v_{i}\left(\tilde{\chi}_{i}(\xi)\right)$ when $\xi \in \tilde{\tau}_{i}$, with corresponding norms and semi-norms
$\left\|\tilde{v}_{i}\right\|_{H^{s}\left(\tilde{\tau}_{i}\right)}:=\left(\sum_{|\alpha| \leq m}\left\|\partial^{\alpha} \tilde{v}_{i}\right\|_{L^{2}\left(\tilde{\tau}_{i}\right)}^{2}\right)^{\frac{1}{2}}$,
$\left|\tilde{v}_{i}\right|_{H^{s}\left(\tilde{\tau}_{i}\right)}:=\left(\sum_{|\alpha|=m}\left|\partial^{\alpha} \tilde{v}_{i}\right|_{L^{2}\left(\tilde{\tau}_{i}\right)}^{2}\right)^{\frac{1}{2}}, \quad s=m \in N ;$
$\left|\tilde{v}_{i}\right|_{H^{s}\left(\tilde{\tau}_{i}\right)}:=\left(\sum_{|\alpha|=m} \int_{\tilde{\tau}_{i}} \int_{\tilde{\tau}_{i}} \frac{\left|\partial^{\alpha} \tilde{v}_{i}(\xi)-\partial^{\alpha} \tilde{v}_{i}(\eta)\right|^{2}}{|\xi-\eta|^{2+2 \sigma}} d s_{\xi} d s_{\eta}\right)^{\frac{1}{2}}$,
$s=m+\sigma, \sigma \in(0,1)$.
Here ∂^{α} is a notation of the partial derivative with a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$. Moreover, for functions that are defined on the whole boundary Γ, we use the semi-norm
$|v|_{H^{s}(\Gamma)}:=\left(\sum_{i=1}^{\widetilde{N}}\left|\tilde{v}_{i}\right|_{H^{s}\left(\tilde{\tau}_{i}\right)}^{2}\right)^{1 / 2}$.
Lemma 3.1 Let $\lambda \in\left(H^{s}(\Gamma)\right)^{\infty}$ for some $\boldsymbol{s} \in\left[\frac{1}{2}, 2\right]$ be the exact solution of the BIE system (23), which satisfies an inequality
$\sum_{j=0}^{\infty}\left|\lambda_{j}\right|_{H^{s}(\Gamma)}<+\infty$.
Then for any values of parameters $N \in \mathbb{N}_{0}$ and $T \in \mathbb{R}_{+}$the following error estimates hold
$\left\|\lambda^{N}(\cdot, t)-\lambda^{N, h}(\cdot, t)\right\|_{H^{\frac{1}{2}}(\Gamma)} \leq \tilde{C}_{N, T} h^{s-\frac{1}{2}} \sum_{k=0}^{N}\left|\lambda_{k}\right|_{H^{s}(\Gamma)}$,
$t \in(0, T)$,
$\left|u^{N}(x, t)-u^{N, h}(x, t)\right| \leq \tilde{C}_{N, T}^{*} h^{s-\frac{1}{2}} \sum_{k=0}^{N}\left|\lambda_{k}\right|_{H^{s}(\Gamma)}$,
$x \in \Omega, \quad t \in(0, T)$,
where $\tilde{C}_{N, T}$ and $\tilde{C}_{N, T}^{*}$ are constants independent of h.
Proof. Let us fix two arbitrary values $N \in \mathbb{N}_{0}$ and $T \in \mathbb{R}_{+}$and consider $\delta_{N, T}:=\left\|\lambda^{N}(\cdot, t)-\lambda^{N, h}(\cdot, t)\right\|_{H^{1 / 2}(\Gamma)}=\| \sum_{k=0}^{N}\left(\lambda_{k}(\cdot)-\right.$ $\left.\lambda_{k}^{h}(\cdot)\right) L_{k}(\sigma t) \|_{H^{1 / 2}(\Gamma)} \quad$ for any $t \in(0, T)$. Setting $\quad C_{N, T}:=$ $\max ^{(0, T], k=0, N}\left|L_{k}(\sigma t)\right|$ we can write
$\delta_{N, T} \leq C_{N, T} \sum_{k=0}^{N}\left\|\lambda_{k}-\lambda_{k}^{h}\right\|_{H^{1 / 2}(\Gamma)}$.
Note that for any function λ_{k}, which satisfies an equation like (25), the inequality (39) yields the following estimate (Schtainbah, 2008)
$\left\|\lambda_{k}-\lambda_{k}^{h}\right\|_{H^{1 / 2}(\Gamma)} \leq \tilde{C}_{k} h^{s-1 / 2}\left|\lambda_{k}\right|_{H^{s}(\Gamma)}, \quad k \in N_{0}$,
where \tilde{C}_{k} are constants independent of h. Using this inequality and setting $\tilde{C}_{N, T}:=C_{N, T} \max _{k=0, N}\left\{\tilde{C}_{k}\right\}$ we obtain (40) from (42).

Since in the case of Lipschitz boundary all functions $E_{j}(x-\cdot)$ are bounded and infinitely continuously differentiable on Γ for any fixed point $x \in \Omega$, we get inequality $\left\|\partial_{\nu(\cdot)} E_{j}(x-\cdot)\right\|_{H^{-1 / 2}(\Gamma)} \leq$ $c_{j}^{*}=$ const. Taking it and (43) into account by the Generalized Cauchy-Schwarz inequality we obtain $\left|u_{k}(x)-u_{k}^{h}(x)\right|=$ $\left|\sum_{i=0}^{k}\left\langle\partial_{\nu(\cdot)} E_{k-i}(x-\cdot),\left(\lambda_{i}-\lambda_{i}^{h}\right)\right\rangle_{\Gamma}\right| \leq \tilde{c}_{k} h^{s-1 / 2} \sum_{i=0}^{k}\left|\lambda_{i}\right|_{H^{s}(\Gamma)}$, where \tilde{c}_{k} are constants independent of h. Using this estimate, the rest of the proof for (41) can be carried out analogously to the proof for (40).

4. RESULTS OF THE COMPUTATIONAL EXPERIMENT

Let us demonstrate the suggested method to solve some model problem and assess the accuracy of numerical solutions. Let the domain $\Omega:=R^{3} \backslash \Omega^{-}$be outside of a cube $\Omega^{-}:=[-1,1] \times$ $[-1,1] \times[-1,1]$ and the function $g(x, t):=-\partial_{v(x)} v(x, t)$, $(x, t) \in \Sigma$, in the boundary condition (3) is defined by means of a spherical impulse $v(x, t):=f_{3}(t-|x|+1)|x|^{-1},(x, t) \in Q$, where f_{3} is a cubic B-spline.

Tab. 1. Convergence behavior of $u_{0}^{h}(x)$ at points $x=\left(x_{1}, 0,0\right)$

	$u_{0}^{h}(x)$			$\boldsymbol{u}_{\mathbf{0}}(\boldsymbol{x})$
$\boldsymbol{x}_{\mathbf{1}}$	$\overline{\boldsymbol{M}}=\mathbf{5 8 8}$	$\overline{\boldsymbol{M}}=\mathbf{1 2 0 0}$	$\overline{\boldsymbol{M}}=\mathbf{1 7 2 8}$	
1.2	4.97567 $\times 10^{-1}$	5.16241 $\times 10^{-1}$	5.23443 $\times 10^{-1}$	5.58600 $\times 10^{-1}$
1.5	2.19226 $\times 10^{-1}$	2.26607 $\times 10^{-1}$	2.29583 $\times 10^{-1}$	2.45252 $\times 10^{-1}$
2.0	6.07058 $\times 10^{-2}$	6.25240 $\times 10^{-2}$	6.32929 $\times 10^{-2}$	6.76676 $\times 10^{-2}$
3.0	5.50191	5.64833 $\times 10^{-3}$	5.71311 $\times 10^{-3}$	6.10521 $\times 10^{-3}$
4.0	5.59834			
	$\times 10^{-4}$	5.73967 $\times 10^{-4}$	5.80360 $\times 10^{-4}$	6.19688 $\times 10^{-4}$

\qquad
\qquad
\qquad

