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Abstract: A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled struc-
tures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling 
is limited in practice to columns, single plates and shells. The applications of finite element method (FEM) or/and analytical-numerical 
method (ANM) to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength  
of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine 
static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic  
response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible  
to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling  
of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important 
advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours  
of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered. 
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1. COUPLED BUCKLING OF THIN-WALLED STRUCTURES 

The theory of coupled or interactive buckling of thin walled 
structures has been already developed widely for over sixty years. 
Thin-walled structures, especially plates, columns and beams, 
have many different buckling modes that vary in quantitative and 
qualitative aspects. In these cases, nonlinear buckling theory 
should describe all buckling modes from global (i.e., flexural, 
flexural-torsional, lateral, distortional and their combinations) 
to local and the coupled buckling as well as the determination 
of their load carrying capacity taking into consideration the struc-
ture imperfection. Coupling between modes occur for columns 
of such length where two or more eigenvalues loads of a structure 
are nearly identical (Fig. 1). The local buckling takes place for the 
short columns. On the other hand, the long columns are subject to 
global buckling. 

The concept of coupled or interactive buckling involves the 
general asymptotic nonlinear theory of stability. Among all ver-
sions of the general nonlinear theory, the Koiter theory of con-
servative systems (Koiter, 1976; van der Heijden, 2009) is the 
most popular one, owing to its general character and develop-
ment, even more so after Byskov and Hutchinson (1997) formu-
lated it in a convenient way. The details descriptions of this meth-
od can be found in the monographs: van der Heijden (2009), 
Thompson and Hunt (1973) or Kubiak (2013). Applicability of an 
asymptotic expansion for elastic buckling problems with mode 
interaction was discussed in many papers, for instance: Tvergaard 
(1973a, 1973b), Koiter and Pignataro (1974), Byskov (1979, 

1988), Sridharan (1983), Benito and Sridharan (1985a, 1985b), 
Pignataro and Luongo (1985, 1987a, 1987b), Casciaro et al. 
(1998), Goltermann and Mollman (1989a, 1989b), Garcea et al. 
(1999, 2009), Barbero et al. (2014). 

 
Fig. 1. Buckling modes vs. column length 

The theory is based on asymptotic expansions of the post-
buckling path and is capable of expanding the potential energy 
of the system in a series relative to the amplitudes of linear modes 
near the point of bifurcation. This theory is capable of considering 
many different buckling modes. The two uncoupled modes are 
symmetric and stable, but on coincidence they are found to give 
rise to a symmetric unstable mixed form (Fig. 2). The unstable 
coupled path will branch off the lower of the two uncoupled paths. 
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The coupled post-buckling path can be important in continuous 
systems and it have an important effect on the type of instability 
which occurs. It enables determination of post-buckling equilibri-
um paths for the imperfect structure and to determine on them 
secondary bifurcation points or/and the limit point. If one takes into 
account the second order approximation, one can determine the 
limit load capacity of a structure in the elastic range. An assump-
tion of one of the ”engineering” hypotheses of load carrying ca-
pacity allows for determination of the approximate estimation 
of load carrying capacity for the elastic-plastic range. This ap-
proach provides a lower bound of this load carrying capacity. 

 
Fig. 2. Coupled buckling of two modes (view of cross sections)  

(Sridharan, 1983) 

Although the problem of static coupled buckling can be treated 
as sufficiently well-recognized. Many scientists dealt with this 
problem, for instance: Sridharan and co-workers (1983, 1985a, 
1985b, 1985c, 1986, 1988), Goltermann and Mollman (1989a, 
1989b), Manevich (1981, 1982, 1985, 1988), Kolakowski (1987a, 
1987b, 1988, 1989a, 1989b, 1989c, 1993a, 1993b, 1996). 

The numerical calculations carried out by Kolakowski (1987a, 
1987b, 1988, 1989a, 1989b, 1989c, 1993a, 1993b, 1996) have 
proven that the interaction of local modes having considerably 
different wavelengths is either very weak or does not occur at all. 
Moreover, one can see that the interaction of two global modes 
of buckling is very weak or even does not occur at all. According 
to the assumptions made in Byskov and Hutchinson's (1977) 
theory, local buckling modes do not interact explicitly. However, 
the interaction occurs through the interaction of each of them with 
the global mode. It can be noticed that the global flexural (Euler) 
buckling can interact with an even number of local modes that are 
symmetric or antisymmetric but the global flexural-torsional mode 
only with pairs of symmetric and antisymmetric modes. In some 
cases, an improper selection of the mode, even if a few of them 
are considered, may lead to an overestimation of the structure 
load carrying capacity; also the consideration of the two-mode 
approach may sometimes be misleading and yield false conclu-
sions. This can be accomplished only by means of a non-linear 
analysis. The consideration of displacements and load compo-
nents in the middle surface of walls within the first order approxi-
mation and precise geometrical relationships enabled the analysis 
of all possible buckling modes, including a mixed buckling. In thin-
walled structures of open cross-sections, owning to their low 
rigidity, it is necessary to consider distortional deformations. The 
above factors have even led to the consideration of an interaction 
of a few modes - two global and some local ones. If the analysis 
of the stability problem of thin-walled structures is restricted to the 
first order approximation, where the theoretical limit load is always 

lower than the minimum value of the bifurcational load in the linear 
analysis, the imperfection sensitivity can only be obtained. 
The determination of the post-buckling equilibrium path requires 
the second order approximation to be taken into account. The 
structures where the local buckling precedes the global one are 
widely used because these perfect structures can carry a load 
higher than that referring to the bifurcation value of the local buck-
ling. Therefore, it is necessary to consider the second order ap-
proximation, that is to say, the fourth order components of the 
potential energy. In general, the stability analysis with regard to 
the second non-linear approximation requires the solution 
of boundary value problems: for the second order global, local and 
mixed modes. 

The analysis of dynamic interactive buckling is limited in prac-
tice single plates and shells. There are known the solutions 
of dynamic buckling problem for columns (Budiansky, 1966a; 
1966b). But there are not many solutions for plate model of thin-
walled structures (Sridharan, 1984; Kolakowski, 2007; Kolakowski 
and Kubiak, 2007; Kubiak, 2007; Teter, 2007, 2010, 2011, Teter 
and Kolakowski, 2013). 

Dynamic buckling or dynamic response can be treated 
as a reinforcement of imperfections, initial displacements 
or stresses in the structure through dynamic loading in such 
a manner that a level of the dynamic response becomes very high 
(Ari-Gur and Simonetta, 1997; Lindberg, 1987; Strogne, 2000). 
For dynamic buckling of a perfect structure due to a pulse loading, 
there is no exact counterpart of the static characteristic bifurcation 
load. When the load is low, the thin-walled structure vibrates 
around the static equilibrium position. On the other hand, when 
the load is sufficiently high, then the structure can vibrate very 
strongly or can move divergently, which is caused by dynamic 
buckling. One should not confuse this case with vibration buckling 
where the loads are periodic and the transverse vibration be-
comes unacceptably large at critical combinations of amplitude, 
load frequency and damping. In this case one can get parametric 
resonance or ordinary resonance (Lindberg, 1987; Strogne, 2000; 
Simitses, 1990, 2006; Virgin, 2007; Warminski and Teter, 2012). 

Chapters of monographs by Simitses (1990, 2006) and Virgin 
(2007) deals with the response of structures subjected to oscillat-
ing loads, leading to, so-called, vibration buckling. The periodically 
changing load produces periodically changing coefficients in the 
mathematical model. Then, in certain frequency intervals, 
the trivial solution loses its stability and, the parametric resonance 
occurs. In such a case transverse vibrations become unaccepta-
bly large at critical combinations of amplitude, load frequency and 
damping. The most essential and dangerous, from the practical 
point of view, is the principal parametric resonance. This phenom-
enon appears for sufficiently small values of the axial force, when 
the loading frequency equals twice the natural bending frequency 
of the system (the column in our case). Apart from the principal 
also case the fundamental resonances may also appear, when 
the loading frequency coincides with the natural bending frequen-
cy of the column.  Moreover the secondary parametric resonances 
may also occur. So, vibration buckling corresponds to the buckling 
resulting from parametric excitations. In paper by Warminski and 
Teter (2012), the authors deals with aspects of the dynamic be-
haviour of thin-walled composite column under compression  load, 
composed of static and periodic parts. The mathematical model 
of the structure considers geometrical nonlinear terms which 
couple considered global and local buckling modes of the column. 
The dynamic response is investigated around the principal para-
metric resonances. 
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In the analysis of dynamic stability of the thin walled structure 
under in-plane pulse loading, the following should be taken into 
account: shape of pulse loading, pulse duration and a magnitude 
of its amplitude (Kubiak, 2013; Lindberg, 1987; Strogne, 2000; 
Simitses, 1990, 2006; Bangash, 2009). The rectangular pulse 
is the most dangers (Kubiak, 2013). If the pulse duration is com-
parable to the period of natural vibrations, the dynamic pulse 
buckling occurs. If the pulse duration is longer, the problem be-
comes quasi-static. When the displacement growth is assessed 
with time for different amplitude of load, buckling occurs when the 
dynamic load reaches a critical value associated with a maximum 
acceptable deformation (strain) or stress, the magnitudes of which 
are defined arbitrarily. Thus, there is no perfect criterion so far 
for dynamic buckling and no general guidelines for the design. 
In the literature on this problem, various criteria concerning dy-
namic stability have been adopted (Kubiak, 2013; Simitses, 1990). 
One of the simplest is the criterion suggested by Volmir (Kubiak, 
2013; Volmir, 1972). 

Volmir (1972) analyzed the behaviour of a simply supported 
rectangular plate subjected to different pulse loads. He considered 
the buckling problem which can be described by a system with 
one degree of freedom and defined the Dynamic Load Factor as 
a ratio of the pulse amplitude of the critical load to the static criti-
cal load. Volmir proposed a criterion for the dynamic buckling, 
assuming that a loss of stability of the plate subjected to pulse 
load occurs when the maximum deflection of the plate is equal to 
the assumed constant value. Usually the critical deflection value 
was assumed to be equal to the thickness of the plate or half of its 
thickness. 

The most widely used is the Budiansky-Hutchinson’s criterion 
(Budiansky, 1966a; 1966b; Hutchinson and Budiansky, 1966), 
in which it is assumed that the loss of dynamic stability occurs 
when the displacement rate is the highest for a certain force am-
plitude. A dynamic load factor DLF has been defined as the quo-
tient of the dynamic load amplitude and minimum critical stress 
(Kappos, 2002; Weller et al., 1989). In order to find the critical 
value of dynamic load factor DLFcr one should draw a graph 
of deflection amplitude as a function of dynamic load factor DLF 
(Fig. 3). 

The equations of motion are solved for various load parame-
ters to obtain the response of the system. When the motion of the 
system changes from small-amplitude oscillatory to large-
amplitude oscillatory or becomes associated with distinctly re-
moved positions from the undisturbed ones, the corresponding 
load parameter is called a dynamic critical load. Its disadvantage 
is an extremely large amount of computer time required to solve 
the equations of motion at different levels of the applied loads. 
In the case of uncoupled dynamic buckling, the curves suiting 
global modes in this graph are always unrestricted (Fig. 3b). The 
critical value of dynamic load factor is read off for the adopted 
restriction. It is worthy to add, when speaking about the local 
buckling mode, that in order to find critical value of dynamic load 
factor one has to find the point of inflection on the curve (Fig. 3a). 
The Budiansky-Hutchinson’s criterion was used at many papers, 
for instance: Kolakowski and Kubiak (2007), Kubiak (2007), Teter 
(2007, 2010, 2011), Teter and Kolakowski (2013), Weller (1989), 
Hsu (1967, 1968), Tamura and Babcock (1975), Gilat and Aboudi 
(1995), Zhang et al. (2004), Mania (2005), Mania and Kowal-
Michalska (2007). 

Other criteria: Ari–Gur and Simonetta’s criterion, Kleiber–
Kotula–Saran criterion, Kubiak criterion, Petry–Fahlbusch criteri-
on, phase plane criterion concept have been discussed in the 

papers (Ari-Gur and Simonetta, 1997; Petry and Fahlbusch, 2000; 
Cui et al., 1999, 2002) and the monograph (Kubiak, 2013). 

(a)  

(b)  

Fig. 3. The graphs of the dimensionless amplitude of deflection  
as a function of dynamic load factor DLF 

Ari-Gur and Simonetta (1997) proposed four criteria. In this 
case, the dynamic buckling load was set as depending on deflec-
tion of the plate and load intensity defined as the force pulse 
amplitude or the shortening. They noted that for a perfectly plate, 
the pulse load, which would result in a loss of stability, was infi-
nitely large. 

A diversity of dynamic stability loss criteria follows from a lack 
of a generally accepted, accurate, explicit mathematical definition. 
One of a few exceptions, known to the authors, is the quasi-
bifurcation criterion of dynamic buckling for step-like load (Heavi-
side’s function) and the one concerning the critical pulse duration 
(so-called: the Kleiber-Kotula-Saran criterion (Kleiber et al., 
1987)). This criterion was used at same papers: Kolakowski and 
Kubiak (2007), Kubiak (2007), Teter (2007, 2010, 2011), Teter 
and Kolakowski (2013). The latter criterion is based on a condi-
tion, that the tangent matrix of the system stiffness is zero. That 
is to say, all the Jacobian matrix are equal to zero. 

Kubiak (2007, 2013) checked the values of the characteristic 
roots of the Jacobi matrix and proposed the dynamic buckling 
criterion that at the tracking time, the maximal radius calculated 
from the characteristic root of the Jacobi matrix was equal 
or greater than unity in the complex plane. 

In the analysis of vibration the phase plane concept is often 
applied. Practically, the method of phase plane isn't used in the 
dynamic buckling. One can find only a few papers: Teter (2007, 
2010, 2011), Hutchinson and Budiansky (1966), Hsu, (1967, 
1968), Schokker et al. (1996) and monograph by Bazant 
and Cedolin (2010), which made use of the phase plane to deter-
mine the dynamic buckling load as an unbounded response 
for the uncoupled buckling. In the case of multimode buckling the 
method of phase plane was used in papers: Teter (2007, 2010, 
2011), Teter and Kolakowski (2013). The phase plane criterion 
is formulated as: the dynamic buckling load for the tracing time 
of solutions has been defined as the minimum value of the pulse 
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load, such that the phase portrait is an open curve. One should 
remember that phase planes for global buckling modes have 
a form of open and unbounded curves. The phase planes for local 
buckling modes have a form of open but bounded curve. 

Petry and Fahlbusch (2000) were convince that the dynamic 
buckling load should be based on the stress state analysis. They 
have formulated the criterion of dynamic buckling as follows: the 
dynamic response of the structure is stable if the equivalent stress 
not exceed the assumed limit of stress. 

2. METHODS OF SOLUTION 

The differential equations of motion can be obtained from the 
Hamilton’s Principle (Sridharan, 1983; Kolakowski and Kubiak, 
2007; Kubiak, 2007; Teter, 2007, 2010, 2011, Teter and Kolakow-
ski, 2013; Tamura and Babcock, 1975; Schokker et al., 1996). 

Basic dimensions of the plate (Fig. 4) are length parallel to the 𝑥 

direction (denote as 𝑙), width 𝑏 (parallel to the 𝑦 direction). 

and thickness ℎ (parallel to the z direction). 

 
Fig. 4. The plate structure 

In this case the Hamilton’s Principle can be written as: 

𝛿𝛹 = 𝛿 ∫ 𝛬𝑑𝑡 = 𝛿 ∫ (𝐾
𝑡1

𝑡0
− 𝛱)𝑑𝑡 = 0

𝑡1

𝑡0
 (1) 

where:  is a Lagrange's function, 𝐾 is a kinetic energy,   
is a total potential energy. 

The total potential energy is equal to: 

Π = 𝑈 − 𝑊 = 0.5 ∫ (σ𝑥ε𝑥 + σ𝑦ε𝑦 + τ𝑥𝑦γ𝑥𝑦)
Ω

𝑑Ω  

−{∫ ℎ [𝑝0 (𝑦)𝑢 + τ𝑥𝑦
0 (𝑦)

𝑏

0
𝑣]𝑑𝑦| 𝑥=0

𝑥=ℓ +

∫ ℎ [𝑝0 (𝑥) 𝑣
ℓ

𝑜
+ τ𝑥𝑦

0 (𝑥) 𝑢]𝑑𝑥| 𝑦=0
𝑦=𝑏

+ ∫ 𝑞𝑤𝑑𝑆
𝑆

}
  (2) 

where: 𝑝0 (𝑥), 𝑝0 (𝑦), τ𝑥𝑦
0 (𝑥), τ𝑥𝑦

0 (𝑦) are prebuckling in-plane 

load in the middle surface of the plate, 𝑞 is transverse load, 

 =  𝑙𝑏ℎ =  𝑆ℎ is a volume of the plate and 𝑢, 𝑣, 𝑤 are 
components of the displacement in the 𝑥, 𝑦, 𝑧 directions, 

𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 and 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 are stress and strain in the 𝑥, 𝑦, 𝑧 

directions, respectively. 
The kinetic energy for the plate can be written as: 

𝐾 = 0.5 ∫ ρ(𝑢̃,𝑡𝑡
2 + 𝑣̃,𝑡𝑡

2 + 𝑤̃,𝑡𝑡
2 )𝑑Ω

Ω
 (3) 

where: 𝜌 is density. 
The kinematic conditions are assumed to be: 

𝑢̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑥(𝑥, 𝑦, 𝑡)

𝑣̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑦(𝑥, 𝑦, 𝑡)

𝑤̃(𝑥, 𝑦, 𝑧, 𝑡) ≡ 𝑤(𝑥, 𝑦, 𝑡)

 (4) 

The energy variation can be written as: 

δΨ = δ ∫ Λ𝑑𝑡
𝑡1

𝑡0
=  

∫ ∫ ρ(𝑢̃,𝑡δ𝑢̃,𝑡Ω

𝑡1

𝑡0
+ 𝑣̃,𝑡δ𝑣̃,𝑡 + 𝑤̃,𝑡δ𝑤̃,𝑡)𝑑Ω𝑑𝑡 +

+ ∫ ∫ (σ𝑥δε𝑥 + σ𝑦δε𝑦 + τ𝑥𝑦δγ𝑥𝑦)
Ω

𝑑Ω
𝑡1

𝑡0
𝑑𝑡 +

− ∫ {∫ ℎ [𝑝0 (𝑦)δ𝑢 + τ𝑥𝑦
0 (𝑦)

𝑏

0
δ𝑣] 𝑑𝑦| 𝑥=0

𝑥=ℓ𝑡1

𝑡0
+

+ ∫ ℎ [𝑝0 (𝑥)δ𝑣
ℓ

𝑜
+ τ𝑥𝑦

0 (𝑥)δ𝑢] 𝑑𝑥| 𝑦=0
𝑦=𝑏

+

+ ∫ 𝑞δ𝑤𝑑𝑆
𝑆

}𝑑𝑡 = 0

 (5) 

Therese the middle surface strains and curvatures are equal 
(Fig. 4): 

ε𝑥
𝑏 = 𝑢,𝑥 +

1

2
(𝑤,𝑥

2 + 𝑣,𝑥
2 + 𝑢,𝑥

2 )

ε𝑦
𝑏 = 𝑣,𝑦 +

1

2
(𝑤,𝑦

2 + 𝑢,𝑦
2 + 𝑣,𝑦

2 )

2ε𝑥𝑦
𝑏 = γ𝑥𝑦

𝑏 = 𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦 + 𝑢,𝑥𝑢,𝑦 + 𝑣,𝑥𝑣,𝑦

κ𝑥 = −𝑤,𝑥𝑥               κy = −𝑤,𝑦𝑦             κxy = −2𝑤,𝑥𝑦

 (6) 

In the majority of publications devoted to stability of structures, 

the terms (v,x
2 + u,x

2 ), (u,y
2 + v,y

2 ) and (u,x u,y + v,x v,y) are 

neglected for εx , εy , γxy = 2εxy, respectively, in the strain 

tensor components, Eqs. (6). When the full tensor of membrane 

strains: εxi , εyi , γxy = 2εxy is taken into account, then an analy-

sis of all buckling modes can be carried out. The main limitation 
that results from the adopted theory was the assumption 
of a linear dependence between the curvatures and the second 
order derivatives of the displacement 𝑤. 

The differential equations of motion corresponding to Eqs. (6) 
for the one plate can be written as follows: 

𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 + 

{(𝑁𝑥𝑢,𝑥),𝑥 + (𝑁𝑦𝑢,𝑦),𝑦 + (𝑁𝑥𝑦𝑢,𝑥),𝑦 + (𝑁𝑥𝑦𝑢,𝑦),𝑥} + 

+[−ℎρ0𝑢,𝑡𝑡 + ℎ2ρ1𝑤,𝑥𝑡𝑡] = 0 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦,𝑦 +      

{(𝑁𝑥𝑣,𝑥),𝑥 + (𝑁𝑦𝑣,𝑦),𝑦 + (𝑁𝑥𝑦𝑣,𝑥),𝑦 + (𝑁𝑥𝑦𝑣,𝑦),𝑥} + 

+[−ℎρ0𝑣,𝑡𝑡 + ℎ2ρ1𝑤,𝑦𝑡𝑡] = 0            (7) 

𝑀𝑥,𝑥𝑥 + 𝑀𝑦,𝑦𝑦 + 2𝑀𝑥𝑦,𝑥𝑦 + 𝑞 + 

(𝑁𝑥𝑤,𝑥),𝑥 + (𝑁𝑦𝑤,𝑦),𝑦 + (𝑁𝑥𝑦𝑤,𝑥),𝑦 + 

+(𝑁𝑥𝑦𝑤,𝑦),𝑥 + [−ℎρ𝑜𝑤  ,𝑡𝑡
 − ℎ2ρ1(𝑢,𝑥𝑡𝑡 + 𝑣,𝑦𝑡𝑡) 

+ℎ3ρ2(𝑤,𝑥𝑥𝑡𝑡 + 𝑤,𝑦𝑦𝑡𝑡)] = 0 

In the static case, the dynamic components of Eqs. (7) are 
neglected.The solution of these equations for each plate should 
satisfy: initial conditions, kinematic and static continuity conditions 
at the junctions of adjacent plates and the boundary conditions. 
The effects of damping can be neglected in practice. Its influence 
on the dynamic response is not greater than 1%. Kounadis et al. 
(1997) used a damper in their model and analyzed the damping 
influence on the dynamic response. The presented solution 
showed that the difference in the results for the structure with 
viscous Rayleigh damping and without damping was 0.2%. Addi-
tionally, wave propagation and in-plane effects can be neglected 
in the dynamic buckling study. The non-linear problem of stability 
has been solved with the asymptotic perturbation method in order 
to obtain an approximate analytical solution to the equations. The 
displacement fields and the sectional force fields were expanded 
in power series in the amplitudes of the buckling modes divided by 
the thickness of the first component plate. By substituting the 
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displacement fields and the sectional force fields into the equa-
tions of equilibrium, junction conditions and boundary conditions, 
the boundary value problems of the zero, first and second order 
can be obtained.  

The displacements fields and the sectional force fields were 
defined as fallowed: 

𝐔 = λ𝐔(0) + ζ𝑖𝐔
(𝑖) + ζ𝑖ζ𝑗𝐔(𝑖𝑗) + ζ𝑖ζ𝑗ζ𝑘𝐔(𝑖𝑗𝑘) + ⋯, 

𝐍 = λ𝐔(0) + ζ𝑖𝐔
(𝑖) + ζ𝑖ζ𝑗𝐔(𝑖𝑗) + ζ𝑖ζ𝑗ζ𝑘𝐔(𝑖𝑗𝑘)+. . .,           (8) 

The range of indexes was (𝑙, 𝑁). The summation was sup-
posed on the repeated indexes. 

The differential equations of motion can be written as: 

1

ω𝑜𝑟
2 ζ𝑟,𝑡𝑡(𝑡) + (1 −

σ(𝑡)

σ𝑟
) ⋅ ζ𝑟(𝑡) +

+𝑎𝑖𝑗𝑟ζ𝑖(𝑡)ζ𝑗(𝑡) + 𝑏𝑟𝑟𝑟𝑟ζ𝑟
3(𝑡)+. . . = ζ𝑟

∗ σ(𝑡)

σ𝑟

  (9) 

for   𝑟 = 1, … , 𝑁, where: 𝜁𝑟  – the dimensionless amplitude of the 
r th buckling mode (the maximum deflection referred to the thick-

ness of the first plate), 𝜎𝑟, 𝜔𝑜𝑟 , 𝜁𝑟
∗ – the critical stress, the natural 

frequency of free vibrations and the dimensionless amplitude 

of the initial deflection corresponding to the 𝑟-th buckling mode, 

respectively, 𝜎 – the compressive stress. The coefficients: 
𝑎𝑖𝑗𝑟 , 𝑏𝑟𝑟𝑟𝑟  were determined with well-known formulae (see for 

example: Byskov and Hutchinson (1977), Kubiak (2013), Byskov 
(1988), Kolakowski et al. (1999), Teter and Kolakowski (2004)). 

In Eqs. (9), the omission of the coefficients bijkr correspond-

ing to the second order mixed mode was possible, because the 

post-buckling coefficients 𝑎𝑖𝑗𝑟  (a three-mode approach) have 

been already included in the analysis. The secondary local buck-
ling modes were analogous to the second order mixed modes. 
The admissibility of neglecting the mixed mode has been shown. 
In the static case, the dynamic components of Eqs. (9) were 
neglected. 

For the ideal structure, the initial imperfections are equal 

to zero (in Eqs. (9) – ζr
∗ = 0) and for the uncoupled problem, 

all indexes: i, j, r are equal to 1. The initial conditions were 
assumed that the no-dimensional displacements and velocities 
were equal to zero. 

The static system of ordinary differential equations of equilib-
rium was solved by the modified numerical transition matrix meth-
od, in which the state vector of the final edge is derived from the 
state vector of the initial edge by the numerical integration of the 
differential equations along the circumferential direction formulae 
by means of the Godunov orthogonalization method. This method 
has allowed to find the post-buckling coefficients which can be 
used in description of post-buckling equilibrium path for static load 
and in Lagrange equations for dynamic load. Having Lagrange 
equations it’s possible to analyze the transient dynamic response 
of thin-walled structures subjected to pulse loading. What is im-
portant using this method one can solve static simultaneous buck-
ling problem as well as the dynamic one (Kubiak, 2013). The 
static interactive buckling of thin-walled structures have been 
discussed in the papers Kolakowski and co-workers (1987a, 
1987b, 1988, 1989a, 1989b, 1993a, 1993b, 1995, 1996, 1999, 
2000, 2002, 2003, 2004, 2005). The thin-walled closed and open 
(Fig. 5b) cross sections columns with or without stiffeners under 
compression were considered in detail. The columns were long 
and prismatic. The both ends were simple supported (Fig. 5a). 
The structures were composed of rectangular plates interconnect-
ed along longitudinal edges. In this case, a plate model was 

adopted in the analysis (Fig. 5c). The material of the structure was 
defined as isotropic, orthotropic or laminate. 

 (a)        (b)         (c)  

(d)      (e)  

Fig. 5. Modelling of buckling thin-walled structure: (a) physical model;  
(b) calculation model; (c) ANM model; (d) FEM model;  
(e) experimental model 

In the papers Teter and Kolakowski (2004, 2005), the static in-
teractive buckling of columns with open sections, reinforced with 
intermediate stiffeners and with edge reinforcements, has been 
considered. The results discussed in the studies (Teter and Ko-
lakowski, 2004) represent the most important results obtained by 
the authors in earlier investigations devoted to central intermedi-
ate stiffeners. Intermediate stiffeners are widely used in many 
types of structures. These stiffeners carry a portion of loads and 
subdivide the plate element into smaller sub-elements, thus in-
creasing considerably the load carrying capacity. The shape, size 
and position of intermediate stiffeners and edge stiffeners in thin-
walled structures exert a strong influence on the stability and the 
post-buckling behaviour of thin-walled structures. The importance 
of the minimum rigidity of the intermediate stiffeners required to 
restrict buckling to the plate elements was studied. The proposed 
estimation of the structure load carrying capacity for the second 
order approximation (Teter and Kolakowski, 2005) on the basis 
of the linear analysis complies with the FEM with the maximum 
error equaled to 25% in the whole over–critical range of the short-
ening. The method of determining the value of the frequencies 
of free vibrations was presented in the paper (Teter and Kolakow-
ski, 2003). The buckling modes were the same as the vibration 
modes, so the solution to the eigenvalue problem is searched for 
various values of the r–th harmonic. For the free vibration, the 
axial load is equal to zero. At the point where the static load pa-
rameter reaches its maximum value for the imperfect structure 
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(secondary bifurcation or limit points), the Jacobian of the non–
linear static system was equal to zero. 

The problem of interactive dynamic buckling can be solved by 
means of the Runge-Kutta numerical method with differentiation 
formulas of variable order. The calculations were carried out for 
a settled imperfections (Kolakowski and Kubiak, 2007; Kubiak, 
2007; Teter, 2007, 2010, 2011, Teter and Kolakowski, 2013; 
Tamura and Babcock, 1975; Kolakowski, 2009). 

Computer codes to determine the post-buckling equilibrium 
paths within the second order approximation for structures made 
of isotropic, orthotropic materials, including orthotropy that varies 
along the plate width, gradient materials have been developed 
(Kolakowski (1987a, 1987b, 1988, 1989a, 1989b, 1989c, 1993a, 
1993b, 1996). The codes has allowed to employ the analytical-
numerical method to analyze elastic stability in thin-walled struc-
tures simply supported at both ends. Cases of complex loading 
of the structure and boundary reinforcements and changes in the 
plate thickness along its width can be analyzed. To extend the 
computing possibilities of this method, subroutines have been 
developed for determination of free vibration frequencies of thin-
walled structures, taking into consideration all the inertia forces, 
including tangent and rotational inertia forces (Kolakowski and 
Kubiak, 2005). The presented analytical-numerical method pro-
vides very effective solutions to various types of thin-walled struc-
tures and it enables the statics and dynamic analysis of stability. 
It allows to analyze a dynamic response of complex thin-walled 
structures subjected to various shapes of the pulse loading and to 
calculate the critical dynamic buckling value using different dy-
namic buckling criteria. The analysis of dynamic stability with the 
analytical-numerical method renders the modal analysis of cou-
pled and uncoupled dynamic buckling of thin-walled structures 
possible. 

In the monograph by Kubiak (2013) has been analyzed a dy-
namic response of thin-walled structures under pulse loading, 
obtained with the finite elements method (the so-called: FEM) 
and, which should be noticed, with the ANM as well. The FEM has 
been used as a method to verify the calculations conducted with 
the ANM (Fig. 5c). 

An application of finite elements method allows for analysis 
of nonlinear stability under static and dynamic loads in whole 
range. In order to analyze the post-buckling behaviour of the 
structure, calculations should be made in two stages. The linear 
analysis of buckling should be carried out in the first step in order 
to determine a few buckling modes that correspond to the lowest 
values of critical loads, both for local and global modes. Lanczos 
eigenvalue extraction methods can be used (Kirsch, 2004). In the 
second step, the non-linear analysis of stability for the model, 
in which the initial shape imperfections corresponding to the low-
est modes of buckling are assumed, should be conducted. In case 
of the non-linear analysis of interactive buckling, the imperfections 
in shape corresponding to different buckling modes are assumed. 
Quite a serious problem lies in determination of the magnitude 
of imperfections for various modes in such a way that the relation 
between these imperfections should reflect the effect of one buck-
ling mode on the other one (Kolakowski and Kubiak, 2005). A very 
important role in obtaining correct results is played by the proper 
modelling of boundary conditions. Modelling of boundary condi-
tions, which correspond to the conditions assumed in other calcu-
lation methods (e.g., analytical models or analytical-numerical 
ones), is particularly difficult. The structural dynamic analysis 
using FEM, which has allowed us to find the response of a struc-
ture to the pulse loading, has been conducted using the New-

mark's formula for the time integration and the Newton-Raphson 
scheme or arc-length method (Madenci and Guven, 2006; Morris, 
2008). The applications of finite element method FEM to solve 
interaction buckling problems are on-going. FEM proved to be the 
most successful numerical method to analyze static or dynamic 
buckling of complex thin-walled structures. Such analyses involve 
a discretization of the structure and nonlinear solutions of large 
equation system. This method is very important in practice, be-
cause it is becoming standard practice to use FEM in conjunction 
with experiments in improving and preparing new engineering 
standards for thin-walled structures. Early 1970s papers (Barsoum 
and Gallagher, 2009; Powell and Klinger, 1970) described elastic 
global buckling using beam elements. The bifurcation analysis 
is described in papers (Rajasekaran and Murray, 1973; Toneff 
et al., 1987). The FEM plate models using plate or shell elements 
permitted analyses of coupling between local and global bucking 
in the elastic range (Bradford, 1990). There is no distinction be-
tween the analyses of plate and shell structures. In both case one 
can use shell elements in geometric and material nonlinear anal-
yses (Lee et al., 1979, 1984; Dvorkin and Bathe, 1984; Fafard 
et al., 1987; White and Abel, 1990). 

The finite element method was used by Bao et al. (1997) 
to analyze the critical stress for the plates and beam-columns 
made of anisotropic materials. Barbero and Tomblin (1993) dealt 
with a loss of global stability of thin-walled I-section beam-
columns made of various fibre composites. Authors compared the 
experimental results with the FEM ones receiving a very good 
agreement. Gupta and Rao (1985) studied the stability of a thin 
cantilever beam with a Z-cross-section made of two (45/-45) 
or three- (0/45/0) layered laminates. The authors employed the 
finite element method and used two-node beam elements with 
three degrees of freedom at each node to build a discrete model 
of the beam under analysis. 

Cui et al. (1999, 2002) presented the results of experimental 
results for rectangular plates with different boundary conditions 
subjected to pulse load. The authors performed a numerical anal-
ysis using the finite element method (Abaqus system). For the 
numerical analysis, they assumed that the dynamic critical load 
in the elastic–plastic range increased with an increasing material 
strengthening curve in the elastic–plastic state.  

The experimental investigations on stability of thin-walled 
structures were presented in papers: Put et al. (1999), Hancock 
(2003), Kwon et al. (2007), Becque and Rasmusen (2009), Mag-
nucka-Blandzi et al. (2012), Magnucki et al. (2010), Debski 
(2013). The experimental investigations of stability and carrying 
capacity if thin-walled box-sections beams (Krolak and Mlotkow-
ski, 1996) and thin-walled multi-cell columns were made by Krolak 
et al. (2007). The results of FEM calculations have been com-
pared to the theoretical and experimental investigations. Some 
composite structures were also taken into account (Debski, 2013; 
Turvey and Zhang, 2006; Wong and Wang, 2007; Parlapalli et al., 
2007; Debski et al., 2013a, 2013b). A more experimental papers 
can be found in review papers: Chou and Rhodes (1997), Singer 
et al. (1998, 2002), Magnucka-Blandzi et al. (2011). Magnucki 
with his team (Magnucka-Blandzi and Magnucki, 2011) analyzed 
global and local stability of cold-formed thin-walled channel beams 
with open or closed cross-sections. The numerical FEM analysis 
and the laboratory tests of selected beams were performed. The 
numerical investigations of the optimization problem have been 
carried out. 
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3. FINAL REMARKS 

The analytical-numerical method (ANM) provides very effec-
tive solutions to various types of thin-walled structures and 
it enables the dynamic analysis of buckling. It allows one to ana-
lyse a dynamic response of complex thin-walled structures sub-
jected to various shapes of the pulse loading and to calculate the 
critical dynamic buckling value using different dynamic buckling 
criteria. The analysis of dynamic stability with the analytical-
numerical method renders the modal analysis of coupled and 
uncoupled dynamic buckling of thin-walled structures possible. 

The most important advantage of this analytical-numerical 
method is that it enables to describe a complete range of behav-
iour of thin-walled structures from all global (i.e., flexural, flexural-
torsional, distortional bucklings and their combinations) to the 
local stability. In the solution obtained, a shear lag phenomenon, 
an effect of cross-sectional distortions, as well as an interaction 
between all the walls of structures are included. 

Attention should be paid to the fact that the results obtained 
from the ANM are attained much faster and are less laborious 
if compared to the results from the FEM, and are characterized by 
satisfactory accuracy. Due to the application of the FEM, it has 
been possible to verify the results and moreover, to visualize 
better the results. Because the results obtained by both the meth-
ods are similar, it can be said that the proposed analytical-
numerical method yields proper results. 
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