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Abstract
One of the major issues in Neoproterozoic geology is the extent to which glaciations in the Cryogenian and Ediacaran peri-
ods were global in extent and synchronous or regional in extent and diachronous. A similarly outstanding concern is deter-
mining whether deposits are truly glacial, as opposed to gravitationally initiated mass flow deposits in the context of a rifting 
Rodinia supercontinent. In this paper, we present 115 publically available, quality-filtered chronostratigraphic constraints on 
the age and duration of Neoproterozoic glacial successions, and compare their palaeocontinental distribution. Depositional 
ages from North America (Laurentia) clearly support the idea of a substantial glacial epoch between about 720-660 Ma on 
this palaeocontinent but paradoxically, the majority of Australian glacial strata plot outside the previously proposed global 
time band for the eponymous Sturtian glaciation, with new dates from China also plotting in a time window previously 
thought to be an interglacial. For the early Cryogenian, the data permit either a short, sharp 2.4 Ma long global glaciation, or 
diachronous shifting of ice centres across the Rodinia palaeocontinent, implying regional rather than global ice covers and 
asynchronous glacial cycles. Thus, based on careful consideration of age constraints, we suggest that strata deposited in the 
ca. 720-660 Ma window in North America are better described as belonging to a Laurentian Neoproterozoic Glacial Interval 
(LNGI), given that use of the term Sturtian for a major Neoproterozoic glacial epoch can clearly no longer be justified. This 
finding is of fundamental importance for reconstructing the Neoproterozoic climate system because chronological con-
straints do not support the concept of a synchronous panglacial  Snowball Earth. Diachroneity of the glacial record reflects 
underlying palaeotectonic and palaeogeographic controls on the timing of glaciation resulting from the progressive break-
up of the Rodinian supercontinent.

Cryogenian, glaciation, tectonics, Snowball Earth, NeoproterozoicKEYWORDS

The Laurentian Neoproterozoic Glacial Interval: reappraising the extent and 
timing of glaciation

1 Introduction
In 2020, the idea of globally synchronous Snowball Earth 
events during the Cryogenian period (Hoffman et al., 
1998; Hoffman and Schrag, 2002) remains a popular idea. 
The expansion of global scale ice masses excites many ge-
ologists, and the notion is now used to explain phenom-
ena such as regional or even global scale unconformities 
(DeLucia et al., 2018) and patterns of biological evolution 
(e.g., Brocks et al., 2017). Numerous studies advocate an 
older ~720-660 Ma ‘Sturtian’ glaciation and a younger 
shorter-length ~645-635 Ma ‘Marinoan’ glaciation, both 
named after Australian stratigraphy, and both defined by 
globally synchronous onsets and terminations (Hoffman 
and Schrag, 2002). Looking at the development of ideas of 
global glaciation, Eyles and Januszczak (2004) recognized 
five iterations of snowball Earth in the literature including 
(i) Agassiz (1840) for die Eiszeit, specifically dealing with 
the Quaternary, (ii)  Ramsay’s (1926) proposal of “world-
wide refrigeration”, (iii)  Mawson’s (1949) recognition of 
“the world’s greatest ice age” in the Precambrian, (iv) Har-
land’s “Infracambrian glaciation” with near synchronous 

global tillites (1964), and finally (v) the “modern snowball” 
theory of Kirschvink (1992) and Hoffman et al. (1998). Be-
tween these times, skepticism for glaciation has waxed 
and waned, and the intensity and extent of glaciation 
has come under scrutiny. Two fundamental aspects are (i) 
geochronology and (ii) the systematic and detailed eval-
uation of sedimentary facies. Robust dates are required 
to support the idea of a global glaciation: with ‘the de-
cisive falsifying test’ of a Snowball Earth model being 
chronometry (Hoffman 2011, p. 29). Furthermore, careful 
and systematic analysis of sedimentary sections and their 
palaeotectonic setting during deposition is essential to 
demonstrate the glacial, interglacial, or non-glacial ori-
gins of the successions (Allen and Etienne, 2008).

 Using Re-Os geochrononology, Rooney et al. (2014) 
argued that the longest and oldest such Neoproterozo-
ic glaciation (the Sturtian: Macdonald et al., 2010) was 
of 55  Ma duration, based on sample analyses immedi-
ately below and above the Rapitan diamictite of Cana-
da. The use of stable isotope curves is widely used as a 
correlation tool where absolute dates are not available 
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(e.g  Halverson et al., 2010). Allen and Etienne (2008) 
provocatively proposed that absolute age dates from 
glacial sequences could be interpreted as recording 6 
local phases of glaciation between 780 and 630 million 
years, based on 14 global radiometric age constraints, 
recognizing that this was a non-unique solution. The idea 
of diachroneity in Neoproterozoic glaciations is not new: 
Kröner (1977) made this claim for African deposits, albeit 
based on a limited set of Rb-Sr ages.

A major problem with the objective interpretation of 
Neoproterozoic glaciations, and glacial deposits associ-
ated with them, is that discussion is dominated by the 
model-led approach of Snowball Earth (Hoffman et al., 
2017). A specific problem seems to be the tendency to 
neglect sedimentological details that the model cannot 
accommodate, and yet which demand rational geolog-
ical explanation (see, for example: Condon et al., 2002; 
Arnaud, 2004; Leather et al., 2005; Allen and Etienne, 
2008; Le Heron et al., 2011, 2013, Busfield and Le Heron, 
2016, 2018). When problems with the model arise, incon-
venient evidence is typically not tackled head-on, should 
this evidence be incompatible. This approach has led to 
continual adaptation of the hypothesis to new evidence 
(Allen and Etienne, 2008). It is in this context in which we 
reappraise the chronometry of the Neoproterozoic gla-
ciations, identify alternative interpretations that honour 
the available data, and consider the extent to which gla-
cial successions of this age can be confidently correlated 
on a global basis. 

The core of our paper is 115 age constraints which 
are presented from publically available, peer-reviewed 
sources, which have been sub-divided on a palaeocon-
tinent-by-palaeocontinent basis (Fig. 1). We propose two 
plausible explanations of the global geochronological 
dataset: (i) a short, sharp (2.4 Ma long) glaciation in the 
early Cryogenian, in direct contrast to prevailing views 
for a 55 Ma glaciation, and (ii) regionally diachronous gla-
ciations similar to those previously proposed (e.g. Eyles 
and Januszczak, 2004). Both of these explanations are 
distinct from both the Snowball and Slushball models 
(see Fairchild and Kennedy, 2007, for a review). The issue 
of diachroneity and correlation is also discussed, as is the 
correlation potential of glacial successions.

2 Data and methods
Spence et al. (2016) published the global geochronolog-
ical constraints on Proterozoic glacial deposits up to De-
cember 2015. Mining those data herein, and combining 
them with data published since, we plotted 115 individ-
ual data points on a continent-by-continent basis, show-
ing maximum, minimum, and depositional ages for such 
units (Fig. 1). Data from abstracts and extended abstracts 
were discarded due to lack of evidenced scrutiny and 
peer-review. This approach resolves the issue of so-called 
“rumourchrons” or situations where two or more versions 
of the same age constraint are publically available (typi-
cally resulting from data or sample reprocessing between 
conference abstract submission and the associated 

peer-reviewed paper emerging subsequently). Using 
the same reasoning, we have also discarded dates from 
secondary sources, i.e. those papers relying on age data 
published in abstracts only. On the plot, we display error 
bars for each point and also colour-code the geochro-
nometric data source (Re-Os, U-Pb TIMS, U-Pb SHRIMP, 
PbPb TIMS, paired U-Pb and Lu-Hf, K-Ar, Rb-Sr, Ar-Ar 
hornblende, Sm-Nd Th-U-Pb and Sm-Nd). Geochronolog-
ical constraints are available from nine discrete regions 
(Sao Francisco / Congo Craton, Kalahari Craton, North 
China, South China, Arabia / Nubia, Australia, Laurentia, 
Avalonia and West Africa). These are widely regarded as 
tectonically separate entities during the Neoproterozoic 
(Li et al., 2013). Throughout this paper the temporal du-
ration of proposed snowball Earth intervals follows the 
scheme of Rooney et al. (2015).

2.1 Data descriptions
The following descriptions refer exclusively to Fig.  1. 
With a single exception (Cox et al., 2018), it is apparent 
that all Australian data points fall outside the proposed 
“Sturtian” panglacial time band of Rooney et al. (2015). 
Indeed, aside from two data points in South China (Lan 
et al., 2014; Zhou et al., 2004: points 6 and 7 respectively, 
South China bin), a single data point in Oman (Bowring et 
al., 2007: point 10, Arabia/Nubia bin- incorporating resa-
mpled material of Brasier et al., 2000), and one in Mongo-
lia (Rooney et al., 2015: point 31, Laurentia bin), the only 
continent that demonstrably yields “Sturtian” age dates is 
Laurentia. There, a swathe of maximum age constraints 
(mostly from U-Pb TIMS zircon dates) cluster in the 780-
720 Ma time window; some depositional ages are provid-
ed by ash beds (Fanning and Link, 2004; Lund et al., 2003). 
The youngest date from the “Sturtian” in North America is 
662.4±4.6 Ma (Rooney et al., 2014). It is also evident that 
no dates of “Sturtian” age are evident from the Kalahari, 
North China, Avalonia or West African cratons despite the 
supposed globally-synchronous extent of that glaciation 
(Hoffman, 2011 and refs therein). It is immediately appar-
ent that North American rocks provide the firmest age 
constraints on Neoproterozoic glaciation (particularly 
Canada: Rooney et al., 2014).

In Australia, depositional ages extend from the end of the 
Sturtian to the beginning of the Marinoan as defined by 
Rooney et al. (2015). In China, Zhou et al. (2004) reported 
a syn-depositional age of 662.9±4.3 Ma from an ash bed 
in the Datangpo Formation below the Nantuo glacial de-
posits, arguing for a Marinoan age. The plot shows that 
this date (point 8 in the South China bin) is much older 
than the contact between the supposedly Sturtian glacial 
deposits and the Tindelpina Shale in the Flinders Ranges 
based on the syn-depositional, Re-Os analyses of Kendall 
et al. 2006 (643.0 ± 2.4 Ma) (point 7 in the Australia bin). 

On the Arabia / Nubia palaeocontinent, the syn-depo-
sitional 711.5±0.3 Ma age (Bowring et al., 2007: Arabia / 
Nubia bin, point 10) is particularly noteworthy as occur-
ring very early in the Sturtian, which seems problematic 
in the framework of a Snowball Earth model where the 
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bulk of sedimentation is predicted to occur during final 
deglaciation under a warming climate (Allen and Etienne, 
2008). Moreover, the felsic ash beds that yield this date 
occur deep in the Abu Mahara stratigraphy beneath a 
thick succession of intercalated glacial diamictites and 
non-glacial siliciclastics (Allen and Etienne, 2008). 

2.2 Data interpretation
Rooney et al. (2011) argued that a 659.6±10.2 Ma depo-
sitional age for pre-glacial Ballachulish Slate in Scotland 
(point 25, Laurentia bin, Fig. 1) “strongly suggests that 
the Port Askaig Formation may be correlative with the 
∼650 Ma end-Sturtian glaciations of Australia”. By direct 
comparison, a Re-Os age of 657.2 ± 5.4 Ma was provid-
ed by Kendall et al. (2006) for the basal postglacial shales 
of the Aralka Formation in central Australia, who also 

obtained another age of 643.0 ± 2.4 Ma from the litho-
stratigraphically equivalent Tindelpina Shale Member in 
South Australia. Appraising the global data set, a pan-
glacial of just 2.4 Ma in duration could thus be proposed 
(whereby 659.6-657.2= 2.4 Ma), a very short “flash in the 
pan” glaciation contrasting with the 58 Ma duration pro-
posed elsewhere (Cox et al., 2018). This very short time 
span contrasts vividly with the established, widely-held 
view of a long-lived Sturtian panglaciation (Macdonald 
et al., 2010; Rooney et al., 2014, Hoffman et al., 2017, Cox 
et al., 2018) on multiple continents and oceans (Rooney 
et al., 2015). However, given the absence of depositional 
ages from within the posited 55 Ma glaciation time win-
dow (Fig. 1), an equally credible interpretation is that there 
simply are no glacial deposits belonging to the “Sturtian” 
time band as defined in Rooney et al. (2014) in Australia. 
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62

The Laurentian Neoproterozoic Glacial Interval: reappraising the extent and timing of glaciation

Paradoxically, the data indicate that there is much 
stronger geochronological evidence for “Sturtian” (sensu 
Rooney et al., 2014) time band deposits in North Ameri-
ca (Laurentia) than in Australia, where only a single dep-
ositional age (Cox et al., 2018; point 31 in the Australia 
bin on Fig. 1) plots toward the very top of the “Sturtian” 
time window. At least five major tectonic events associ-
ated with the breakup of Rodinia are now recognized in 
the plate tectonic models of Merdith et al. (2017), which 
can be summarized as follows. These are (i) displacement 
of the Congo-São Francisco cratons between ca. 850-
800  Ma, (ii) initial Rodinia breakup in the window 800-
750 Ma, (iii) rifting of the Congo-São Francisco cratons 
at 750-700 Ma, (iv) Kalahari rifting at 700-600 Ma, and (v) 
opening of the Iapetus from ca. 600 Ma. Thus, the inter-
val containing abundant evidence for glaciation contin-
ues to be recognized as one characterized by protract-
ed, pulsed rifting and supercontinent fragmentation, as 
emphasized in the Zipper Rift hypothesis (Eyles and Ja-
nuszczak, 2004) where accommodation (and thus depo-
sitional ages) are controlled by tectonics. Specifically, the 
clustering of depositional age dates in the 780-720 Ma 
time window is consistent with initial Rodinia rifting and 
rift basin formation, and the potentially continuing far 
field effects of the Congo-São Francisco craton breakup 
thereafter (Merdith et al., 2017). 

The above analysis leads to the conclusion that the con-
tinued use of the term “Sturtian” to refer to a major world-
wide glacial interval can no longer be justified. It has been 
long since pointed out that the term Sturtian was applied 
to a specific chronostratigraphic subdivision in the Ade-
laide fold belt of South Australia (see Preiss et al., 2011 
for a review), because it contained, among other rocks, 
the deposits of Sturt Gorge outside of Adelaide (Mawson 
and Sprigg 1950). Owing to the current lack of a GSSP for 
the Cryogenian, which may be resolved in the near future 
(Shields et al., 2018), we feel it is currently inappropriate 
to try to establish further formal terminology to apply to 
events or glaciations within the Cryogenian period on 
the basis of supposed global synchroneity of glaciation. 
It is recommended that the term “Sturtian” should now 
be applied only to the appropriate rocks of Australia. In 
the meantime, to avoid the potential for confusion, we 
advocate the informal term “Laurentian Neoproterozoic 
Glacial Interval” (LNGI) to describe the episode of glacia-
tion recorded in and affecting North America, and loose-
ly comparable to the Sturtian time band in Rooney et al. 
(2015). This informal term is appropriate because it refers 
to well-studied glacial deposits from which there are a 
series of independent age constraints, and does not in-
clude reference to problematic rocks for which few age 
constraints are available.

3 Discussion and implications
The current drive to find a suitable Global Section Strato-
type and Point (GSSP) for the Cryogenian (Shields et al., 
2018), renders the discussion of the extent and posited 
synchronicity (e.g. Rooney et al., 2015, Cox et al., 2018) of 

Cryogenian glaciations very pertinent. To many, this is an 
uncomfortable discussion given the neat two-fold Stur-
tian and Marinoan glaciations which are popularly pro-
posed (Evans, 2000). This two-fold subdivision has long 
been shown on publications (Hoffman et al., 2017), even 
however when those publications plot age constraints 
with wide error bars (Evans, 2000). The plots presented 
here, in contrast, permit alternative interpretations that 
are faithful to the data in 2020. Two plausible alternatives 
adequately explain the global trends seen on this plot. The 
first is one of a short, sharp older Cryogenian glaciation of 
2.4 Ma in duration; the second model proposes a diachro-
nous older Cryogenian glaciation that is best expressed 
on Laurentia, the Laurentian Neoproterozoic Glacial In-
terval (LNGI) proposed here. Owing to the need to “force 
fit” data from multiple continents to a “Sturtian” model, 
we place the short, sharp glacial model to one side. The 
recognition of an LNGI is significant for a number of rea-
sons. Firstly, the Laurentian record provides excellent age 
constraints from the Yukon (Rooney et al., 2015). Second-
ly, alongside the Port Askaig Formation (in Scotland), and 
the Danzhou Group (China), Shields et al. (2018) identify 
the Kingston Peak Formation of Death Valley- one of the 
best Laurentian diamictite outcrop belts in terms of expo-
sure- as having potential as a GSSP. Note that the  analysis 
herein does not exclude the existence of other regional 
glaciations occurring within the LNGI time window. 

Deposits of the LNGI contain persuasive evidence for 
glacially-influenced marine sedimentation in multiple ba-
sins. The Port Askaig Formation contains abundant dolos-
tone lonestones in laminated mudstone (Fig. 2A) that are 
best interpreted as ice-rafted dropstones (Ali et al., 2018). 
On mainland Scotland, granite dropstones punctuating 
and piercing laminated mudstones and sandstones attain 
boulder size (Fig. 2B) in the Macduff Boulder Beds. In Utah, 
the Mineral Fork Formation represents the approximate 
stratigraphic equivalent of the Kingston Peak Formation 
and exposes exquisite dropstones on Antelope Island 
(Fig. 2 C). Other intervals of massive diamictite from the 
same formation (Fig. 2D) are much more ambiguous. 

The most demonstrative evidence for both glaciation 
and tectonics is found in the Kingston Peak Formation 
of Death Valley, California, which provides a number of 
excellent lessons for understanding the true relation-
ship between Neoproterozoic glaciation and extensional 
basin tectonics. Here, evidence of a tectonic control on 
glaciation becomes evident at a number of scales. At the 
same time, there are a number of diamictite-rich/bear-
ing sections, at multiple stratigraphic intervals, which 
are commonly assumed to be glaciogenic but can be 
demonstrated to derive from local slope collapse. In the 
Saddle Peak Hills (Fig. 2E) some diamictites are interpret-
ed as platform collapse facies (Creveling et al., 2016; Le 
Heron and Vandyk, 2019) rather than of glacial origin. 
This is because the abundant dolomite clasts contain 
very peculiar facies including tubestone structures and 
laminites that are restricted to cap carbonate deposits, 
illustrating that diamictites and the Noonday Dolomite 
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Fig. 2. Examples of glacial and non-glacial facies from diverse Laurentian outcrops associated with the Laurentian Neoproterozoic Glacial Interval (LNGI). 
A: Dolostone lonestone, interpreted as a dropstone, from the Port Askaig Formation, Garbh Eilach, Scotland. This formation records dozens of ice margin 
oscillations (Ali et al., 2018). B: Granite boulder from the Macduff Boulder Beds, northern Scotland. These deposits represent ice distal sedimentation, 
with occasional emplacement of ice rafted debris in a marine basin (Busfield and Le Heron, 2018). C: Granite lonestone, interpreted as a dropstone, from 
the Mineral Fork Formation, Antelope Island, Utah. D: Thick, stacked, boulder-rich diamictites from the Pocatello Formation, Idaho. Though a lateral 
continuation of the Mineral Fork Formation, their origin (glacial vs non-glacial) remains ambiguous. E: The contact between diamictites of the Kingston 
Peak Formation and the overlying Noonday Dolomite in the Saddle Peak Hills, Death Valley. These particular diamictites are known to contain fragments 
of carbonate laminites and tubestones- an identical facies that is exposed in the overlying Noonday Dolomite (Creveling et al., 2016). F: More convincing 
evidence for a glacial influence on sedimentation from the Salt Spring Hills, Death Valley, also from the Kingston Peak Formation. Trains of lonestones, 
interpreted as dropstones, are well exposed. G: Scale of observation greatly affecting perspective in the Kingston Peak Formation in the Kingston Range 
type area. A 500 m wide dolostone block derived from underlying strata is encased within turbidites, and interpreted as an olistolith (Macdonald et al., 
2013, Le Heron et al., 2014).
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are laterally equivalent facies (Creveling et al., 2016). 
The same story is played out in the type section in the 
Kingston Range, where huge megaclasts interpreted as 
olistoliths (Macdonald et al., 2013; Le Heron et al., 2014) 
are encased in well-organised turbidites with occasional 
dropstone-bearing intervals (Fig. 2G). Nevertheless, there 
are abundant sections where excellent dropstones are 
recognized (Busfield & Le Heron, 2016; Le Heron & Bus-
field, 2016), and where glacial influence on sedimentation 
is beyond reasonable doubt (Fig. 2F). In spite of this, there 
remains a paradox concerning the rate of sediment sup-
ply. Attempts to quantify accumulation rates associated 
with Cryogenian glaciations have led to the conclusion 
that Cryogenian accumulation rates were 4 to 15 times 
slower than for comparable Phanerozoic glaciations (Par-
tin and Sadler, 2016). These conclusions provide fertile 
ground for considering ice dynamics, yet they are under-
pinned by an assumption of 5 Myr and 57 Myr durations 
for the Marinoan and Sturtian glaciations respectively. 
Even if a global, “Sturtian” glaciation is dismissed and the 
LNGI recognised instead, then it remains unchanged that 
sedimentation rates were low. 

In the context of the LNGI, detailed investigation of 
the Kingston Peak Formation in Death Valley from mul-
tiple outcrop belts (Fig. 3) has revealed how variable the 
diamictite-bearing deposits are, recording multiple gla-
cial cycles that cannot be correlated between individu-
al basins (Le Heron et al., 2017, 2019). This is thought to 
be because the ice masses waxed and waned asynchro-
nously, and deposited a record intimately mixed with tec-
tonically driven slope collapse debris and olistostromes 
(Le Heron et al., 2019). In this regard, Kennedy and Eyles 
(2020) emphasize the importance of tectonically-driven 
basin margin collapse and mass flow events in generat-
ing debrites previous reported as ‘glacial diamictites’ and 
‘tillites’ that are non-glacial ‘tectonofacies’ produced by 
downslope mixing of coarse and fine sediment. These 
workers emphasized the importance of applying a ‘tec-
tonosequence’ approach in contrast to the simple bed-
by-bed climatostratigraphic models of earlier workers.  
Other investigations in Congo has similarly demonstrat-
ed the fundamental importance of a tectonic driver on 
facies types in Neoproterozoic rift basin fills, especially in 
promoting the accumulation of the ‘diamictite/turbidite 
association’ that is characteristic of this interval globally 
where diamictites commonly approach 1 km in thick-
ness (Kennedy et al., 2018; Kennedy and Eyles, 2019). This 
work also demonstrates that comparison of very detailed 
sedimentary logs in terms of facies, clast composition 
and stratigraphic stacking patterns permit no correlation 
whatsoever even over a few hundred metres (Tofaif et al., 
2019), with major implications for identifying “type sites”.
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Fig. 3. Logged sections from both the Silurian Hills and Kingston Range 
outcrop belts in the Death Valley region, from Le Heron et al. (2019). 
Log from the Silurian Hills originally published in Le Heron et al. (2017), 
and log from the Kingston Range originally published in Le Heron et 
al. (2018). The comparison highlights that correlation is impossible be-
tween neighbouring sub-basins.
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With their basis in detailed sedimentological work and 
consideration of the local basinal setting, the above con-
siderations underscore how the long-suspected intimate 
association between rifting and glaciation in Death Val-
ley (Prave, 1999) is correct, how these processes conspire 
to produce a differing record between sub-basins, and 
how they allow specific questions to be raised about rep-
resentativeness of the Cryogenian record. These ques-
tions extend to all areas on Earth where Neoproterozoic 
sedimentary successions are exposed. The importance 
of tectonically driven mass flow sedimentation in the 
Grand Conglomérat of the Congo Basin has now been 
recognized in which the primary evidence for glaciation 
is weak (Kennedy et al., 2018). Arguably the greatest is-
sue is how to evaluate the significance of glacial cycles 
in the rock record. Further afield, in South Australia, Bus-
field and Le Heron (2014) demonstrated the applicability 
of sequence stratigraphy to unravel the nature of glacial 
cycles in the Cryogenian record, leveraging the glacial se-
quence stratigraphic methodology of Powell and Cooper 
(2002) that had been developed for temperate glaciated 
margins. This methodology is appropriate owing to the 
apparent lack of syn-sedimentary tectonism in this study 
area. Other examples, such as the Port Askaig Formation 
in Scotland, may also be suitable for this approach. In the 
Port Askaig, no less than 28 glacial cycles (Ali et al., 2018) 
are recognized, raising serious questions about how, if 
at all, these cycles can be correlated across palaeoconti-
nents. Establishing which of these cycles represents ma-
jor glaciation, as opposed to minor ice margin oscillation, 
remains a goal that is currently out of reach. Coupled 
with the clear influence of tectonics in compartmental-
izing extensional basins, it is suggested that meaningful 
correlation at an interbasinal level is premature. These 
stratigraphic and sedimentological considerations un-
derpin the view that the geochronological data must be 
interpreted more openly to understand the nature, ex-
tent, and intensity of glaciation.

4 Conclusions
Based on review of the available peer-reviewed geochro-
nological database, we suggest that older Cryogenian 
glaciations are asynchronous, amplifying the earlier in-
terpretations of Allen and Etienne (2008). In 2020, the 
available evidence supports a model of diachroneity and 
provinciality in Neoproterozoic glaciations, and an inter-
pretation that indicates that the Snowball Earth hypothe-
sis can now be objectively placed aside. Diachroneity re-
flects underlying palaeotectonic and palaeogeographic 
controls on the timing of glaciation associated with the 
progressive breakup of the Rodinian supercontinent (Ey-
les and Januszczak, 2004; Merdith et al., 2017). We pro-
pose that the term “Sturtian” should now be used exclu-
sively for the Australian strata, because it derives from 
Australian sections where chronometry remains poor 
in spite of recent progress (Cox et al., 2018). Instead, we 
suggest that the term Laurentian Neoproterozoic Glacial 
Interval (LNGI) is adopted, which refers to a regional but 

well constrained interval in present day North America 
between 720 and 660 Ma.
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