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Non-target toxicity of novel insecticides
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Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has 
greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals 
in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon 
after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-
friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of 
pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta 
indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still 
target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. 
This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based 
insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects 
of pesticide combinations and documented human exposure to these substances.
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Since ancient times, humans have used insecticides to 
mitigate shortages in harvest potency (1). A major group of 
chemicals, broadly named pesticides, were introduced to 
agricultural practice exactly with the purpose to increase 
crop yield (2, 3). With time, their use has expanded to 
treating infestations in small animals (4), eradicating 
household insects (5), or preventing vector-borne infectious 
disease (6). With the beginning of industrial revolution came 
newly synthesised organic pesticidal compounds (7), whose 
widespread use soon increased the burden of synthetic 
chemicals on the environment. New problems began to 
arise, such as target species resistance (8) and non-target 
species toxicity (9, 10). Concerns about the adverse 
environmental impacts were aptly voiced in the book Silent 
Spring in 1962 (11). The first to be banned because of 
adverse effects on human health was DDT (12). This 
triggered a series of toxicological evaluations, many of 
which resulted in use restrictions or bans of environmentally 
excessively toxic and persistent substances.

Sustainable agriculture implies a set of practices to meet 
food and textile needs of the continuously growing world 
population without compromising the same need for future 
generations (13). One of these practices is the development 
and usage of new plant protection products based on 
naturally present compounds which protect plants against 
various pests and parasitic organisms. The pesticides that 
meet these requirements are referred to as “green” 
pesticides. They are expected to be effective, safe for non-

target organisms, and biodegradable in the environment 
(14). Pyrethroids and neonicotinoids are two showcase 
groups of the new pesticides that meet those needs. They 
are more selective for pest insects, less toxic to mammals, 
and biodegrade better than synthetic pesticides, yet, ever 
since the report implying them in bee population declines 
and other adverse effects on non-target organisms they have 
come under public scrutiny (15, 16).

Another natural pesticide, neem, has been used in 
traditional medicine in India thanks to the alleged 
antimicrobial and antiparasitic effects of its oil (17). In 
addition, neem extracts have been known to possess 
insecticidal properties, the most potent among them being 
azadirachtin (18).

This review aims to provide an updated overview of 
non-target toxic effects of these three groups of insecticides.

NEONICOTINOIDS

Nicotine, a well-known extract of Nicotiana tabacum, 
has been used as aphicide for centuries. However, its 
insecticidal potency is low and narrow, whereas its acute 
toxicity to mammals is high (19). To overcome these 
limitations, pesticide research developed compounds which 
have become known as neonicotinoids. They act as nicotine 
acetylcholine receptor (nAChR) agonists to prolong insect 
neuron depolarisation and overstimulate their central 
nervous system, which eventually kills them. Many of them 
are intended for preemergent use. Considering their 
systemic nature, neonicotinoids spread into all the tissues 
of the emerging plant. Representative substances of this 
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group are imidacloprid, acetamiprid, thiametoxam, 
thiacloprid, clothianidin, and dinotefuran.

Due to high selectivity for insect nAChRs, their acute 
toxicity is relatively low to mammals but is much higher if 
chronic.

Effects on non-target insects of economic importance

Honeybees

Honeybees are pollinator insects of great economic and 
ecological importance, but are susceptible to sublethal 
exposure to neonicotinoids. In 2006, honeybee keepers in 
the USA reported strange, inexplicable disappearances of 
honeybee drones from colonies, an event later named as 
“colony collapse disorder” (20). Since then, neonicotinoid 
insecticides were implicated as major culprits for the global 
honeybee and bumblebee population declines. Their 
systemic distribution throughout a plant, flowers and pollen 
in particular, poses a specific risk for pollinator insects (21). 
The risk of exposure also comes from consuming water 
polluted with neonicotinoids (22). Imidacloprid, 
acetamiprid, and clothianidin are very persistent water 
pollutants detected in biologically relevant concentrations 
even in treated wastewater (23). Honeybees could also be 
greatly exposed to neonicotinoid-containing particulate 
emissions stirred by drilling machines used in seeding (24).

The effects seem to vary by neonicotinoid type. In one 
study imidacloprid caused higher mortality in honeybees 
than acetamiprid (25). Thiacloprid, in turn, seems to impair 
their foraging behaviour, homing success, navigation 
performance, and social communication (16). Honeybee 
workers treated orally with sugar water containing 
imidacloprid delayed their return to the hives significantly 
(26). One meta-analysis (27) suggests that imidacloprid in 
nectar at field-realistic levels will have no lethal effects but 
will reduce the expected performance in honeybees by 
6-20 %. Another study (28) reported that their overwintering 
success depended on the dose of imidacloprid exposure 
through pollen. Another, Canadian study reported increased 
worker mortality and queenlessness in colonies near corn 
fields treated with neonicotinoids (29). In another study 
(30), oral exposure to imidacloprid subtly affected honeybee 
motor function. Teeters et al. (31) recorded reduced flight 
envelope and interactions in their study using a video. In 
vitro research also confirmed adverse effects. In cultured 
Kenyon cells from the honeybee brain, imidacloprid and 
clothianidin at concentrations seen in foraging honeybees 
and hives caused a depolarisation block and inhibited 
nicotinic responses (32). Neonicotinoid exposure can also 
affect bee short-term memory and associative learning, as 
demonstrated by Zhang et al. (33). In another study (34), 
young adult honeybees exposed to imidacloprid both orally 
and topically showed changes in gustatory responsiveness 
and learning and memory impairment, which may 
negatively reflect on the bee hives. Significant adverse 

effects on learning performance were also established with 
a proboscis extension response (PER) assay in semi-field 
and laboratory conditions (35). The same study also found 
that syrup contaminated with imidacloprid decreased the 
foraging activity and the activity at the hive entrance. The 
forager return rate declined linearly with the increasing 
imidacloprid dose. El Hassani et al. (36), in turn, reported 
that acetamiprid increased antennal sensitivity to stimulation 
with sucrose solutions and impaired long-term retention of 
olfactory learning, whereas thoracic application induced no 
such effects but increased locomotor activity and water-
induced PER.

Most of these studies are focused on oral or thoracic 
topical exposure to neonicotinoids, but one study (37) 
through increased mortality showed that wings are another 
relevant route of exposure and proved that significant 
amounts of pesticides could be delivered to the wings by 
air displacement during flight.

A metabolic study (38) quantifying imidacloprid and 
its metabolites 5-hydroxyimidacloprid and olefin in 
honeybee concluded that imidacloprid was responsible for 
immediate neurotoxicity symptoms, whereas its metabolites 
must have been responsible for mortality, since it occurred 
post-ingestion at which time no imidacloprid was detected. 
However, neither of the two studied metabolites were 
involved, which suggests that other metabolites were 
responsible for the mortality. Zhu et al. (39) fed honeybees 
with a commercial formulation of imidacloprid in sucrose 
solution and noted higher cytochrome P450 activity. 
According to another study (40), honeybees mainly rely on 
cytochrome P450 monooxygenases to counter the toxic 
effects of this imidacloprid formulation, but other authors 
claim that every active substance is countered by different 
enzymes, at least in bumblebees (41).

Honeybees fed imidacloprid and clothianidin via 
foraging on conventionally grown maize showed elevated 
acetylcholinesterase (AChE) activity (42). Changes in 
honeybee thorax temperature might be linked to impaired 
foraging and in-hive performance, as Tosi et al. (43) found 
both significant increases and decreases in honeybee thorax 
temperatures, depending on environmental temperature. 
They also performed a cold shock experiment, where two 
higher doses elicited a decrease, and a lower dose an 
increase in thorax temperature. Histology revealed 
significant alterations across several tissues, and one of the 
most common findings was apoptosis. In another study (44) 
the TUNEL assay, immunofluorescence, and real-time 
polymerase chain reaction (RT-PCR) revealed increased 
neuronal apoptosis and apoptotic markers caspase-3 and 
caspase-1 mRNA in honeybee brains, with concurrent 
autophagy. De Almeida Rossi et al. (45) treated honeybees 
with sublethal doses of imidacloprid and demonstrated 
cytotoxicity via Feulgen reaction, xylidine ponceau 
staining, and immunocytochemistry, with optic lobes being 
the most sensitive honeybee brain region to imidacloprid 
exposure.
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Oliveira et al. (46) also reported stronger xylidine 
ponceau staining in the optical lobes of bees exposed to 
thiametoxam compared to control, whereas the cells taken 
from the midgut showed morphological and histochemical 
changes. Catae et al. (47) established toxic effects of 
thiametoxam on malphigian tubules, with organ damage 
increasing with exposure duration. Similar cytotoxicity in 
malphigian tubules was established for sublethal 
imidacloprid (48). The suggested mechanism of toxicity in 
honeybees is the inhibition of mitochondrial activity and 
depletion of adenosine triphosphate (ATP) (49). In one study 
(50), bumblebees exposed to imidacloprid showed reduced 
ATP and visual impairment, indicating a toxicity mechanism 
in common with honeybees.

According to Wessler and Kirkpatrick (51), 
neonicotinoids and other neurotoxic pesticides might also 
affect the non-neuronal acetylcholine (ACh) system (a term 
referring to cells using paracrine secretion of ACh to 
communicate outside the cholinergic nervous system), 
which seems to play a role in honeybee reproduction. Their 
action can therefore impair reproduction and limit 
biodiversity. Straub et al. (52) studied sexual maturation of 
bee drones from hives exposed to clothianidin and 
thiametoxam and found lower sperm viability and count of 
living sperms, as well as shorter drone lifespan. Gajger et 
al. (53) studied the reproductive morphology of honeybee 
queens and found lower sperm count in the spermathecae 
that received the higher thiamethoxam dose. Chaimanee 
(54) reported lower sperm viability in queen honeybees 
exposed to imidacloprid.

Neonicotinoid exposure has also been shown to affect 
honeybee immunocompetence. For instance, Brandt et al. 
(15) have shown that exposure to field-realistic 
concentrations of thiacloprid and imidacloprid and to higher 
concentrations of clothianidin reduced haemocyte density, 
encapsulation response, and antimicrobial activity. In 
another study (55) clothianidin and imidacloprid induced 
immunosuppression via increased Nf-kB inhibition. In 
addition to honey production and total number of bees, 
imidacloprid significantly affected the activity of the 
immune-related enzyme phenoloxidase in forager bee 
extracts (56).

The effects of neonicotinoids on larval development 
have also been assessed. Tavares et al. (57, 58) reported 
lower larval and pupal survival and adult honeybee 
emergence for thiametoxam, as well as changes in 
acetylcholinesterase (AChE), glutathione-S-transferase 
(GST), carboxyesterase para, and alkaline phosphatase 
(ALP). In another study (59) newly emerged bees exposed 
to thiametoxam during the larval stage showed morphological 
changes suggestive of tissue degeneration in the digestive 
system, malphigian tubules, and Kenyon cells, likely to 
compromise their life span. Peng et al. (60) reported lower 
synaptic density in the calyx, which is responsible for the 
olfactory and visual functions, due to sublethal imidacloprid 
exposure of larvae. Yang et al. (61) studied the relation 

between larval imidacloprid exposure and delays in larval 
development stages and found no effect at sublethal 
concentrations. However, the associative olfactory 
behaviour of adult bees was significantly impaired.

At the genetic level, Wu et al. (62) reported a strong 
downregulation of the genes encoding major royal jelly 
proteins (MRJPs) in newly emerged adults exposed to 
imidacloprid as larvae. This group of proteins is important 
for the sustainable development of bee colonies. Two other 
studies (63, 64) reported that sublethal thiametoxam may 
target genes linked to many functions, including behaviour, 
immunity, metabolism, biosynthesis, translation, and neural 
function, whereas another study (65) found a drop in 
vitellogenin, an egg yolk precursor that regulates honeybee 
development and behaviour.

Laboratory and field studies disagree about the extent 
of neonicotinoid exposure effects. Honeybees exposed to 
imidacloprid in laboratory cages showed generalised 
immunosuppression and the triggering of detoxification 
enzymes, whereas field-treated bees were more resilient 
(66).

Bumblebees

Bumblebees are another important pollinator species. 
They seem to suffer the adverse insecticide effects even at 
concentrations regarded as safe (67). Studies of bumblebee 
exposure to insecticides consistently show greater 
sensitivity of these species compared to honeybees. The 
difference in sensitivity between honeybees and bumblebees 
was explained by better honeybee adaptation to feeding on 
nectars containing synthetic alkaloids such as neonicotinoids 
by virtue of their ancestral adaptation to tropical nectars in 
which natural alkaloids are prevalent (68). Bumblebees 
have been reported to retain higher levels of imidacloprid 
after ingestion than honeybees (69).

Like in honeybees, neonicotinoids seem to diminish the 
foraging ability and homing success of bumblebees (70). 
Laycock et al. (71) reported lower survival, brood size, and 
feeding in bumblebees exposed to thiametoxam applied at 
39 and 88 μg kg-1 bw, but not at doses between 1 and 
11 μg kg-1 bw as found in nectars. According to Bryden et 
al. (72), sublethal exposure leads to initial growth and then 
reduction in bumblebee colonies. However, different species 
of the Bombus genus are not equally sensitive to sublethal 
insecticide effects. Baron et al. (73) exposed wild queens 
of four bumblebee species [B. terrestris (Linnaeus), B. 
lucorum (Linnaeus), B. pascuorum (Scopoli), and B. 
pratorum (Linnaeus)] to thiametoxam and found reduced 
feeding in two species.

Neonicotinoids also affect the immune system of 
bumblebees. Imidacloprid lowered the activities of 
phenoloxidase and hemolymph and reduced bumblebee 
survival following non-pathogenic immune challenge (74).

As for the neurological effects, according to an in vitro 
study (75), imidacloprid and clothianidin can affect 
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bumblebee behaviour by stimulating neural Kenyon cells. 
In another study (76), bumblebees chronically exposed to 
field-realistic levels of thiametoxam learnt more slowly, 
and their short-term memory was significantly impaired. 
Experiments also show that successive generations of 
bumblebees adapt to imidacloprid exposure. In one study 
(77) neural cells of the newly emerged adult workers were 
less sensitive to imidacloprid exposure than the neural cells 
from older workers.

Different substances of the same class tend to have 
different effects on bumblebee cells, individuals, and whole 
colonies. In a study by Moffat et al. (75), imidacloprid and 
thiamethoxam, but not clothianidin, affected bumblebee 
colony strength, whereas thiametoxam was the only 
substance that affected the sex ratio (in favour of males).

Two studies even reported recovery from exposure to 
imidacloprid (69, 78). Acetamiprid has consistently been 
reported as the least toxic neonicotinoid. It first entered the 
European market following the approval by the European 
Food Safety Authority (EFSA) (79) due to its low non-target 
toxicity and low potential for bioaccumulation. Further 
studies supported its low toxicity to honeybees (36, 80,-81). 
Acetamiprid may owe its low toxicity to its chemical 
structure, which is different from older neonicotinoids such 
as imidacloprid. Acetamiprid is a cyano-substituted and 
imidacloprid a nitro-substituted compound (82). 
Furthermore, acetamiprid seems to be the least likely to 
enter a beehive (83).

Just as for honeybees, laboratory and field studies 
disagree about the extent of neonicotinoid exposure effects 
in bumblebees. Arce et al. (84) tried to bridge this 
disagreement by exposing bumblebees to controlled doses 
of clothianidin in sucrose syrup and by assessing their 
foraging activities and the number of workers and sexuals. 
The effect on foraging was small, but the number of bees 
dropped significantly.

Combined effects of neonicotinoids, parasites, and other 
stresses on pollinators

Since pollinators are rarely exposed to a single pesticide, 
many studies examined the combined effects of pesticides 
on non-target species. Liu et al. (85) exposed honeybees 
orally for 48 h to clothianidin, thiametoxam, and dinotefuran 
separately and in binary and ternary combinations. All 
combinations had additive or synergistic toxic effects.

Parasite infestations also seem to worsen the adverse 
effects of neonicotinoid pesticides, and the combination 
seems to be one of the main reasons for global pollinator 
decline (86, 87). In combination with infectious microspores, 
however, it increased short-term mortality and led to long-
term colony decline (88). Imidacloprid exposure also 
reduced flight capacity of honeybees affected by the mite 
Varroa destructor (Anderson & Trueman) (89). In an 
observational study in the Netherlands, V. destructor mite 
infestation and the presence of acetamiprid and thiacloprid 

were the two most significant factors in winter honeybee 
losses (90). Sublethal doses of thiacloprid caused higher 
mortality in honeybees infected with Nosema ceranae 
(Fries) than in the uninfected ones (91). Field-realistic 
nutritional stress and pesticide exposure were also reported 
to synergistically diminish honeybee survival (92). All these 
findings point to a greater susceptibility to pathogens in 
neonicotinoid-exposed pollinators (93).

Another stressor contributing to bee population decline 
is poor diet, whose effects are even worse if combined with 
a neonicotinoid, as reported by Dance et al. (94) for 
bumblebees feeding on monofloral pollen coated with 
thiametoxam.

Non-target toxicity of neonicotinoids in other insects and 
invertebrates

Apis cerana (Fabricius) is another aphid species 
prevalent in Asia. Because of its smaller mass, it would be 
reasonable to assume that this species is more sensitive to 
neonicotinoids than Apis mellifera (Linnaeus), but Yue et 
al. (95) reported that both species were equally sensitive to 
dinotefuran, A. cerana (Fabricius) was more sensitive to 
acetamiprid, and A. mellifera (Linnaeus) was more sensitive 
to imidacloprid and thiametoxam. One study with a stingless 
bee species Osmia cornuta (Latreille) found impaired visual 
guidance and navigational memory caused by clothianidin 
(96). Whitehorn et al. (97) found an interesting effect of 
imidacloprid on Nasonia vitripennis, as it produced more 
females in the offspring than control. Studying ants, Thiel 
et al. (98) noted delays in the recruitment of new workers 
in the Lasius niger (Linnaeus) species and fewer foragers 
and greater aggression in the L. flavus species. Another and 
study found lower interspecies aggression and higher 
survival in a native species and higher interspecies 
aggression and lower survival in the invasive species, both 
exposed to imidacloprid (99).

Trophic transfer has been proposed as an important 
route of entry for neonicotinoids into the ecosystem, as 
thiametoxam from treated soybean travelled through 
herbivorous slug species into a predatory arthropod in the 
amounts sufficient to reduce its population density (100). 
This is another, albeit under-researched way insecticides 
can harm beneficial insects and disrupt biological pest 
control.

Cavallaro et al. (101) reported lower toxicity of 
thiametoxam in Chironomus dilutus than that of imidacloprid 
and clothianidin yet it does not make it environmentally 
less dangerous, as it quite likely degrades into clothianidin 
in the environment.

In Chironomus riparium (Meigen) low concentrations 
of thiametoxam inhibited growth, catalase activity, and 
caused lipid peroxidation (102). Azevedo-Pereira et al. 
(103) reported an imidacloprid-related drop in AChE 
activity, which correlated with reduced locomotion and 
ventilation in the same species.
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Kobashi et al. (104) tested the survival of several aquatic 
insect species exposed to imidacloprid and dinotefuran and 
noted that it dropped in C. servilia mariannae (Drury), L. 
pachygastra (Selys), N. triguttata, and G. japonicus 
exposed to imidacloprid, but not to dinotefuran.

Malev et al. (105) exposed a crustacean amphipod 
Gammarus fossarum (Koch) and freshwater algae 
Desmodesmus subspicatus (Chodat) to imidacloprid active 
substance, its commercial formulation, and to its metabolite, 
6-chloronicotinic acid and found reduced algal growth and 
elevated catalase activity and lipid peroxidation. Ugurlu et 
al. (106) found vacuolisation and haemostatic infiltration 
in the gill cells of Gammarus kischineffensis (Schellenberg) 
exposed to sublethal concentrations of thiametoxam.

Arican et al. (107) found reduced feeding in copepods 
exposed to thiacloprid and proposed feeding response as a 
more sensitive endpoint for ecological risk assessment than 
acute or chronic toxicity.

Imidacloprid was also shown to be toxic to earthworm 
Eisenia fetida (Savigny) (108, 109) and Hyalella azteca 
(Saussure) (110). Eisenia andrei (Bouché) showed 
bioaccumulation of various pesticides, which correlated 
with DNA damage (111). Van Hoesel et al. (112) also found 
reduced surface activity of earthworms in pots with wheat 
treated by seed dressing formulation based on imidacloprid 
and a fungicide prothioconazole.

Neonicotinoid effects on vertebrates

Early developmental exposure to imidacloprid has 
persisting effects on neurobehavioral function in zebrafish 
(113). Both active imidacloprid and its commercial 
formulation accumulated in the gut, gills, liver, and muscles 
of Australoherus facetus (Jenyns) and had genotoxic effects 
(114). Ansoar-Rodriguez et al. (115) found histopathological 
changes and increased levels of heat-shock-protein (Hsp) 
70, pointing to hepatotoxicity in Oreochromic niloticus 
(Linneaus). Xia et al. (116) reported genotoxicity, a decrease 
in hepatic enzymes glutamic-pyruvic transaminase and 
glutamic-oxalacetic transaminase, and histological changes 
in the testes of adult pond loach [Misgurnus anguilicaudatus, 
(Cantor)] exposed to sublethal concentrations of 
imidacloprid.

Imidacloprid exposure of chick embryos could increase 
the risk of neural tube defects and dysplasia (117). Lopez-
Antia et al. (118) exposed Alectoris rufa partridges 
(Linnaeus) to imidacloprid-coated seeds and found 
increased mortality at recommended application 
concentrations, reduction in clutch sizes and egg laying 
delays, as well as reduced T-cell immune response. 
Imidacloprid was also reported to impact bobwhite quail 
[Colinus virginianus (Linnaeus)] embryonic development 
and chick survival, but this depended on specific exposure 
windows (119). Developmental delay was also noted in 
chick embryos (120, 121) exposed to imidacloprid, as well 
as histological changes in the chick cerebellum (122).

Male C57BL/6N mice exposed to a single dose of no-
observed-adverse-effect level (NOAEL) of clothiadin 
showed elevated anxiety and increase in c-fos 
immunoreactivity in certain brain regions (123). 
Imidacloprid was also reported to stimulate high-fat-diet-
induced adiposity and insulin resistance in mice (124). Male 
mice exposed to 1 mg kg-1 bw of imidacloprid in utero and 
during lactation showed elevated aggressive and sexual 
behaviour, suggesting male-specific impairment of neural 
development (125). Exposure of gestating mice to 
clothianidin also reduced germ cell count in the offspring 
without hormonal changes (126). Still in mice, Hirano et 
al. (127) reported clothianidin-induced behavioural and 
reproductive effects, which were more pronounced under 
chronic stress. Treatment of mouse embryos with 
1000 µmol L-1 of thimaetoxam, clothianidin, acetamiprid, 
and thiacloprid during the preimplantation period had 
negative effects on embryo developmental abilities (128). 
Exposure to imidacloprid at concentrations higher than 
10 µmol L-1 for less than one minute changed the membrane 
properties of mouse stellate cells with AChRs (from the 
cochlear nucleus) and consequently their function (129). 
Ten-week-old mice drinking water spiked with acetamiprid 
at ten and hundred times the NOAEL had the substance 
concentrated in the midbrain region, and their body weight 
decreased (130).

In rats, high doses of acetamiprid reduced liver weight 
and changed haematological parameters and liver ALT, 
AST, ALP, and LDH activities (131). Rats exposed to high 
doses of thiametoxam for seven days showed increased 
anxiety and a drop in AChE activity, which points to the 
affected cholinergic system (132). 10 mmol L-1 of 
thiametoxam and 2 mmol L-1 of clothianidin increased 
extracellular dopamine levels when injected into the rat 
brain striatum, further characterising its mode of action in 
mammalian brain (133). Commercial thiacloprid, alone and 
in combination with deltamethrin, elevated free T3 and T4 
hormone levels in rat serum in both single-dose and 30-day 
exposure (134). Subchronic (110 mg kg-1 bw) administration 
of acetamiprid significantly decreased lymphocyte 
proliferation and macrophage function (135). Exposure to 
high doses of clothianidin (24 mg kg-1 bw) affected the 
cognitive function of infant Wistar rats (136). At low doses 
clothianidin moderately affected the reproductive system 
of male rats exposed in utero (137). In contrast, a daily 
three-month exposure to imidacloprid (8 mg kg-1 bw) 
significantly impaired the testicular function of adult male 
rats (138).

Hsiao et al. (139) reported impaired spatial memory in 
bats after chronic exposure to imidacloprid. They explained 
it with neuronal apoptosis in their brain.

Finally, dogs also seem to be affected by neonicotinoids. 
An epidemiological study by Gookin et al. (140) established 
an association between imidacloprid exposure and 
gallbladder mucocele formation, with the risk even higher 
in Shetland sheepdogs.
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Human exposure to neonicotinoids

An observational study (141) noted a potential link 
between maternal exposure to agricultural pesticides such 
as neonicotinoids and pyrethroids and poorer 
neurodevelopment in children. A slight correlation between 
maternal exposure and autism spectrum disorder in children 
has also been reported by Keil et al. (142). According to a 
longitudinal study based on Texan poison centre reports, 
adverse events in people exposed to neonicotinoids were 
not severe and most of them were managed outside medical 
facilities (143).

Pyrethroids

Pyrethrins are naturally occurring compounds obtained 
by extraction from pyrethrum [Chrysanthemum 
cinerariaefolium (Linnaeus)]. They have insecticidal 
properties but are unstable when exposed to sunlight. 
Research into modifications of their structure has led to the 
development of synthetic pyrethroids with greater stability 
and insecticidal activity (19). These include cypermethrin, 
cyhalothrin, permethrin, bifenthrin, (es)fenvalerate, and 
cyfluthrin. Their mechanisms of action involve binding to 
voltage-gated sodium channels in insect neurons, preventing 
repolarisation, and inducing paralysis. Based on their 
structure, differences in specific electrophysiological 
effects, and poisoning syndromes in rats, they have been 
divided into type I and type II pyrethroids; the former causes 
aggressive behaviour, ataxia, convulsions, and progressive 
paralysis, whereas the latter causes choreoathetosis, 
salivation, and tremors (144).

Many of these substances have chiral carbon atoms that 
create enantiomers with identical physicochemical 
properties but different biological effects because of the 
binding stereoselectivity to receptors and other 
macromolecules within biological systems. This tends to 
complicate matters regarding their toxicology (145). Many 
studies treat different enantiomers in the racemic mixture 
as a single compound (146), yet their behaviour may differ. 
Yang and Ji (147) reported different degradation rates of 
the four beta-cypermethrin isomers they studied in soil. 
Likewise, enantiomers can differ in toxicokinetics. De 
Albuquerque et al. (148) reported that rat liver microsomes 
metabolised the (-)(1S-cis-αR) diastereoisomer of 
α-cypermethrin faster  than the (+)(1R-cis-αS) 
diastereoisomer. They concluded that the stereoselective 
effects of chiral pesticides should be evaluated both in the 
environment and non-target species. Stereoselectivity was 
also demonstrated with DDT and cancer progression in 
MCF-7 cells (149). Chang et al. (150) reported different 
bioaccumulation effects on the thyroid hormone of two 
lambda-cyhalothrin enantiomers. Stereoselective 
toxicokinetics has also been reported for cycloxaprid in rats 
(151). All these reports show that it is very important to 
specify whether a racemate (such as cypermethrin), an 

enriched enantiomer mixture (such as alpha-cypermethrin), 
or a pure enantiomer substance was used in toxicity studies.

Pyrethroid effects on non-target insects and invertebrates

Similar to neonicotinoids, pyrethroids have also been 
suspected to cause honeybee population declines. In one 
study (35) deltamethrin was lethal to worker bees and 
reduced their foraging activity at food source and hive 
entrance activity. In another study (152), cypermethrin 
inhibited Na/K ATPase in emerging honeybees in laboratory 
conditions. In caged honeybees it altered the expression of 
the genes involved in the immune system, cytochrome P450 
enzymes, subunits of nAChRs, and vitellogenin (153).

Evidence of adverse effects abounds for other insects 
as well. Kunce et al. (154) exposed damselfly larvae to 
deltamethrin and esfenvalerate and found reduced predatory 
ability with deltamethrin and GST inhibition with combined 
exposure. No effect of exposure to lambda cyhalothrin 
through biofilm on mayfly mortality has been reported, 
unlike direct exposure of mayflies through insecticide-
spiked water (155). In yet another study (156), deltamethrin, 
lambda-cyhalothrin, and esfenvalerate were more toxic to 
Iphiseiodes zugalai (Denmark & Muma) larvae and adult 
mites than neonicotinoids imidacloprid and thiametoxam 
in terms of mortality, maturation, fecundity, longevity, and 
duration of adverse effects. Some insect species differ in 
sensitivity to pyrethroid exposure, as of the two predatory 
insects exposed to deltamethrin, Buenoa tarsalis (Truxal) 
was more sensitive than Martarega Bentoi (Truxal). (157)

In crustaceans, interactions between several pyrethroids 
tend to produce additive toxic effects, but some interactions 
were antagonistic, as reported for H. azteca (158). Alpha-
cypermethrin showed adverse effects on Daphnia magna 
(Straus) adult growth and neonate size and number (159).

A combination of permethrin, lambda-cyhalothrin, and 
chlorpyrifos induced response in 12 of 15 zooplankton 
species, with the most sensitive species being the Radix sp. 
snail, H. azteca, D. magna, and copepods. H. Azteca and 
D. magna showed acute toxicity, and the snails and 
copepods a delayed sublethal response (160). One study 
(161) reported the prevalence of permethrin and 
cypermethrin in urban river sediment in South China, whose 
levels were toxic to C. dilutus.

Pyrethroid effects on non-target vertebrates

Pyrethroids have been shown to exert endocrine 
disruption in fish. In embryonic zebrafish, permethrin 
increased thyroxine and 3,5,3’-triiodothyronine levels and 
the transcription of most target genes involved in the 
hypothalamic-pituitary-thyroid axis (162). Simultaneous 
exposure to other insecticides can exacerbate symptoms of 
toxicity. Fai et al. (163) reported that O. niloticus was more 
sensitive to cypermethrin and deltamethrin than the 
organophosphate (OP) pesticide dimethoate, but together 



92Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102

the three showed synergistic toxicity, possibly due to OP 
inhibition of the pyrethroid-hydrolysing esterases.

In toads, deltamethrin caused oxidative stress, affecting 
the catalase, glutathione reductase, and GST activities in 
different tissues (164).

Mice fed with formulated cypermethrin for 60 days 
exhibited chromosome aberrations, micronuclei, reactive 
oxygen species, and disturbed cell cycle (165). Bardullas 
et al. (166) noted hypothermia in infant rats exposed to low 
doses of cypermethrin and bifenthrin, along with mild to 
moderate behavioural effects. Gamma-cyhalothrin, an 
enriched mixture of cyhalothrin isomers, was more 
neurotoxic to rats than lambda-cyhalothrin (167). Still in 
rats, a low-dose permethrin induced changes in liver 
histology, increase in lipid peroxidation, and a drop in 
superoxide dismutase activity in one study (168) and was 
responsible for altered Nurr1 gene expression and reduced 
genome-wide DNA methylation in the offspring of pregnant 
rats in another (169). Upregulation of Nurr1 was later 
associated with lower antioxidant concentrations (170). 
Pregnant dams treated with 10 mg kg-1 bw of deltamethrin 
showed transient neurotoxicity and weight loss, but no effect 
on testosterone synthesis was observed in their male 
offspring (171). Beta-cyfluthrin and bifenthrin affected 
behaviour in adult and neonate rats, which may be related 
to a drop in AChE activity and the elevated oxidative stress 
in their brains (172). Another study also showed that the 
blood-brain barrier of infant rats was more permeable to 
deltamethrin than that of older rats (173). Allethrin, one of 
the first pyrethroids, decreased spermatogenesis and sperm 
function in male rats by downregulating the mRNA 
expression of factors important for testosterone levels, 
sperm count, and sperm function (174).

In mice, pulsed exposure to low-dose (3 mg kg-1 bw) 
deltamethrin during gestation and lactation showed region-
specific downregulation of Na-v mRNA and brain-derived 
neurotrophic factor, suggesting a mechanism for behavioural 
effects (175). Fenvalerate, known as endocrine disruptor 
from other studies, restricted intrauterine growth by 
disrupting placental thyroid hormone receptor signalling 
(176). In another study (177) cypermethrin applied at 
environmentally relevant doses to male mice significantly 
accelerated the onset of puberty by interfering with the 
hypothalamic sodium channels, pituitary gonadotrope 
calcium channels, and testicular Leydig cells, which all led 
to higher FSH, LH, and testosterone levels.

Exposure of male rabbits to two doses of cypermethrin 
for two and four months led to increased genotoxicity in 
the lymphocytes and cytotoxicity in the liver and kidney, 
as demonstrated by the cytokinesis-block micronucleus 
assay and histological examination (178).

Human exposure to pyrethroids

Many studies have assessed the links between 
residential and occupational exposure to pyrethroids and 

potential health effects. Vidi et al. (179) reported a 
significant association between bifenthrin, cypermethrin, 
deltamethrin, cis- and trans-permethrin and DNA damage 
in the hair of residentially exposed children in farmer 
households. An observational study using data from poison 
control centres reported that the second most common 
pesticide group by exposure frequency were pyrethroids, 
and children aged ≤5 years were the group most at risk of 
exposure (180). Campos et al. (181) suggested an 
association between pyrethroid exposure and mental 
disorders. Poorer neurodevelopment in children in relation 
to maternal exposure to pyrethroids was further demonstrated 
by Gunier et al. (141). Furlong et al. (182) found a 
correlation between the levels of pyrethroid urinary 
metabolites 3-PBA and DCCA and behavioural deficits in 
children. Another study reported a stronger link between 
indoor pyrethroid exposure and autism spectrum disorder 
in the children of mothers who received less folic acid 
during pregnancy than those who received more (183). In 
a cross-sectional study of female farm workers in Tanzania, 
occupational exposure to pesticides affected haematological 
and biochemical parameters such as haematocrit, red cell 
corpuscular volume, serum glutamic oxaloacetate 
transaminase, and esterase (184). One case of pyrethroid 
skin necrosis was reported in a 67-year old diabetic woman 
suffering from delusions of parasitosis (185). In a recent 
review Martenies et al. (186) identified four studies showing 
an association between urinary metabolites of pyrethroids 
and lower semen concentration. Chiu et al. (187), however, 
reported the opposite: consumption of fruit and vegetables 
with low-to-moderate pesticide residues was associated 
with improved total sperm count and sperm concentration. 
The authors suggested that pesticide residues in fruit and 
vegetables could offset the beneficial effects of antioxidants 
and other naturally occurring chemicals in human organism. 
So far, however, there are too few studies of this type to 
infer anything more than that an association may exist. 
Similar to the finding in mice above (177), an observational 
study reported a positive correlation between pyrethroid 
urinary metabolites 3-PBA and 4-F-3PBA and gonadotropin 
levels (FSH and LH) and early-onset puberty in Chinese 
boys (188).

NEEM-BASED INSECTICIDES

Unlike the previous two groups of naturally occurring 
insecticides, little is known about the non-target toxicity of 
neem-based insecticides. What literature there is, it mainly 
reports no adverse environmental effects. However, one 
study reported azadirachtin suppression of otherwise 
beneficial phosphate-solubilising bacteria in soil (189). In 
another study, neem-based formulations changed the 
composition of zooplanktonic communities at higher 
concentrations (190). In adult copepods, azadirachtin 
reduced their population (191), which was also noted in 
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another study with adult copepods in pond enclosures (192). 
This adversely affects zooplankton food web stability. 
Similar perturbations in planktonic communities were also 
noted by Kreutzweiser et al. (193). Goktepe and Plhak (194) 
confirmed direct adverse effects on aquatic organisms with 
azadirachtin formulations more resistant to degradation by 
sunlight.

Regarding non-target insect effects, exposure of 
bumblebees to azadirachtin caused a variety of toxic effects, 
including reduced offspring mass, absence of reproduction, 
and mortality (195). Neem oil affected cocoon spinning in 
Ceraeochrysa claveri (Navás), possibly increasing their 
vulnerability to natural enemies and environmental factors 
(196).

There are several reports of neem-based compounds 
affecting fish. Intramuscular application of low-dose 
azadirachtin in Oreochromis Mossambicus (Peters) caused 
chromosomal aberrations (197). In carp it significantly 
altered locomotor and haematological parameters (198). In 
catfish it affected leukocyte populations, which pointed to 
a possible immunotoxicity (199). Azadirachtin also caused 
histological changes to ultimobrachial gland, an organ 
important for calcium homeostasis, in the Asian stinging 
catfish [Heteropneustes fossilis (Bloch)], but only with 
prolonged exposure (200). In zebrafish, it increased general 
activity and anxiety-like symptoms, but there was no effect 
on learning (201).

As for mammals, neem extract seems to be spermatotoxic 
in rats (202). In another study (203) high concentrations of 
azadirachtin reversibly affected rat neuron excitability by 
modulating potassium conductances. Vepacide, a neem 
oil-based preparation, increased aspartate and alanine 
aminotransferase in the serum, kidney, and lung, but 
decreased them in the liver of rats, suggesting liver necrosis 
(204). Subchronic exposure of Wistar rats to vepacide 
induced biochemical changes in the levels of acid and 
alkaline phosphatase (205). In contrast, azadirachtin showed 
no signs of toxicity in either gestational rats or their 
offspring (206), or in subchronically treated adult rats of 
either sex (207).

Little is still known about the risks for humans. What 
we know is that azadirachtin has no genotoxic effect on 
human cells, but may have antiproliferative effects, as 
evidenced by the changes in the cell cycle of human 
lymphocytes, some of which also displayed aberrant mitoses 
and poliploidy with multipolar spindles (208). One study 
reported that an azadirachtin-based nematicide caused eye 
irritation but no systemic effects (209). There is also a case 
report of a 35-year-old woman showing transient signs of 
neurotoxicity after ingesting azadirachtin in a suicide 
attempt (210).

CONCLUSIONS

Experimental evidence suggests diverse toxicities of 
the three new, presumably selective and environmentally 
safe insecticides in non-target, environmentally beneficial 
insects, planktonic organisms, fish, and mammals. With 
pyrethroids this is in no small part due to their 
stereoselectivity. Although an increasing number of studies 
now acknowledges stereoselectivity as an important factor 
in toxicological assessment, more research is needed on 
this subject.

The reviewed studies have also shown that insecticides 
when mixed, which corresponds to real-life exposure 
patterns, mostly interact to produce additive or synergistic 
effects, but antagonisms have also been noted. Further 
research should investigate the mechanisms of these 
interactions on the molecular level.

Many practical measures can be put to use to buffer the 
negative impacts of pesticides on the environment, such as 
rotating different insecticides (39), combining common 
insecticides with detoxification-enzyme-inducing pesticides 
(40), and avoiding pesticides affecting beneficial predatory 
arthropods used in biological pest control. The risk to 
pollinators and other non-target organisms may also be 
reduced by aligning the use of insecticides with pest 
incidence (211). Furthermore, treating certain species such 
as bumblebees with near infrared light seems a promising 
way to counter imidacloprid effects (50).

Promising improvements also come with even newer 
alternative insecticides, such as a spider-venom derivative 
atracotoxin that targets calcium channels. In an early-tier 
risk assessment (212) it did not affect honeybee mortality 
or learning, nor was it toxic to larvae. Of course, full risk 
assessment should involve the whole lifecycle of colony 
health and include other species and interactions with other 
stressors such as pathogens.

Regarding neem-based pesticides, further research into 
the effects on beneficial pollinator species is needed to 
complement its relatively favourable toxicological profile 
in mammals.

Conflict of interest

None to declare.

Acknowledgements

This work was financially supported by Project Organic 
Pollutants in Environment – Markers and Biomarkers of 
Toxicity (OPENTOX), funded by the Croatian Science 
Foundation (grant number 8366).

REFERENCES

1. Oberemok VV, Laikova KV, Gninenko YI, Zaitsev AS, 
Nyadar PM, Adeyemi TA. A short history of insecticides. J 
Plant Prot Res 2015;55:221-6. doi: 10.1515/jppr-2015-0033

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



94

2. Amweg EL, Weston DP, Ureda NM. Use and toxicity of 
pyrethroid pesticides in the Central Valley, California, USA. 
Environ Toxicol Chem 2005;24:966-72. doi: 10.1897/04-
146R1.1

3. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin 
JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio 
C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, 
Liess M, Long E, McField M, Mineau P, Mitchell EA, 
Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, 
Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, 
Whitehorn PR, Wiemers M. Systemic insecticides 
(neonicotinoids and fipronil): trends, uses, mode of action 
and metabolites. Environ Sci Pollut R 2015;22:5-34. doi: 
10.1007/s11356-014-3470-y

4. Dryden MW, Rust MK. The cat flea - biology, ecology and 
control. Vet Parasitol 1994;52:1-19. doi: 10.1016/0304-
4017(94)90031-0

5. Marsh RE. Vertebrate pest control chemicals and their use 
in urban and rural environments. In: Keirger R, editor. 
Handbook of Pesticide Toxicology. 2nd ed. San Diego (CA): 
Academic Press; 2001. p. 251-62. doi: 10.1016/B978-
012426260-7.50010-0

6. Roberts DR, Andre RG. Insecticide resistance issues in 
vector-borne disease-control. Am J Trop Med Hyg 
1994;50:21-34.

7. Costa LG.Toxic effects of pesticides. In: Klaassen CD, editor. 
Casarett and Doull’s Toxicology: The Basic Science of 
Poisons. 8th ed. New York (NY): McGraw-Hill Education; 
2013. p. 983-91.

8. Stratonovitch P, Elias J, Denholm I, Slater R, Semenov MA. 
An individual-based model of the evolution of pesticide 
resistance in heterogenous environments: control of 
Meligethes aeneus population in oilseed rape crops. PLoS 
One 2014;9:e115631. doi: 10.1371/journal.pone.0115631

9. Phillips BM, Anderson BS, Voorhees JP, Siegler K, Denton 
D, TenBrook P, Larsen K, Isorena P, Tjeerdema RS. 
Monitoring the aquatic toxicity of mosquito vector control 
spray pesticides to freshwater receiving waters. Integr 
Environ Asses 2014;10:449-55. doi: 10.1002/ieam.1534

10. Suratman S, Edwards JW, Babina K. Organophosphate 
pesticides exposure among farmworkers: pathways and risk 
of adverse health effects. Rev Environ Health 2015;30:65-79. 
doi: 10.1515/reveh-2014-0072

11. Hawkins TR. Re-reading Silent Spring. Environ Health Persp 
1994;102:536-7. PMCID: PMC1569756

12. Kabasenche WP, Skinner MK. DDT, epigenetic harm and 
transgenerational environmental justice. Environ Health 
2014;13:62. doi: 10.1186/1476-069X-13-62

13. Agricultural Sustainability Institute (ASI). What is 
sustainable agriculture? [displayed 6 February 2018]. 
Available at http://asi.ucdavis.edu/programs/sarep/about/
what-is-sustainable-agriculture/#concept-themes

14. Casida JE. The greening of pesticide-environment 
interactions: some personal observations. Environ Health 
Persp 2012;120:487-93. doi: 10.1289/ehp.1104405

15. Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R. The 
neonicotinoids thiacloprid, imidacloprid, and clothianidin 
affect the immunocompetence of honeybees (Apis mellifera 
L.). J Insect Physiol 2016;86:40-7. doi: 10.1016/j.
jinsphys.2016.01.001

16. Tison L, Hahn ML, Holtz S, Rossner A, Greggers U, Bischoff 
G, Menzel R. Honeybees’ behavior is impaired by chronic 

exposure to the neonicotinoid thiacloprid in the field. Environ 
Sci Technol 2016;50:7218-27. doi: 10.1021/acs.est.6b02658

17. Deng YX, Cao M, Shi DX, Yin ZQ, Jia RY, Xu J, Wang C, 
Lv C, Liang XX, He CL, Yang ZR, Zhao J. Toxicological 
evaluation of neem (Azadirachta indica) oil: Acute and 
subacute toxicity. Environ Toxicol Phar 2013;35:240-6. doi: 
10.1016/j.etap.2012.12.015

18. Adel MM, Sehnal F. Azadirachtin potentiates the action of 
ecdysteroid agonist RH-2485 in Spodoptera littoralis. J Insect 
Physiol 2000;46:267-74. doi: 10.1016/S0022-1910(99)00179-1

19. Lopez O, Fernandez-Bolanos JG, Gil MV. New trends in pest 
control: the search for greener insecticides. Green Chem 
2005;7:431-42. doi: 10.1039/B500733J

20. Stokstad E. Agriculture. Field research on bees raises concern 
about low-dose pesticides. Science 2012;335:1555. doi: 
10.1126/science.335.6076.1555

21. Fairbrother A, Purdy J, Anderson T, Fell R. Risks of 
neonicotinoid insecticides to honeybees. Environ Toxicol 
Chem 2014;33:719-31. doi: 10.1002/etc.2527

22. Samson-Robert O, Labrie G, Chagnon M, Fournier V. 
Neonicotinoid-contaminated puddles of water represent a 
r isk  of  intoxicat ion for  honeybees .  PLoS One 
2014;9:e0119357. doi: 10.1371/journal.pone.0108443

23. Sadaria AM, Supowit SD, Halden RU. Mass balance 
assessment for six neonicotinoid insecticides during 
conventional wastewater and wetland treatment: nationwide 
reconnaissance in United States wastewater. Environ Sci 
Technol 2016;50:6199-206. doi: 10.1021/acs.est.6b01032

24. Tapparo A, Marton D, Giorio C, Zanella A, Solda A, Marzano 
M, Vivan L, Girolami V. Assessment of the environmental 
exposure of honeybees to particulate matter containing 
neonicotinoid insecticides coming from corn coated seeds. 
Environ Sci Technol 2012;46:2592-9. doi: 10.1021/
es2035152

25. Biddinger DJ, Robertson JL, Mullin C, Frazier J, Ashcraft 
SA, Rajotte EG, Joshi NK, Vaughn M. Comparative toxicities 
and synergism of apple orchard pesticides to Apis mellifera 
(L.) and Osmia cornifrons (Radoszkowski). PLoS One 
2013;8:e72587. doi: 10.1371/journal.pone.0072587

26. Yang EC, Chuang YC, Chen YL, Chang LH. Abnormal 
foraging behavior induced by sublethal dosage of imidacloprid 
in the honeybee (Hymenoptera: Apidae). J Econ Entomol 
2008;101:1743-8. doi: 10.1603/0022-0493-101.6.1743

27. Cresswell JE. A meta-analysis of experiments testing the 
effects of a neonicotinoid insecticide (imidacloprid) on 
honeybees. Ecotoxicology 2011;20:149-57. doi: 10.1007/
s10646-010-0566-0

28. Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS. 
Assessment of chronic sublethal effects of imidacloprid on 
honeybee colony health. PLoS One 2015;10:e0118748. doi: 
10.1371/journal.pone.0118748

29. Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena 
DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A. 
Chronic exposure to neonicotinoids reduces honeybee health 
near corn crops. Science 2017;356:1395-7. doi: 10.1126/
science.aam7470

30. Williamson SM, Willis SJ, Wright GA. Exposure to 
neonicotinoids influences the motor function of adult worker 
honeybees. Ecotoxicology 2014;23:1409-18. doi: 10.1007/
s10646-014-1283-x

31. Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using 
video-tracking to assess sublethal effects of pesticides on 

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



95

honeybees (Apis mellifera L.). Environ Toxicol Chem 
2012;31:1349-54. doi: 10.1002/etc.1830

32. Palmer MJ, Moffat C, Saranzewa N, Harvey J, Wright GA, 
Connolly CN. Cholinergic pesticides cause mushroom body 
neuronal inactivation in honeybees. Nat Commun 
2013;4:1634. doi: 10.1038/ncomms2648

33. Zhang E, Nieh JC. The neonicotinoid imidacloprid impairs 
honeybee aversive learning of simulated predation. J Exp 
Biol 2015;218:3199-205. doi: 10.1242/jeb.127472

34. Mengoni Goñalons C, Farina WM. Effects of sublethal doses 
of imidacloprid on young adult honeybee behaviour. PLoS 
One 2015;10:e0140814. doi: 10.1371/journal.pone.0140814

35. Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-
Delègue MH. Effects of imidacloprid and deltamethrin on 
associative learning in honeybees under semi-field and 
laboratory conditions. Ecotox Environ Safe 2004;57:410-9. 
doi: 10.1016/j.ecoenv.2003.08.001

36. El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, 
Armengaud C. Effects of sublethal doses of acetamiprid and 
thiamethoxam on the behavior of the honeybee (Apis 
mellifera). Arch Environ Con Tox 2008;54:653-61. doi: 
10.1007/s00244-007-9071-8

37. Poquet Y, Kairo G, Tchamitchian S, Brunet JL, Belzunces 
LP. Wings as a new route of exposure to pesticides in the 
honeybee. Environ Toxicol Chem 2015;34:1983-8. doi: 
10.1002/etc.3014

38. Suchail S, Debrauwer L, Belzunces LP. Metabolism of 
imidacloprid in Apis mellifera. Pest Manag Sci 2004;60:291-
6. doi: 10.1002/ps.772

39. Zhu YC, Yao J, Adamczyk J, Luttrell R. Feeding toxicity and 
impact of imidacloprid formulation and mixtures with six 
representative pesticides at residue concentrations on 
honeybee physiology (Apis mellifera). PLoS One 
2017;12:e0178421. doi: 10.1371/journal.pone.0178421

40. Zhu YC, Yao J, Adamczyk J, Luttrell R. Synergistic toxicity 
and physiological impact of imidacloprid alone and binary 
mixtures with seven representative pesticides on honeybee 
(Apis mellifera). PLoS One 2017;12:e0176837. doi: 10.1371/
journal.pone.0176837

41. Raimets R, Karise R, Mänd M, Kaart T, Ponting S, Song J, 
Cresswell JE. Synergistic interactions between a variety of 
insecticides and an ergosterol biosynthesis inhibitor fungicide 
in dietary exposures of bumble bees (Bombus terrestris L.). 
Pest Manag Sci 2017;74:541-6. doi: 10.1002/ps.4756

42. Boily M, Sarrasin B, DeBlois C, Aras P, Chagnon M. 
Acetylcholinesterase in honeybees (Apis mellifera) exposed 
to neonicotinoids, atrazine and glyphosate: laboratory and 
field experiments. Environ Sci Pollut R 2013;20:5603-14. 
doi: 10.1007/s11356-013-1568-2

43. Tosi S, Démares FJ, Nicolson SW, Medrzycki P, Pirk CW, 
Human H. Effects of a neonicotinoid pesticide on 
thermoregulation of African honeybees (Apis mellifera 
scutellata). J Insect Physiol 2016;93-94:56-63. doi: 
10.1016/j.jinsphys.2016.08.010

44. Wu YY, Zhou T, Wang Q, Dai PL, Xu SF, Jia HR, Wang X. 
Programmed cell death in the honeybee (Apis mellifera) 
(Hymenoptera: Apidae) worker brain induced by imidacloprid. 
J Econ Entomol 2015;108:1486-94. doi: 10.1093/jee/tov146

45. De Almeida Rossi, C, Roat, TC, Tavares, DA, Cintra-
Socolowski, P, Malaspina, O. Brain morphophysiology of 
Africanized bee Apis mellifera exposed to sublethal doses of 

imidacloprid. Arch Environ Con Tox 2013;65;234-43. doi: 
10.1007/s00244-013-9897-1

46. Oliveira RA, Roat TC, Carvalho SM, Malaspina O. Side-
effects of thiamethoxam on the brain andmidgut of the 
africanized honeybee Apis mellifera (Hymenoptera: Apidae). 
Environ Toxicol 2014;29:1122-33. doi: 10.1002/tox.21842

47. Catae AF, Roat TC, De Oliveira RA, Nocelli RC, Malaspina 
O. Cytotoxic effects of thiamethoxam in the midgut and 
malpighian tubules of Africanized Apis mellifera 
(Hymenoptera: Apidae). Microsc Res Techniq 2014;77:274-
81. doi: 10.1002/jemt.22339

48. De Almeida Rossi C, Roat TC, Tavares DA, Cintra-
Socolowski P, Malaspina O. Effects of sublethal doses of 
imidacloprid in Malpighian tubules of Africanized Apis 
mellifera (Hymenoptera, Apidae). Microsc Res Techniq 
2013;76:552-8. doi: 10.1002/jemt.22199

49. Nicodemo D, Maioli MA, Medeiros HC, Guelfi M, Balieira 
KV, De Jong D, Mingatto FE. Fipronil and imidacloprid 
reduce honeybee mitochondrial activity. Environ Toxicol 
Chem 2014;33:2070-5. doi: 10.1002/etc.2655

50. Powner MB, Salt TE, Hogg C, Jeffery G. Improving 
mitochondrial function protects bumblebees from 
neonicotinoid pesticides. PLoS One 2016;11:e0166531. doi: 
10.1371/journal.pone.0166531

51. Wessler IK, Kirkpatrick CJ. Non-neuronal acetylcholine 
involved in reproduction in mammals and honeybees. J 
Neurochem 2017;142(Suppl 2):144-50. doi: 10.1111/
jnc.13953

52. Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul 
P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler 
A, Vidondo B, Neumann P, Williams GR. Neonicotinoid 
insecticides can serve as inadvertent insect contraceptives. 
Proc Roy Soc B Biol Sci 2016;283:20160506. doi: 10.1098/
rspb.2016.0506

53. Gajger IT, Sakač M, Gregorc A. Impact of thiamethoxam on 
honeybee queen (Apis mellifera carnica) reproductive 
morphology and physiology. B Environ Contam Tox 
2017;99:297-02.

54. Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS. Sperm 
viability and gene expression in honeybee queens (Apis 
mellifera) following exposure to the neonicotinoid insecticide 
imidacloprid and the organophosphate acaricide coumaphos. 
J  Insec t  Phys io l  2016;89:1-8 .  do i :  10 .1016/ j .
jinsphys.2016.03.004

55. Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio 
E, Nazzi F, Gargiulo G, Pennacchio F. Neonicotinoid 
clothianidin adversely affects insect immunity and promotes 
replication of a viral pathogen in honeybees. P Natl Acad Sci 
USA 2013;110:18466-71. doi: 10.1073/pnas.1314923110

56. Wegener J, Ruhnke H, Milchreit K, Kleebaum K, Franke M, 
Mispagel S, Bischoff G, Kamp G, Bienefeld K. Secondary 
biomarkers of insecticide-induced stress of honeybee 
colonies and their relevance for overwintering strength. 
Ecotoxicol Environ Safe 201;132: 379-89.

57. Tavares DA, Roat TC, Carvalho SM, Silva-Zacarin EC, 
Malaspina O. In vitro effects of thiamethoxam on larvae of 
Africanized honeybee Apis mellifera (Hymenoptera: Apidae). 
Chemosphere  2015;135:370-8 .  doi :  10 .1016/ j .
chemosphere.2015.04.090

58. Tavares DA, Dussaubat C, Kretzschmar A, Carvalho SM, 
Silva-Zacarin ECM, Malaspina O, Bérail G, Brunet JL, 
Belzunces LP. Exposure of larvae to thiamethoxam affects 

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



96

the survival and physiology of the honeybee at post-
embryonic stages. Environ Pollut 2017;229:386-93. doi: 
10.1016/j.envpol.2017.05.092

59. Friol PS, Catae AF, Tavares DA, Malaspina O, Roat TC. Can 
the exposure of Apis mellifera (Hymenoptera, Apiadae) 
larvae to a field concentration of thiamethoxam affect newly 
emerged bees? Chemosphere 2017;185:56-66. doi: 10.1016/j.
chemosphere.2017.06

60. Peng YC, Yang EC. Sublethal dosage of imidacloprid reduces 
the microglomerular density of honeybee mushroom bodies. 
Sci Rep 2016;6:19298. doi: 10.1038/srep19298

61. Yang EC, Chang HC, Wu WY, Chen YW. Impaired olfactory 
associative behavior of honeybee workers due to 
contamination of imidacloprid in the larval stage. PLoS One 
2012;7:e49472. doi: 10.1371/journal.pone.0049472

62. Wu MC, Chang YW, Lu KH, Yang EC. Gene expression 
changes in honeybees induced by sublethal imidacloprid 
exposure during the larval stage. Insect Biochem Molec 
2017;88:12-20. doi: 10.1016/j.ibmb.2017.06.016

63. Shi TF, Wang YF, Liu F, Qi L, Yu LS. Influence of the 
neonicotinoid insecticide thiamethoxam on miRNA 
expression in the honeybee (Hymenoptera: Apidae). J Insect 
Sci 2017;17:96. doi: 10.1093/jisesa/iex074

64. Shi TF, Wang YF, Liu F, Qi L, Yu LS. Sublethal effects of 
the neonicotinoid insecticide thiamethoxam on the 
transcriptome of the honeybees (Hymenoptera: Apidae). J 
Econ Entomol 2017;110:2283-9. doi: 10.1093/jee/tox262

65. Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-
Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid 
and Varroa destructor on survival and health of European 
honeybees, Apis mellifera. Insect Sci 2017;24:467-77. doi: 
10.1111/1744-7917.12335

66. De Smet L, Hatjina F, Ioannidis P, Hamamtzoglou A, 
Schoonvaere K, Francis F, Meeus I, Smagghe G, de Graaf 
DC. Stress indicator gene expression profiles, colony 
dynamics and tissue development of honeybees exposed to 
sub-lethal doses of imidacloprid in laboratory and field 
experiments. PLoS One 2017;12:e0171529. doi: 10.1371/
journal.pone.0171529

67. Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, 
Smagghe G. Risk assessment for side-effects of neonicotinoids 
against bumblebees with and without impairing foraging 
behavior. Ecotoxicology 2010;19:207-15. doi: 10.1007/
s10646-009-0406-2

68. Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li YR, 
Wheeler JG, Laycock I, Pook CJ, de Ibarra NH, Smirnoff N, 
Tyler, CR. Differential sensitivity of honeybees and bumble 
bees to a dietary insecticide (imidacloprid). Zoology 
2012;115:365-71. doi: 10.1016/j.zool.2012.05.003

69. Cresswell JE, Robert FX, Florance H, Smirnoff N. Clearance 
of ingested neonicotinoid pesticide (imidacloprid) in 
honeybees (Apis mellifera) and bumblebees (Bombus 
terrestris). Pest Manag Sci 2014;70:332-7. doi: 10.1002/
ps.3569

70. Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine NE. 
Investigating the impacts of field-realistic exposure to a 
neonicotinoid pesticide on bumblebee foraging, homing 
ability and colony growth. J Appl Ecol 2016;53:1440-9. doi: 
10.1111/1365-2664.12689

71. Laycock I, Cotterell KC, O’Shea-Wheller TA, Cresswell JE. 
Effects of the neonicotinoid pesticide thiamethoxam at field-
realistic levels on microcolonies of Bombus terrestris worker 

bumble bees. Ecotox Environ Safe 2014;100:153-8. doi: 
10.1016/j.ecoenv.2013.10.027

72. Bryden J, Gill RJ, Mitton RA, Raine NE, Jansen VA. Chronic 
sublethal stress causes bee colony failure. Ecol Lett 
2013;16:1463-9. doi: 10.1111/ele.12188

73. Baron GL, Raine NE, Brown MJF. General and species-
specific impacts of a neonicotinoid insecticide on the ovary 
development and feeding of wild bumblebee queens. Proc 
Roy Soc B Biol Sci 2017;284:20170123. doi: 10.1098/
rspb.2017.0123.

74. Czerwinski MA, Sadd B. Detrimental interactions of 
neonicotinoid pesticide exposure and bumblebee immunity. 
J Exp Zool Part A 2017;327:273-83. doi: 10.1002/jez.2087

75. Moffat C, Buckland ST, Samson AJ, McArthur R, Chamosa 
Pino V, Bollan KA, Huang JT, Connolly CN. Neonicotinoids 
target distinct nicotinic acetylcholine receptors and neurons, 
leading to differential risks to bumblebees. Sci Rep 
2016;6:24764. doi: 10.1038/srep24764

76. Stanley DA, Smith KE, Raine NE. Bumblebee learning and 
memory is impaired by chronic exposure to a neonicotinoid 
pesticide. Sci Rep 2015;5:16508. doi:10.1038/srep16508

77. Wilson DE, Velarde RA, Fahrbach SE, Mommaerts V, 
Smagghe G. Use of primary cultures of Kenyon cells from 
bumblebee brains to assess pesticide side effects. Arch Insect 
Biochem 2013;84:43-56. doi: 10.1002/arch.21112

78. Laycock I, Cresswell JE. Repression and recuperation of 
brood production in Bombus terrestris bumble bees exposed 
to a pulse of the neonicotinoid pesticide imidacloprid. PLoS 
One 2013;8: e79872. doi: 10.1371/journal.pone.0079872

79. European Food Safety Authority (EFSA). Review report for 
the active substance acetamiprid SANCO/1392/2001. OJ L 
2004;145:36.

80. Brunet JL, Badiou A, Belzunces LP. In vivo metabolic fate 
of [14C]-acetamiprid in six biological compartments of the 
honeybee, Apis mellifera L. Pest Manag Sci 2005;61:742-8. 
doi: 10.1002/ps.1046

81. Badawy MEI, Nasr HM, Rabea EI. Toxicity and biochemical 
changes in the honeybee Apis mellifera exposed to four 
insecticides under laboratory conditions. Apidologie 
2015;46:177-93. doi: 10.1007/s13592-014-0315-0

82. Stanley J, Sah K, Jain SK, Bhatt JC, Sushil SN. Evaluation 
of pesticide toxicity at their field recommended doses to 
honeybees, Apis cerana and A. mellifera through laboratory, 
semi-field and field studies. Chemosphere 2015;119:668-74. 
doi: 10.1016/j.chemosphere.2014.07.039

83. Silvina N, Florencia J, Nicolas P, Cecilia P, Lucia P, Abbate 
S, Leonidas CL, Sebastian D, Yamandu M, Veronica C, 
Horacio H. Neonicotinoids transference from the field to the 
hive by honeybees: Towards a pesticide residues biomonitor. 
Sci Total Environ 2017;581:25-31. doi: 10.1016/j.
scitotenv.2017.01.011

84. Arce AN, David TI, Randall EL, Rodrigues AR, Colgan TJ, 
Wurm Y, Gill RJ. Impact of controlled neonicotinoid 
exposure on bumblebees in a realistic field setting. J Appl 
Ecol 2016;54:1199-208. doi: 10.1111/1365-2664.12792

85. Liu Y, Liu S, Zhang H, Gu Y, Li X, He M, Tan H. Application 
of the combination index (CI)-isobologram equation to 
research the toxicological interactions of clothianidin, 
thiamethoxam, and dinotefuran in honeybee, Apis mellifera. 
Chemosphere 2017;184:806-11.  doi :  10.1016/j .
chemosphere.2017.06.045

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



97

86. Van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, 
Bonmatin JM, Belzunces LP. Neonicotinoids, bee disorders 
and the sustainability of pollinator services. Curr Opin Env 
Sust 2013;5:293-305. doi: 10.1016/j.cosust.2013.05.007

87. Retschnig G, Neumann P, Williams GR. Thiacloprid-Nosema 
ceranae interactions in honeybees: host survivorship but not 
parasite reproduction is dependent on pesticide dose. J 
Invertebr Pathol 2014;118:18-9. doi:  10.1016/j .
jip.2014.02.008

88. Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan 
S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte 
Y. Interactions between Nosema microspores and a 
neonicotinoid weaken honeybees (Apis mellifera). Environ 
M i c r o b i o l  2 0 1 0 ; 1 2 : 7 7 4 - 8 2 .  d o i : 
10.1111/j.1462-2920.2009.02123.x

89. Blanken LJ, van Langevelde F, van Dooremalen C. 
Interaction between Varroa destructor and imidacloprid 
reduces flight capacity of honeybees. Proc Royal Soc B Biol 
Sci 2015;282:20151738. doi: 10.1098/rspb.2015.1738

90. Van der Zee R, Gray A, Pisa L, de Rijk T. An observational 
study of honeybee colony winter losses and their association 
with Varroa destructor, neonicotinoids and other risk factors. 
PLoS One 2015;10:e0131611. doi: 10.1371/journal.
pone.0131611

91. Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, 
Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, 
Belzunces LP, Delbac F. Exposure to sublethal doses of 
fipronil and thiacloprid highly increases mortality of 
honeybees previously infected by Nosema ceranae. PLoS 
One 2011;6:e21550. doi: 10.1371/journal.pone.0021550

92. Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. 
Neonicotinoid pesticides and nutritional stress synergistically 
reduce survival in honeybees. Proc Roy Soc B Biol Sci 
2017;284:20171711. doi: 10.1098/rspb.2017.1711

93. Alburaki M, Boutin S, Mercier PL, Loublier Y, Chagnon M, 
Derome N. Neonicotinoid-coated Zea mays seeds indirectly 
affect honeybee performance and pathogen susceptibility in 
field trials. PLoS One 2015;10:e0125790. doi: 10.1371/
journal.pone.0125790

94. Dance C, Botias C, Goulson D. The combined effects of a 
monotonous diet and exposure to thiamethoxam on the 
performance of bumblebee micro-colonies. Ecotox Environ 
Safe 2017;139:194-201. doi: 10.1016/j.ecoenv.2017.01.041

95. Yue M, Luo S, Liu J, Wu J. Apis cerana is less sensitive to 
most neonicotinoids, despite of their smaller body mass. J 
Econ Entomol 2018;111:39-42. doi: 10.1093/jee/tox342

96. Jin N, Klein S, Leimig F, Bischoff G, Menzel R. The 
neonicotinoid clothianidin interferes with navigation of the 
solitary bee Osmia cornuta in a laboratory test. J Exp Biol 
2015;218:2821-5. doi: 10.1242/jeb.12361

97. Whitehorn PR, Cook N, Blackburn CV, Gill SM, Green J, 
Shuker DM. Sex allocation theory reveals a hidden cost of 
neonicotinoid exposure in a parasitoid wasp. Proc Roy Soc 
B Biol Sci 2015;282:20150389. doi: 10.1098/rspb.2015.0389

98. Thiel S, Kohler HR. A sublethal imidacloprid concentration 
alters foraging and competition behaviour of ants. 
Ecotoxicology 2016;25:814-23. doi: 10.1007/s10646-016-
1638-6

99. Barbieri R, Lester PJ, Miller AS, Ryan KG. A neurotoxic 
pesticide changes the outcome of aggressive interactions 
between native and invasive ants. Proc Roy Soc B Biol Sci 
2013;280:20132157. doi: 10.1098/rspb.2013.2157

100. Douglas MR, Rohr JR, Tooker JF. Neonicotinoid insecticide 
travels through a soil food chain, disrupting biological control 
of non-target pests and decreasing soya bean yield. J Appl 
Ecol 2015;52:250-60. doi: 10.1111/1365-2664.12372

101. Cavallaro MC, Morrissey CA, Headley JV, Peru KM, Liber 
K. Comparative chronic toxicity of imidacloprid, clothianidin, 
and thiamethoxam to Chironomus dilutus and estimation of 
toxic equivalency factors. Environ Toxicol Chem 
2017;36:372-82. doi: 10.1002/etc.3536

102. Saraiva AS, Sarmento RA, Rodrigues ACM, Campos D, 
Fedorova G, Zlabek V, Gravato C, Pestana JLT, Soares 
AMVM. Assessment of thiamethoxam toxicity to Chironomus 
riparius. Ecotox Environ Safe 2017;137:240-6. doi: 
10.1016/j.ecoenv.2016.12.00

103. Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM. 
Effects of imidacloprid exposure on Chironomus riparius 
Meigen larvae: Linking acetylcholinesterase activity to 
behaviour. Ecotox Environ Safe 2011;74:1210-15. doi: 
10.1016/j.ecoenv.2011.03.018

104. Kobashi K, Harada T, Adachi Y, Mori M, Ihara M, Hayasaka 
D. Comparative ecotoxicity of imidacloprid and dinotefuran 
to aquatic insects in rice mesocosms. Ecotox Environ Safe 
2017;138:122-9. doi: 10.1016/j.ecoenv.2016.12.025

105. Malev O, Klobučar RS, Fabbretti E, Trebše P. Comparative 
toxicity of imidacloprid and its transformation product 
6-chloronicotinic acid to non-target aquatic organisms: 
Microalgae Desmodesmus subspicatus and amphipod 
Gammarus fossarum. Pestic Biochem Phys 2012;104:178-86. 
doi: 10.1016/j.pestbp.2012.07.008

106. Uğurlu P, Ünlü E, Satar EI. The toxicological effects of 
thiametoxam on Gammarus kischineffensis (Schellenberg 
1937) (Crustacea: Amphipoda). Environ Toxicol Phar 
2015;39;720-6. doi: 10.1016/j.etap.2015.01.013

107. Arican C, Traunspurger W, Spann N. The influence of 
thiacloprid on the feeding behaviour of the copepod, 
Diacyclops bicuspidatus, preying on nematodes. Nematology 
2017;19:1201-15. doi: 10.1163/15685411-00003118

108. Chen C, Wang Y, Zhao X, Wang Q, Qian Y. Comparative and 
combined acute toxicity of butachlor, imidacloprid and 
chlorpyrifos on earthworm, Eisenia fetida. Chemosphere 
2014;100:111-5. doi: 10.1016/j.chemosphere.2013.12.023

109. Wang K, Pang S, Mu XY, Qi SZ, Li DZ, Cui F, Wang CJ. 
Biological response of earthworm, Eisenia fetida, to five 
neonicotinoid insecticides. Chemosphere 2015;132:120-6. 
doi: 10.1016/j.chemosphere.2015.03.002

110. Lanteigne M, Whiting SA, Lydy MJ. Mixture toxicity of 
imidacloprid and cyfluthrin to two non-target species, the 
fathead minnow Pimephales promelas and the amphipod 
Hyalella azteca. Arch Environ Con Tox 2015;68:354-61. doi: 
10.1007/s00244-014-0086-7

111. Chevillot F, Convert Y, Desrosiers M, Cadoret N, Veilleux 
E, Cabana H, Bellenger JP. Selective bioaccumulation of 
neonicotinoids and sub-lethal effects in the earthworm 
Eisenia andrei exposed to environmental concentrations in 
an artificial soil. Chemosphere 2017;186:839-47. doi: 
10.1016/j.chemosphere.2017.08.046

112. Van Hoesel W, Tiefenbacher A, Konig N, Dorn VM, 
Hagenguth JF, Prah U, Widhalm T, Wiklicky V, Koller R, 
Bonkowski M, Lagerlöf J, Ratzenböck A, Zaller, JG. Single 
and combined effects of pesticide seed dressings and 
herbicides on earthworms, soil microorganisms, and litter 

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



98

decomposition. Front Plant Sci 2017;8:215. doi: 10.3389/
fpls.2017.00215

113. Crosby EB, Bailey JM, Oliveri  AN, Levin ED. 
Neurobehavioral impairments caused by developmental 
imidacloprid exposure in zebrafish. Neurotoxicol Teratol 
2015;49:81-90. doi: 10.1016/j.ntt.2015.04.006

114. Iturburu FG, Zömisch M, Panzeri AM, Crupkin AC, 
Contardo-Jara V, Pflugmacher S, Menone ML. Uptake, 
distribution in different tissues, and genotoxicity of 
imidacloprid in the freshwater fish Australoheros facetus. 
Environ Toxicol Chem 2017;36:699-708. doi: 10.1002/
etc.3574

115. Ansoar-Rodriguez Y, Christofoletti CA, Correia JE, De Souza 
RB, Morreira-de-Sousa C, Marcato AC, Bueno OC, 
Malaspina O, Silva-Zacarin EC, Fontanetti CS. Liver 
alterations in Oreochromis niloticus (Pisces) induced by 
insecticide imidacloprid: Histopathology and heat shock 
protein in situ loclaization. J Environ Sci Heal B 2016;51:881-
7. doi: 10.1080/03601234.2016.1240559

116. Xia XH, Xia XP, Huo WR, Dong H, Zhang LX, Chang ZJ. 
Toxic effects of imidacloprid on adult loach (Misgurnus 
anguilicaudatus). Environ Toxicol Phar 2016;45:132-9. doi: 
10.1016/j.etap.2016.05.030

117. Liu M, Wang G, Zhang SY, Zhong S, Qi GL, Wang CJ, Chuai 
ML, Lee KKH, Lu DX, Yang XS. From the cover: exposing 
imidacloprid interferes with neurogenesis through impacting 
on chick neural tube cell survival. Toxicol Sci 2016;153:137-
48. doi: 10.1093/toxsci/kfw111

118. Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo 
R. Imidacloprid-treated seed ingestion has lethal effect on 
adult partridges and reduces both breeding investment and 
offspring immunity. Environ Res 2015;136:97-107. doi: 
10.1016/j.envres.2014.10.023

119. Gobeli A, Crossley D, Johnson J, Reyna K. The effects of 
neonicotinoid exposure on embryonic development and organ 
mass in northern bobwhite quail (Colinus virginianus). Comp 
Biochem Phys B 2017;195:9-15. doi: 10.1016/j.
cbpc.2017.02.001

120. Hussein M, Singh V, Sethi R, Singh AK, Hassan MA. Study 
on embryonic effects of neonicotinoid insecticide on chick 
embryos. J Anat Soc India 2014;63:125-9. doi: 10.1016/j.
jasi.2014.11.006

121. Hussein M, Singh V. Effect on chick embryos development 
after exposure to neonicotinoid insecticide imidacloprid. J 
Anat Soc India 2016;65:83-9. doi: 10.1016/j.jasi.2017.01.012

122. Singh V, Hussein M, Singh AK, Hassan MA, Gupta P. 
Histological and immunohistochemical changes in cerebellum 
of chick embryos after exposure to neonicotinoid insecticide 
imidacloprid. J Anat Soc India 2015;64:122-7. doi: 10.1016/j.
jasi.2015.10.014

123. Hirano T, Yanai S, Takada T, Yoneda N, Omotehara T, Kubota 
N, Minami K, Yamamoto A, Mantani Y, Yokoyama T, 
Kitagawa H, Hoshi N. NOAEL-dose of a neonicotinoid 
pesticide, clothianidin, acutely induce anxiety-related 
behavior with human-audible vocalizations in male mice in 
a novel environment. Toxicol Lett 2018;282:57-63. doi: 
10.1016/j.toxlet.2017.10.010

124. Sun Q, Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, Park Y. 
Imidacloprid promotes high fat diet-induced adiposity and 
insulin resistance in male C57BL/6J mice. J Agr Food Chem 
2016;64:9293-306. doi: 10.1021/acs.jafc.6b04322

125. Sano K, Isobe T, Yang J, Win-Shwe TT, Yoshikane M, 
Nakayama SF, Kawashima T, Suzuki G, Hashimoto S, Nohara 
K, Tohyama C, Maekawa F. In utero and lactational exposure 
to acetamiprid induces abnormalities in socio-sexual and 
anxiety-related behaviors of male mice. Front Neurosci-Switz 
2016;10:228. doi: 10.3389/fnins.2016.00228

126. De Oliveira IM, Nunes BVF, Barbosa DR, Pallares AM, Faro 
LRF. Effects of the neonicotinoids thiametoxam and 
clothianidin on in vivo dopamine release in rat striatum. 
Toxico l  Le t t  2010;192:294-7 .  do i :  10 .1016/ j .
toxlet.2009.11.005

127. Hirano T, Yanai S, Omotehara T, Hashimoto R, Umemura Y, 
Kubota N, Minami K, Nagahara D, Matsuo E, Aihara Y, 
Shinohara R, Furuyashiki T, Mantani Y, Yokoyama T, 
Kitagawa H, Hoshi N. The combined effect of clothianidin 
and environmental stress on the behavioral and reproductive 
function in male mice. J Vet Med Sci 2015;77:1207-15. doi: 
10.1292/jvms.15-0188

128. Kubandova J, Sefcikova Z, Kacmarova M, Burkus J, Cikos 
S, Koppel J, Fabian D. The effect of neonicotinoids on mouse 
preimplantation embryo development in vitro. In: Animal 
Physiology 2016: Proceedings of 12th International Scientific 
Conference; 13-15 June 2016. Bořetice, Czech Republic. 
Brno: Mendel University; 2016. p. 151-5.

129. Bal R, Erdogan S, Theophilidis G, Baydas G, Naziroglu M. 
Assessing the effects of the neonicotinoid insecticide 
imidacloprid in the cholinergic synapses of the stellate cells 
of the mouse cochlear nucleus using whole-cell patch-clamp 
recording. Neurotoxicology 2010;31:113-20. doi: 10.1016/j.
neuro.2009.10.004

130. Terayama H, Endo H, Tsukamoto H, Matsumoto K, Umezu 
M, Kanazawa T, Ito M, Sato T, Naito M, Kawakami S, Fujino 
Y, Tatemichi M, Sakabe K. Acetamiprid accumulates in 
different amounts in murine brain regions. Int J Env Res Pub 
He 2016;13:937. doi: 10.3390/ijerph13100937

131. Chakroun S, Ezzi L, Grissa I, Kerkeni E, Neffati F, Bhouri 
R, Sallem A, Najjar MF, Hassine M, Mehdi M, Haouas Z, 
Ben Cheikh H. Hematological, biochemical, and toxicopathic 
effects of subchronic acetamiprid toxicity in Wistar rats. 
Environ Sci Pollut R 2106;23: 25191-9. doi: 10.1007/s11356-
016-7650-9

132. Rodrigues KJA, Santana MB, Do Nascimento JLM, Picanco-
Diniz DLW, Maues LAL, Santos SN, Ferreira VMM, Alfonso 
M, Duran R, Faro LRF. Behavioral and biochemical effects 
of neonicotinoid thiamethoxam on the cholinergic system in 
rats. Ecotox Environ Safe 2010;73:101-7. doi: 10.1016/j.
ecoenv.2009.04.021

133. Yanai S, Hirano T, Omotehara T, Takada T, Yoneda N, Kubota 
N, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Hoshi 
N. Prenatal and early postnatal NOAEL-dose clothianidin 
exposure leads to a reduction of germ cells in juvenile male 
mice. J Vet Med Sci 2017;79:1196-203. doi: 10.1292/
jvms.17-0154

134. Sekeroglu V, Sekeroglu ZA, Demirhan E. Effects of 
commercial formulations of deltamethrin and/or thiacloprid 
on thyroid hormone levels in rat serum. Toxicol Ind Health 
2014;30:40-6. doi: 10.1177/0748233712448114

135. Shakthi Devan RK, Prabu PC, Panchapakesan S. 
Immunotoxicity assessment of sub-chronic oral administration 
of acetamiprid in Wistar rats. Drug Chem Toxicol 
2015;38:328-36. doi: 10.3109/01480545.2014.966382

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



99

136. Ozdemir HH, Kara M, Yumrutas O, Uckardes F, Eraslan E, 
Demir CF, Bal R. Determination of the effects on learning 
and memory performance and related gene expressions of 
clothianidin in rat models. Cogn Neurodynamics 2014;8:411-
6. doi: 10.1007/s11571-014-9293-1

137. Bal R, Türk G, Yılmaz Ö, Etem E, Kuloğlu T, Baydaş G, 
Naziroğlu M. Effects of clothianidin exposure on sperm 
quality, testicular apoptosis and fatty acid composition in 
developing male rats. Cell Biol Toxicol 2012;28:187-200. 
doi: 10.1007/s10565-012-9215-0

138. Bal R, Türk G, Tuzcu M, Yilmaz Ö, Kuloğlu T, Gundogdu 
R, Gür S, Agca A, Ulas M, Cambay Z, Tuzcu Z, Gencoglu 
H, Guvenc M, Ozsahin AD, Kocaman N, Aslan A, Eten E. 
Assessment of imidacloprid toxicity on reproductive organ 
system of adult male rats. J Environ Sci Heal B 2012;47:434-
44. doi: 10.1080/03601234.2012.663311

139. Hsiao C, Lin CL, Lin TY, Wang SE, Wu CH. Imidacloprid 
toxicity impairs spatial memory of echolocation bats through 
neural apoptosis in hippocampal CA1 and medial entorhinal 
cortex areas. J Econ Entomol 2017;110:447-52. doi: 10.1097/
WNR.0000000000000562

140. Gookin JL, Correa MT, Peters A, Malueg A, Mathews KG, 
Cullen J, Seiler G. Association of gallbladder mucocele 
histologic diagnosis with selected drug use in dogs: a matched 
case-control study. J Vet Intern Med 2015;29:1464-72. doi: 
10.1111/jvim.13649

141. Gunier RB, Bradman A, Harley KG, Kogut K, Eskenazi B. 
Prenatal residential proximity to agricultural pesticide use 
and IQ in 7-year-old children. Environ Health Persp 
2017;125:057002. doi: 10.1289/EHP504

142. Keil AP, Daniels JL, Hertz-Picciotto I. Autism spectrum 
disorder, flea and tick medication, and adjustments for 
exposure misclassification: the CHARGE (Childhood Autism 
Risks from Genetics and Environment) case-control study. 
Environ Health-Glob 2014;13:3. doi: 10.1186/1476-069X-
13-3

143. Forrester MB. Neonicotinoid insecticide exposures reported 
to six poison centers in Texas. Hum Exp Toxicol 2014;33:568-
73. doi: 10.1177/0960327114522500

144. Nasuti C, Cantalamessa F, Falcioni G, Gabbianelli R. 
Different effects of Type I and Type II pyrethroids on 
erythrocyte plasma membrane properties and enzymatic 
activity in rats. Toxicology 2003;191:233-44. doi: 10.1016/
S0300-483X(03)00207-5

145. Ye J, Zhao M, Niu L, Liu W. Enantioselective environmental 
toxicology of chiral pesticides. Chem Res Toxicol 
2015;28:325-38. doi: 10.1021/tx500481n

146. Peng W, Ding F. Enantioselective recognition of an isomeric 
ligand by a biomolecule: mechanistic insights into static and 
dynamic enantiomeric behavior and structural flexibility. Mol 
BioSyst 2017;13:2226-34. doi: 10.1039/C7MB00378A

147. Yang ZH, Ji GD. Enantioselective degradation mechanism 
of beta-cpermethrin in soil from the perspective of functional 
genes. Chirality 2015;27:929-35. doi: 10.1002/chir.22504

148. De Albuquerque NCP, Carrão DB, Habenschus DB, de 
Oliveira ARM. Metabolism studies of chiral pesticides: A 
critical review. J Pharmaceut Biomed 2018;147:89-109. doi: 
10.1016/j.jpba.2017.08.011

149. He XM, Dong XW, Zou DH, Yu Y, Fang QY, Zhang Q, Zhao 
MR. Enantioselective effects of o,p’-DDT on cell invasion 
and adhesion of breast cancer cells: chirality in cancer 

development. Environ Sci Technol 2015;49:10028-37. doi: 
10.1021/acs.est.5b02147

150. Chang J, Hao WY, Xu YY, Xu P, Li W, Li JZ, Wang HL. 
Stereoselective degradation and thyroid endocrine disruption 
of lambda-cyhalothrin in lizards (Eremias argus) following 
oral exposure. Environ Pollut 2018;232:300-9. doi: 10.1016/j.
envpol.2017.09.072

151. Wu C, Huang L, Tang S, Li Z, Ye Q. Enantioselective 
absorption and transformation of a novel chiral neonicotinoid 
[14C]-cycloxaprid in rats. Environ Pollut 2016;213:770-5. 
doi: 10.1016/j.envpol.2016.03.037

152. Bendahou N, Bounias M, Fleche C. Toxicity of Cypermethrin 
and Fenitrothion on the Hemolymph Carbohydrates, Head 
Acetylcholinesterase, and Thoracic Muscle Na+, K+-ATPase 
of Emerging Honeybees (Apis mellifera mellifera. L). Ecotox 
Environ Safe 1999;44:139-46. doi: 10.1006/eesa.1999.1811

153. Christen V, Fent K. Exposure of honeybees (Apis mellifera) 
to different classes of insecticides exhibit distinct molecular 
effect patterns at concentrations that mimic environmental 
contamination. Environ Pollut 2017;226:48-59. doi: 
10.1016/j.envpol.2017.04.003

154. Kunce W, Stoks R, Johansson F. Single and mixture impacts 
of two pyrethroids on damselfly predatory behavior and 
physiological biomarkers. Aquat Toxicol 2017;190:70-7. doi: 
10.1016/j.aquatox.2017.06.025

155. Pristed MJS, Bundschuh M, Rasmussen JJ. Multiple exposure 
routes of a pesticide exacerbate effects on a grazing mayfly. 
Aquat  Toxicol  2016;178:190-6.  doi:  10.1016/j .
aquatox.2016.08.005

156. Zanardi OZ, Bordini GP, Franco AA, Jacob CRO, Yamamoto 
PT. Sublethal effects of pyrethroid and neonicotinoid 
insecticides on Iphiseiodes zuluagai Denmark and Muma 
(Mesostigmata: Phytoseiidae). Ecotoxicology 2017;26:1188-
98. doi: 10.1007/s10646-017-1844-x

157. Gutierrez Y, Tome HVV, Guedes RNC, Oliveira EE. 
Deltamethrin toxicity and impaired swimming behavior of 
two backswimmer species. Environ Toxicol Chem 
2017;36:1235-42. doi: 10.1002/etc.3645

158. Hoffmann KC, Deanovic L, Werner I, Stillway M, Fong S, 
Teh S. An analysis of lethal and sublethal interactions among 
type I and type II pyrethroid pesticide mixtures using standard 
Hyalella azteca water column toxicity tests. Environ Toxicol 
Chem 2016;35:2542-9. doi: 10.1002/etc.3422

159. Gottardi M, Birch MR, Dalhoff K, Cedergreen N. The effects 
of epoxiconazole and α-cypermethrin on Daphnia magna 
growth, reproduction and offspring size. Environ Toxicol 
Chem 2017;36:2155-66. doi: 10.1002/etc.3752

160. Hasenbein S, Lawler SP, Geist J, Connon RE. A long-term 
assessment of pesticide mixture effects on aquatic invertebrate 
communities. Environ Toxicol Chem 2016;35:218-32. doi: 
10.1002/etc.3187

161. Cheng F, Li HZ, Qi HX, Han Q, You J. Contribution of 
pyrethroids in large urban rivers to sediment toxicity assessed 
with benthic invertebrates Chironomus dilutus: A case study 
in South China. Environ Toxicol Chem 2017;36:3367-75. 
doi: 10.1002/etc.3919

162. Tu WQ, Xu C, Jin YX, Lu B, Lin CM, Wu YM, Liu WP. 
Permethrin is a potential thyroid-disrupting chemical: In vivo 
and in silico evidence. Aquat Toxicol 2016;175:39-46. doi: 
10.1016/j.aquatox.2016.03.006

163. Fai PBA, Kinfack JST, Towa YJT. Acute effects of binary 
mixtures of Type II pyrethroids and organophosphate 

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



100

insecticides on Oreochromis niloticus. Ecotoxicology 
2017;26:889-901. doi: 10.1007/s10646-017-1819-y

164. Radovanović TB, Nasia M, Krizmanić II, Prokić MD, Gavrić 
JP, Despotović SG, Gavrilović BR, Borković-Mitić SS, 
Pavlović SZ, Saičić ZS. Sublethal effects of the pyrethroid 
insecticide deltamethrin on oxidative stress parameters in 
green toad (Bufotes viridis L.). Environ Toxicol Chem 
2017;36:2814-22. doi: 10.1002/etc.3849

165. Chauhan LKS, Varshney M, Pandey V, Sharma P, Verma VK, 
Kumar P, Goel SK. ROS-dependent genotoxicity, cell cycle 
perturbations and apoptosis in mouse bone marrow cells 
exposed to formulated mixture of cypermethrin and 
chlorpyrifos. Mutagenesis 2016;31:635-42. doi: 10.1093/
mutage/gew031

166. Bardullas U, Sosa-Holt CS, Pato AM, Nemirovsky SI, 
Wolansky MJ. Evidence for effects on thermoregulation after 
acute oral exposure to type I and type II pyrethroids in infant 
rats. Neurotoxicol Teratol 2015;52:1-10. doi: 10.1016/j.
ntt.2015.09.005

167. Moser VC, Liu ZW, Schlosser C, Spanogle TL, 
Chandrasekaran A, McDaniel KL. Locomotor activity and 
tissue levels following acute administration of lambda- and 
gamma-cyhalothrin in rats. Toxicol Appl Pharm 2016;313:97-
103.

168. Wang P, Xu MY, Liang YJ, Wang HP, Sun YJ, Long DX, Wu 
YJ. Subchronic toxicity of low dose propoxur, permethrin, 
and their combination on the redox status of rat liver. Chemm-
Biol Interact 2017;272:21-7. doi: 10.1016/j.cbi.2017.04.023

169. Bordoni L, Nasuti C, Mirto M, Caradonna F, Gabbianelli R. 
Intergenerational effect of early life exposure to permethrin: 
changes in global DNA methylation and in Nurr1 gene 
expression. Toxics 2015;3:451-61. doi: 10.3390/
toxics3040451

170. Bordoni L, Fedeli D, Nasuti C, Capitani M, Fiorini D, 
Gabbianelli R. Permethrin pesticide induces NURR1 up-
regulation in dopaminergic cell line: Is the pro-oxidant effect 
involved in toxicant-neuronal damage? Comp Biochem Phys 
C 2017;201:51-7. doi: 10.1016/j.cbpc.2017.09.006

171. Saillenfait AM, Ndiaye D, Sabate JP, Denis F, Antoine G, 
Robert A, Rouiller-Fabre V, Moison D. Evaluation of the 
effects of deltamethrin on the fetal rat testis. J Appl Toxicol 
2016;36:1505-15. doi: 10.1002/jat.3310

172. Syed F, John PJ, Soni I. Neurodevelopmental consequences 
of gestational and lactational exposure to pyrethroids in rats. 
Environ Toxicol 2016;31:1761-70. doi: 10.1002/tox.22178

173. Amaraneni M, Pang J, Mortuza TB, Muralidhara S, 
Cummings BS, White CA, Vorhees CV, Zastre J, Bruckner 
JV. Brain uptake of deltamethrin in rats as a function of 
plasma protein binding and blood-brain barrier maturation. 
Neurotoxicology 2017;62:24-9.  doi :  10.1016/j .
neuro.2017.04.009

174. Madhubabu G, Yenugu S. Allethrin toxicity causes 
reproductive dysfunction in male rats. Environ Toxicol 
2017;32:1701-10. doi: 10.1002/tox.22394

175. Magby JP, Richardson JR. Role of calcium and calpain in 
the downregulation of voltage-gated sodium channel 
expression by the pyrethroid pesticide deltamethrin. J 
Biochem Mol Toxicol 2015;29:129-34. doi: 10.1002/
jbt.21676

176. Wang B, Liu JJ, Wang Y, Fu L, Shen R, Yu Z, Wang H, Chen 
YH, Zhang C, Meng XH, Xu DX. Maternal fenvalerate 
exposure induces fetal intrauterine growth restriction through 

disrupting placental thyroid hormone receptor signaling. 
Toxicol Sci 2017;157:377-86. doi: 10.1093/toxsci/kfx052

177. Ye XQ, Li FX, Zhang JY, Ma HH, Ji DP, Huang X, Curry 
TE, Liu WP, Liu J. Pyrethroid insecticide cypermethrin 
accelerates pubertal onset in male mice via disrupting 
hypothalamic-pituitary-gonadal axis. Environ Sci Technol 
2017;51:10212-21. doi: 10.1021/acs.est.7b02739

178. Vardavas AI, Stivaktakis PD, Tzatzarakis MN, Fragkiadaki 
P, Vasilaki F, Tzardi M, Datseri G, Tsiaoussis J, Alegakis AK, 
Tsitsimpikou C, Rakitskii VN, Carvalho F, Tsatsakis AM. 
Long-term exposure to cypermethrin and piperonyl butoxide 
cause liver and kidney inflammation and induce genotoxicity 
in New Zealand white male rabbits. Food Chem Toxicol 
2016;94:250-9. doi: 10.1016/j.fct.2016.06.016

179. Vidi PA, Anderson KA, Chen HY, Anderson R, Salvador-
Moreno N, Mora DC, Poutasse C, Laurienti PJ, Daniel SS, 
Arcury TA. Personal samplers of bioavailable pesticides 
integrated with a hair follicle assay of DNA damage to assess 
environmental exposures and their associated risks in 
children. Mutat Res-Gen Tox En 2017;822:27-33. doi: 
10.1016/j.mrgentox.2017.07.003

180. Trueblood AB, Forrester MB, Han D, Shipp EM, Cizmas 
LH. Pesticide-related poison center exposures in children 
and adolescents aged ≤19 years in Texas, 2000-2013. Clin 
Toxicol 2016;54:852-6. doi: 10.1080/15563650.2016.1201676

181. Campos E, Da Silva VDP, De Mello MSC, Otero UB. 
Exposure topesticides and mental disorders in a rural 
population of Southern Brazil. Neurotoxicology 2016;56:7-
16. doi: 10.1016/j.neuro.2016.06.002

182. Furlong MA, Barr DB, Wolff MS, Engel SM. Prenatal 
exposure to pyrethroid pesticides and childhood behavior 
and executive functioning. Neurotoxicology 2017;62:231-8. 
doi: 10.1016/j.neuro.2017.08.005

183. Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, 
Ozonoff S, Ma CC, McCanlies EC, Bennett DH, Hertz-
Picciotto I, Tancredi DJ, Volk HE. Combined prenatal 
pesticide exposure and folic acid intake in relation to autism 
spectrum disorder. Environ Health Persp 2017;125:097007. 
doi: 10.1289/EHP604

184. Manyilizu WB, Mdegela RH, Kazwala R, Nonga H, Muller 
M, Lie E, Skjerve E, Lyche JL. Association of long-term 
pesticide exposure and biologic parameters in female farm 
workers in Tanzania: A cross sectional study. Toxics 
2016;4:25. doi: 10.3390/toxics4040025

185. Botnariu G, Birsan C, Podoleanu C, Moldovan C, Stolnicu 
S, Chiriac A. Skin necrosis caused by prallethrin A worldwide 
used insecticide. Environ Toxicol Phar 2016;43:103-4. doi: 
10.1016/j.etap.2016.03.002

186. Martenies SJ, Perry MJ. Environmental and occupational 
pesticide exposure and human sperm parameters: a systematic 
review. Toxicology 2017;307:66-73. doi: 10.1016/j.
tox.2013.02.005

187. Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jørgensen 
N, Levine H, Hauser R, Swan SH, Chavarro JE. Intake of 
fruits and vegetables with low-to-moderate pesticide residues 
is positively associated with semen-quality parameters among 
young healthy men. J Nutr 2017;146:1084-92. doi: 10.3945/
jn.115.226563

188. Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W. 
Relationships of pyrethroid exposure with gonadotropin 
levels and pubertal development in Chinese boys. Environ 
Sci Technol 2017;51:6379-86. doi: 10.1021/acs.est.6b05984

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



101

189. Gupta S, Gupta R, Sharma S. Impact of pesticides on plant 
growth promotion of Vigna radiata and non-target microbes: 
comparison between chemical- and bio-pesticides. 
Ecotoxicology 2014;23:1015-21. doi: 10.1007/s10646-014-
1245-3

190. Kreutzweiser DP, Capell SS, Scarr TA. Community-level 
responses by stream insects to neem products containing 
azadirachtin. Environ Toxicol Chem 2000;19:855-61. doi: 
10.1002/etc.5620190411

191. Kreutzweiser DP, Back RC, Sutton TM, Pangle KL, 
Thompson DG. Aquatic mesocosm assessments of a neem 
(azadirachtin) insecticide at environmentally realistic 
concentrations - 2: zooplankton community responses and 
recovery. Ecotoxicol Environ Safe 2004;59:194-204. doi: 
10.1016/j.ecoenv.2003.09.008

192. Kreutzweiser DP, Sutton TM, Back RC, Pangle KL, 
Thompson DG. Some ecological implications of a neem 
(azadirachtin) insecticide disturbance to zooplankton 
communities in forest pond enclosures. Aquat Toxicol 
2004;67:239-54. doi: 10.1016/j.aquatox.2004.01.011

193. Kreutzweiser DP, Back RC, Sutton TM, Thompson DG, Scarr 
TA. Community-level disruptions among zooplankton of 
pond mesocosms treated with a neem (azadirachtin) 
insecticide. Aquat Toxicol 2002;56:257-73. doi: 10.1016/
S0166-445X(01)00216-8

194. Goktepe I, Plhak LC. Comparative toxicity of two 
azadirachtin-based neem pesticides to Daphnia pulex. 
Environ Toxicol Chem 2002;21:31-6. doi: 10.1002/
etc.5620210105

195. Barbosa WF, De Meyer L, Guedes RNC, Smagghe G. Lethal 
and sublethal effects of azadirachtin on the bumblebee 
Bombus terrestris (Hymenoptera: Apidae). In: Oomen PA, 
Pistorius J, editors. Hazards of Pesticides to Bees: 12th 
international Symposium of the ICP-PR Bee Protection 
Group; 15-17 September 2014. Ghent, Belgium. Julius-Kühn-
Archiv 2015;450:180-90.

196. Scudeler EL, Garcia ASG, Padovani CR, Santos DC. Action 
of neem oil (Azadirachta indica A. Juss) on cocoon spinning 
in Ceraeochrysa claveri (Neuroptera: Chrysopidae). Ecotox 
Environ Safe  2013;97:176-82.  doi :  10 .1016/ j .
ecoenv.2013.08.008

197. Chandra P, Khuda-Bukhsh AR. Genotoxic effects of cadmium 
chloride and azadirachtin treated singly and in combination 
in fish. Ecotox Environ Safe 2004;58:194-201. doi: 10.1016/j.
ecoenv.2004.01.010

198. Murussi CR, Menezes CC, Nunes MEM, Araujo MDS, 
Quadros VA, Rosemberg DB, Loro VL. Azadirachtin, a 
neem-derived biopesticide, impairs behavioral and 
hematological parameters in carp (Cyprinus Carpio). Environ 
Toxicol 2016;31:1381-8. doi: 10.1002/tox.22143

199. Maitra B, Sen S, Homechaudhuri S. Flow cytometric analysis 
of fish leukocytes as a model for toxicity produced by 
azadirachtin-based bioagrocontaminant. Toxicol Environ 
Chem 2014;96:328-41. doi: 10.1080/02772248.2014.934026

200. Kumar A, Prasad M, Suzuki N, Srivastav SK, Srivastav AK. 
Influence of a botanical pesticide, azadirachtin, on 

ultimobranchial gland of the freshwater catfish Heteropneustes 
fossilis. Toxicol Environ Chem 2013;95:1702-11. doi: 
10.1080/02772248.2014.895365

201. Bernardi MM, Dias SG, Barbosa VE. Neurotoxicity of neem 
commercial formulation (Azadirachta indica A. Juss) in adult 
zebrafish (Danio rerio). Environ Toxicol Phar 2013;36:1276-
82. doi: 10.1016/j.etap.2013.10.002

202. Khan PK, Awasthy KS. Cytogenetic toxicity of neem. Food 
Chem Toxicol 2003;41:1325-8. doi: 10.1016/S0278-
6915(03)00123-6

203. Scott RH, O’Brien K, Roberts L, Mordue W, Mordue J. 
Extracellular and intracellular actions of azadirachtin on the 
electrophysiological properties of cultured rat DRG neurones. 
Comp Biochem Phys C 1999;123:85-93. doi: 10.1016/S0742-
8413(99)00014-6

204. Rahman MF, Siddiqui MKJ, Jamil K. Effects of Vepacide 
(Azadirachta indica) on aspartate and alanine aminotransferase 
profiles in a subchronic study with rats. Hum Exp Toxicol 
2001;20:243-9. doi: 10.1191/096032701678227730

205. Rahman MF, Siddiqui MKJ. Biochemical effects of Vepacide 
(from Azadirachta indica) on Wistar rats during subchronic 
exposure. Ecotox Environ Safe 2004;59:332-9. doi: 
10.1016/j.ecoenv.2003.07.013

206. Srivastava MK, Raizada RB. Assessment of embryo/
fetotoxicity and teratogenicity of azadirachtin in rats. Food 
Chem Toxicol 2001;39:1023-7. doi: 10.1016/S0278-
6915(01)00047-3

207. Raizada RB, Srivastava MK, Kaushal RA, Singh RP. 
Azadirachtin, a neem biopesticide: subchronic toxicity 
assessment in rats. Food Chem Toxicol 2001;39:477-83. doi: 
10.1016/S0278-6915(00)00153-8

208. Mosesso P, Bohm L, Pepe G, Fiore M, Carpinelli A, Gade 
G, Nagini S, Ottavianelli A, Degrassi F. Cytogenetic analyses 
of Azadirachtin reveal absence of genotoxicity but marked 
antiproliferative effects in human lymphocytes and CHO 
cells in vitro. Toxicol Lett 2012;213:361-6. doi: 10.1016/j.
toxlet.2012.07.021

209. Mancebo A, Hernandez O, Gonzalez Y, Aldana L, Carballo 
O. Assessment of skin and eye irritation of 14 products under 
the stepwise approach of the OECD. Cutan Ocul Toxicol 
2008;27:173-85. doi: 10.1080/15569520701712984

210. Iyyadurai R, Surekha V, Sathyendra S, Wilson BP, Gopinath 
KG. Azadirachtin poisoning: a case report. Clin Toxicol 
2010;48:857-8. doi: 10.3109/15563650.2010.518148

211. Krupke CH, Holland JD, Long EY, Eitzer BD. Planting of 
neonicotinoid-treated maize poses risks for honeybees and 
other non-target organisms over a wide area without 
consistent crop yield benefit. J Appl Ecol 2017;54:1449-58. 
doi: 10.1111/1365-2664.12924

212. Nakasu EY, Williamson SM, Edwards MG, Fitches EC, 
Gatehouse JA, Wright GA, Gatehouse AM. Novel 
biopesticide based on a spider venom peptide shows no 
adverse effects on honeybees. Proc Roy Soc B 2014;281:1787. 
doi: 10.1098/rspb.2014.0619

Mužinić V, Želježić D. Non-target toxicity of novel insecticides 
Arh Hig Rada Toksikol 2018;69:86-102



102

Neciljana toksičnost novih insekticida

Ljudi su upotrebljavali insekticide od davnih vremena. Spektar i potentnost dostupnih insekticidnih supstancija značajno 
su se proširili od industrijske revolucije, vodeći širokoj upotrebi i neviđenim količinama sintetskih kemikalija u okolišu. 
Zbog toksičnih učinaka tih novih kemikalija na neciljane vrste javnost je ubrzo pokazala veliku zabrinutost, što je dovelo 
do ograničenja u korištenju tih insekticidnih supstancija. Istovremeno dolazi do razvoja novih metoda u održivoj 
poljoprivredi, među kojima i razvoj novih insekticida na osnovi prirodno prisutnih kemikalija, poput piretroida (derivati 
piretrina iz suncokreta) i neonikotinoida (derivati nikotina). Dodatni su primjer insekticidi na bazi biljnog ulja iz drveta 
nima (Azadirachta indica), dominantno azadiraktin. Iako su te nove supstancije selektivnije prema insektima, poteškoće 
nastaju s njihovom neciljanom toksičnošću, poput one neonikotinoida, koji su utjecali na pad populacije pčela na globalnoj 
razini. Ovaj pregled sažima nedavnu literaturu o neciljanoj toksičnosti neonikotinoida, piretroida i insekticidnih supstancija 
na bazi nima, s naglaskom na toksičnosti neonikotinoida za pčele. Također ćemo se dotaknuti učinaka mješavina pesticida, 
kao i zabilježene ljudske izloženosti tim supstancijama.
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