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Age and sex differences in genome damage between 

prepubertal and adult mice after exposure to ionising 
radiation
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The mechanisms that lead to sex and age differences in biological responses to exposure to ionising radiation and related 
health risks have still not been investigated to a satisfactory extent. The significance of sex hormones in the aetiology of 
radiogenic cancer types requires a better understanding of the mechanisms involved, especially during organism 
development. The aim of this study was to show age and sex differences in genome damage between prepubertal and 
adult mice after single exposure to gamma radiation. Genome damage was measured 24 h, 48 h, and 72 h after exposure 
of 3-week and 12-week old BALB/CJ mice to 8 Gy of gamma radiation using an in vivo micronucleus assay. There was 
a significantly higher genome damage in prepubertal than in adult animals of both sexes for all sampling times. Irradiation 
caused a higher frequency of micronuclei in males of both age groups. Our study confirms sex differences in the 
susceptibility to effects of ionising radiation in mice and is the first to show that such a difference occurs already at 
prepubertal age.
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Radiation protection measures to be applied in cases of 
nuclear accidents and their link to sex or age differences 
are very limited (1). A recent report of the United Nations 
Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR) (2) pointed to the need for further investigations 
into the health risks to children caused by exposure to 
ionising radiation - both on human populations and animal 
models. However, in its evaluation of the current knowledge, 
UNSCEAR (2013) failed to include the interaction of 
ionising radiation with sex hormones during development 
and adulthood, as well as the impact of exposure to 
xenohormonally active agents on susceptibility to ionising 
radiation.

The mechanisms by which oestrogen may modify the 
response of an organism to ionising radiation have been 
reported only anecdotally; same as for testosterone (3-6). 
There is growing evidence regarding the impact of 
oestrogen and its receptors on carcinogenesis (7-10). So 
far, the biological effects of radiation via interaction with 
oestrogen receptors have rarely been investigated (4, 11, 
12). The significance of interaction between ionising 
radiation and oestrogen receptors is clearly visible in the 

differences between mammary carcinogenesis mechanisms 
in the prepubertal period and in adulthood (13).

The radioprotective effect of phytoestrogens has been 
described in an animal model showing that the administration 
of genistein before irradiation significantly improves the 
survival of progenitor hematopoietic cells (14, 15). The 
mechanisms involved in modifying the effects of oestrogen 
on responses to ionising radiation, among others, include 
an increase in reactive oxygen species, gamma-H2Ax foci 
levels, and cell-cell signalling (16, 17). Similarly, recent 
data have shown an interaction between androgen receptors 
and ionising radiation (18, 19). A decrease in both 
testosterone and the sex hormone binding globulin has been 
reported in clinical studies, in men who underwent 
radiotherapy for rectal cancer (20).

There is no data on possible sex and age differences in 
genome damage after exposure to ionising radiation 
between prepuberty and adulthood. Prepuberty is a specific 
period of  development during which complex 
micronenvironment settings are formed in an organism 
basically through a strong increase in sex hormones as a 
preparation phase for the final process of maturation (21). 
The effects of exposure during postnatal development, due 
to higher susceptibility of an organism to ionising radiation, 
may have lifelong consequences (22-24).
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Sex- and age-related differences in the effects of 
ionising radiation are affected by different levels of 
oestrogen receptors in tissues during prepuberty in 
comparison with adults, as reported in human adrenal tissue 
(25). Increased levels of oestrogen two months after 
exposure to ionising radiation were described in prepubertal 
mice (5).

Additionally, the Lifetime Attributable Risk (LAR) of 
cancer significantly differs during childhood and between 
sexes. For some radiogenic cancer types there is almost a 
two times higher risk between prepuberty and adulthood 
and two times higher risk in males than in females during 
prepuberty and adulthood (26). Such data show the need 
for more research into the mechanisms of radiocarcinogenesis 
in regard to the impact of sex hormones on cancer risks.

The aim of the current study was to investigate sex 
differences in genome damage in prepubertal and adult mice 
using an in vivo micronucleus assay (27). The main 
advantage of this method is that it requires a very small 
sample size, which enables a repeated sampling of the same 
animal and investigation of small animals during 
development. It has been shown to be a reliable method for 
biodosimetry (28). The dose was selected following similar 
studies in which the biological effects on the cellular level 
or DNA damage were investigated (14, 29-31).

MATERIALS AND METHODS

Animals

This study included 3-week-old and 12-week-old 
BALB/CJ mice obtained from a breeding colony of the 
Rudjer Boskovic Institute (Zagreb, Croatia). During the 
experiment, four animals were housed per cage. The bottom 
of the cage was covered with sawdust (Allspan®, Karlsruhe, 
Germany). Standard food for laboratory mice (4 RF 21 GLP 
Mucedola srl, Settimo Milanese, Italy) was used. All 
animals had free access to food and water. Animals were 
kept under standard conditions with a 12-h light/dark cycle, 
temperature of 22 °C, and 55 % humidity. All experiments 
were performed according to the ILAR Guide for the Care 
and Use of Laboratory Animals, Council Directive 
(#86/609/EEC) and Croatian Animal Protection Act (OG 
135/06) and were approved by the Ethical Committee of 
the Ministry of Agriculture.

Radiation exposure

Each age and sex group consisted of eight animals. 
Animals received a single dose of 8 Gy (3,125 cGy s-1) 
using X6MV photon irradiation (ONCOR linear accelerator, 
Siemens, Malvern, USA). One half of the dose was applied 
to the dorsal (PA, SSD=130 cm, bolus RW3 1cm) and the 
other half to the ventral side (AP, SSD=130 cm, bolus RW3 
1 cm) of animals. Animals were sampled before irradiation, 

24 h, 48 h, and 72 h after irradiation. During irradiation 
each animal was placed into a plexiglass cage.

In vivo micronucleus assay

The in vivo MN assay was performed 24 h, 48 h, and 
72 h after exposure in 3-week-old mice, while in adult 
animals the analysis 72 h after irradiation was not performed 
due to the reduction of reticulocyte number. Peripheral 
blood was collected from the tail vein (5 µL per sample) 
from all animals. Blood smears were prepared on acridine 
orange (Sigma-Aldrich, St. Louis, USA) coated slides, 
covered with a coverslip, and analysed according to Hayashi 
et al. (27). The MN frequency was analysed in 2000 
reticulocytes per sample. Analyses were performed by one 
scorer using a fluorescent microscope under 1000 x 
magnification (Olympus Provis AX70, Tokyo, Japan).

Statistics

Statistical analysis of data was performed using the 
Statistica 7.0 software package (StatSoft, Tulsa, USA). An 
independent sample t-test or one-way analysis of variance 
(ANOVA) followed by the Tukey post-hoc test were used 
to determine significant differences between the groups. 
The test value of P<0.05 was considered statistically 
significant.

RESULTS

Changes in the total number of micronucleated cells 
after irradiation in 3-week- and 12-week-old mice are shown 
in Figure 1A and 1B, respectively; while the distribution of 
cells according to the number of MN per cell is shown in 
Table 1.

Background levels before irradiation were 0.10 % MN 
in prepubertal males and 0.05 % MN in females. 
Background values were 0.10 % MN in adult males and 
0.08 % MN in females. There was no significant difference 
between sex and age groups in MN frequencies. Cells with 
more than one MN were not detected (Table 1).

A significant increase in MN frequencies compared to 
basal values was observed after 24 h in both 3-week-old 
and adult mice as well as in both males and females but 
there were no significant differences between these two 
sexes (Figure 1).

The most pronounced increase in the incidence of 
micronucleated cells was observed for both age groups at 
48 h after irradiation (Figure 1A and B). At this time, a 
significantly higher frequency of cells with MN was 
observed in 3-week-old and adult males than in female 
animals (indicated by an asterisk in Figure 1A and 1B) and 
the difference between males and females was more 
expressed in younger (~33 %) than in adult (~22 %) animals. 
Further, at 48 h after irradiation, in the same sex group, 
3-week-old mice had a significantly higher incidence of 
cells with MN than 12-week-old mice (indicated by the sign 
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# in Figure 1A and 1B). This age difference was more 
pronounced in male (~45 %) than in female (~35 %) mice.

After 72 h, in 3-week-old mice a significant decrease 
in cells with MN frequency was observed in males, while 
in females a slight increase was observed but the difference 
was not statistically significant (Figure 1A).

Besides determining the total number of micronucleated 
cells, the analysis of cell distribution according to the 
number of MN in the cell was performed. From Table 1, it 
can be seen that the incidence of cells with one MN for both 
age and sex groups generally follows the trend observed 
for the total number of micronucleated cells (Figure 1A and 
B). At 48 h, the incidence of cells with two MN was 
significantly higher in male than female 3-week-old mice 
(Table 1). Also, 3-week-old males had a significantly higher 
frequency of cells with two MN compared to adult male 
mice (Table 1). In 3-week-old mice, cells with three and 
three and four MN in one cell were detected at 48 h and 
72 h after irradiation but their incidence was very low and 
was not strictly related with either sex (Table 1).

DISCUSSION

The exposure of general population to ionising radiation 
due to nuclear accidents such as Chernobyl and Fukushima 
showed that casualty management is still not satisfactory 
and that radiation protection plans for specifically 
susceptible subpopulations such as children according to 
age groups are still not available. Contrary to the historical 
approach to cancer risks after overexposure to ionising 
radiation, which is basically focused on the caused genome 
damage, current radiation biology is rapidly incorporating 
complex interactions between ionising radiation and the 
immune system, epigenetic modifications, sex hormones, 
and age at exposure. Such approach, however, demands 
additional investigations into the mechanisms underlying 
the detected age and sex differences in susceptibility to 
radiogenic cancers, which should give an insight into the 
causality of the involved complex pathways. For such 
studies, animal models as in vitro models that simulate 
developmental process are still not developed.

In order to investigate the differences in the 
radiosensitivity of prepubertal and adult organisms, in this 
study prepubertal, 3-week-old and adult mice of both sexes 
were irradiated with 8 Gy of gamma radiation. Such a high 
dose of radiation was selected in order to additionally 
validate the in vivo MN assay in regard to difference in 
haematopoietic potency between young and adult animals.

Ionising radiation caused a significantly higher 
frequency of MN in prepubertal animals than in adult 
animals of both sexes. Due to reticulocytopenia, which is 
already described in applied doses (31) in adult animals, it 
was not possible to measure the MN frequency 72 h after 
exposure. As in mice up to four weeks of age reticulocytes 
make up around 10 % of erythrocytes (32), reticulocytopenia 
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was less severe and the scoring in 3-week-old mice was 
possible. It is suggested that repopulation of reticulocytes 
may not have an impact on the results of MN frequencies 
as after irradiation the increase in the reticulocyte number 
is reported to be only after 72 h (33).

Our results are in concordance with historical data 
which shows that that the peak in the MN frequency has 
been observed 48 h after exposure to lower doses of 2 Gy 
or 3 Gy of gamma radiation (33, 34). This study also 
confirms the conclusions of previous studies that young 
animals are more susceptible to the effects of ionising 
radiation than adults (35-38). The same higher 
radiosensitivity has also been described in children exposed 
accidentally, either diagnostically or therapeutically (22, 
39).

In our study, a significantly higher MN frequency in 
males of both age groups was detected. Similarly, although 
not statistically significant, lower MN frequencies in 

Figure 1 Frequencies of micronucleated cells in 3-week-old (A) 
and 12-week-old (B) mice at 24, 48, and 72 h after irradiation. 
(Mean±SD). Significant differences (p<0.05, Tukey post-hoc test) 
between particular times are indicated by different small and 
capital letters above the error bars for male and female mice, 
respectively. Significant differences (p<0.05, t-test) between males 
and females are marked by an asterisk (*) and significant 
differences (p<0.05, t-test) between 3-week-old and 12-week-old 
mice at 48 h are marked by the sign (#) within the bars; N.A.-not 
available

erythroblasts have been described in female adult mice than 
in adult male mice exposed to chronic gamma radiation 
(40). Acute exposure of mice to 5 Gy of X-rays caused 
different, tissue specific, levels of DNA strand breaks in 
female and male adult mice (41). In BALB/c mice after 
irradiation with 1 Gy X-rays, sex-specific changes in 
methylation were reported. Thus, significantly higher 
methylation levels were present in males than in females 
(11). Similarly, the difference in miRNA was also reported 
to be sex-specific (42). In mice exposed for two weeks to 
X-rays, adult male genome damage was higher than in 
females (0.05 and 0.10 Gy) (43).

This study is the first to show that sex differences are 
present even in prepubertal animals. The higher MN 
frequency in males than in females in both age groups is 
suggested to be attributed to the effects of oestrogen.

A possible mechanism by which oestrogen may cause 
a lower frequency of MN is the quiescence of stem cells 
(44) or enhanced DNA repair as shown in the case of 
pretreatment of animals with genistein before irradiation 
(45). Similarly, dietylstilbestrol, a xenoestrogen, is shown 
to suppress the proliferation of haematopoietic precursor 
cells and intensify DNA repair (46). However, in pregnant 
mice, a significantly increased genome damage in 
spontaneously dividing bone marrow cells occurred after a 
high increase in oestrogen and progesterone hormones and 
this phenomenon disappeared after delivery. It is therefore 
possible that oestrogen contributed to transient 
radiosensitivity (47).

Oestrogen as an endocrine, paracrine, and neuromodulator 
molecule has been shown to interact with the biological 
effects of ionising radiation. A different age-, sex- and tissue-
related distribution of polymorphic oestrogen receptors 
(alpha, beta, GPR30) enables numerous possible interactions 
of oestrogen with biological pathways after action of 
environmental stressors (4). Thus, oestrogen may have 
radioprotective and radiosensitising effects depending on its 
level, tissue type, age, type of radiation, and dose.

Contrary to oestrogen, there is no data on the interaction 
between ionising radiation and pathways regulated by 
testosterone that may have an impact on radiogenic 
carcinogenesis. Data on testosterone and oestrogen levels 
during postnatal development of mice until adulthood are 
not available. In some organs, such as brain, oestrogen 
receptor distribution fluctuates during prepubertal period 
and the impact of the same oestrogen levels differs due to 
its different half-life (48). Additionally, letrozole, an 
aromatase inhibitor, is shown to increase radiosensitivity 
of cancer cells (49). As aromatase inhibitors such as 
letrozole cause an increase in testosterone, it could be 
indirectly concluded that testosterone causes radiosensitivity 
(50).

In both boys and girls, the increase in testosterone and 
oestrogen levels starts in prepuberty and is simultaneous 
with a significant reduction in the hormone binding protein, 
whose level is reduced by half from prepuberty to puberty 
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(51, 52). In humans, girls have higher levels of 17beta-
testosteorne and estradiol during prepuberty, while in boys 
the estradiol level can be undetectable (53). Thus, changes 
in the hormonal status are present even before the first 
clinical signs of puberty (54), which points to the 
significance of the prepubertal period in the orchestration 
of physiological conditions for sex differences in response 
to the environment before puberty, including ionising 
radiation.

The investigation of the effects of oestrogen and 
testosterone on the biological effects of radiation is of great 
importance for (a) the inclusion of prepuberty and puberty 
group differences in the radiation protection legislation; (b) 
development of radioprotective xenoestrogen substances 
whose application would be age- and sex-adjusted; and (c) 
yielding a contribution to oncology for better effects in 
cases of combined hormonal and radiotherapy.

In summary, exposure to 8 Gy of gamma-radiation 
caused significantly increased levels of MN frequency - 
significantly higher in prepubertal and adult male animals. 
Further investigations into the mechanisms by which age 
and sex differences in responses to exposure to ionising 
radiation set in should include analyses or correlations 
between oestrogen and testosterone levels, haematopoiesis 
dynamics, levels of oestrogen, and androgen receptors in 
bone marrow stem cells and genome damage.
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Dobne i spolne razlike u oštećenju genoma između pretpubertetskih i odraslih miševa nakon izlaganja 
ionizirajućemu zračenju

Mehanizmi koji uzrokuju spolne i dobne razlike u biološkim odgovorima na izloženost ionizirajućemu zračenju i s tim 
u vezi zdravstvene rizike još nisu dovoljno ispitani. Kako bi se spoznao značaj spolnih hormona u etiologiji zračenjem 
izazvanih vrsta tumora, potrebno je bolje poznavanje mehanizama koji su uključeni u taj proces, osobito tijekom razvojne 
faze organizma. Cilj ovoga istraživanja bio je prikazati dobne i spolne razlike u oštećenju genoma između pretpubertetskih 
i odraslih miševa nakon jednokratnoga izlaganja gama-zračenju. Primjenom in vivo mikronukleus-testa izmjereno je 
oštećenje genoma nastalo 24 sata, 48 sati i 72 sata nakon izlaganja BALB/CJ miševa, starih tri tjedna i dvanaest tjedana, 
dozi gama zračenja od 8 Gy. U svim vremenskim točkama mjerenja uočeno je značajnije veće oštećenje genoma u 
pretpubertetskih u odnosu na odrasle jedinke obaju spolova. Zračenje je uzrokovalo veću učestalost mikronukleusa u 
muških jedinki u objema dobnim skupinama. Dobiveni rezultati potvrđuju postojanje spolnih razlika u osjetljivosti na 
učinke ionizirajućega zračenja u miševa, a ovo je prvo istraživanje rezultati kojega pokazuju da do takvih razlika dolazi 
već u pretpubertetskoj dobi.
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