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Three sets of flavonoid derivatives (N=32, 40, and 74) and logarithms of their dissociation constants (log Kd) that describe 
flavonoid affinity toward P-glycoprotein were modelled using six connectivity indices. The best results were obtained 
with the zero-order valence molecular connectivity index (0χv) for all three sets. Standard errors of the calibration models 
were around 0.3, and of the constants from the test sets even a little lower, 0.22 and 0.24. Despite using only one descriptor, 
our model proved better in internal (cross-validation) and especially in external (test set) statistics than much more 
demanding methods used in previous 3D QSAR modelling.
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There is a rising interest in the research of bioflavonoids, 
secondary phenolic plant metabolites that have been 
evidenced as strong antioxidants (1-5) and therefore 
regarded as potential anti-cancer agents (6, 7). No less 
important are the research efforts to elucidate their 
metabolism and mode of action. Noteworthy are the 
measurements of their affinity to a variety of proteins such 
as human serum albumin (8), bovine serum albumin (9) or 
blood plasma (10), and milk proteins (11). Among them 
P-glycoprotein (P-gp), a 170 kDa transmembrane protein 
(12), has received particular attention because it expels 
hydrophobic compounds from the cell, which leads to 
resistance to cytostatic agents through a mechanism termed 
multidrug resistance (MDR) (13-15). The search for 
effective and safe P-gp inhibitors is in progress, and 
flavonoids seem very promising as MDR modulators. 
Investigations of flavonoid binding to P-glycoprotein using 
pharmacophore modelling (DISCOtech, CoMFA, CoIMFA, 
MIF) (16-18) have yielded a fair agreement with 
experimental findings and showed the dominance of steric 
and hydrophobic interactions (fields) in flavonoid binding 
to P-glycoprotein (17).

The aim of our study was, however, to develop a simpler 
but as reliable method with the same purpose, that is, to 
predict the dissociation constant, Kd, of P-glycoprotein/
flavonoid complexes. The dissociation constant Kd could 
be modelled with only one molecular descriptor from the 
class of valence connectivity indices, just as the third-order 
valence connectivity index (3χv) was successfully applied 
to predict the stability of coordination compounds (19), 
especially of copper(II) chelates with peptides (20-22). 

Moreover, 3χv and other related graph-theoretical indices 
have been applied in quantitative structure activity 
relationship (QSAR) analysis (23-25), and particularly in 
the QSAR of 15 flavonoids isolated from Jerusalem thorn 
(Paliurus spina-christi Mill.) used in Croatian traditional 
herbal medicine (26). The authors have shown that the 
first-order valence connectivity index linearly correlated 
(r=0.993) with the hydrophobicity of flavonoids, i.e. with 
their octanol/water partition coefficient (log P) and Van der 
Waals volumes (r=0.999).

For this purpose, we used three sets of flavonoid 
derivatives and their dissociation constants (pKd), which 
describe flavonoid affinity toward P-glycoprotein (16-18). 
The best fitting models and the best internal and external 
(cross-validation and test set) predictions for all sets were 
obtained with zero-order connectivity index (0χv).

METHODS

Calculation of topological indices

We calculated topological indices using the E-DRAGON 
program developed by R. Todeschini and co-workers, 
capable of yielding 119 topological indices in a single run 
along with many other molecular descriptors (27, 28). 
Connectivity matrices were constructed with the aid of the 
online SMILES Translator and Structure File Generator 
(29).

The zero-order valence molecular connectivity index, 
0χv, was defined as (23, 30-32):

0χv=Σ [δ(i)]–0.5    [1]
vertex
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where δ(i) denotes weight (valence values) of vertex (atom) 
i in a vertex-weighted molecular graph. The valence value, 
δ(i), of a vertex i is defined by:

δ(i)=[Zv(i) – H(i)]/[Z(i) – Zv(i) – 1] [2]

where Zv(i) is the number of valence electrons belonging 
to the atom corresponding to vertex i, Z(i) is its atomic 
number, and H(i) is the number of hydrogen atoms attached 
to it.

The zero-order connectivity index is the first member 
of the family of valence connectivity indices. The valence 
connectivity indices of higher orders (1χv, 2χv, 3χv, etc.) are 
taking into account paths, more precisely, neighbouring 
vertices (atoms) making up those paths. For example, 3χv is 
taking into account all paths of the length 3, that is, three 
consecutive chemical bonds in a vertex-weighted molecular 
graph.

3χv=Σ [δ(i) δ(j) δ(k) δ(l)]–0.5  [3]
            path

Regression calculations

Regression calculations, including the leave-one-out 
procedure (LOO) of cross validation, were done using the 
CROMRsel program (33). The standard error of the cross-
validation estimate was defined as:
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    [4]

where ΔX and N denote cv residuals and the number of 
reference points, respectively.

RESULTS

The first set consisted of 32 flavonoids (marked a in 
Table 1). It was further divided into the training (N=25) and 
test set (N=7) (16). Regressions on the full (N=32) and the 
training set (N=25) yielded similar statistics (Table 2, Figure 
1), with the standard errors very close to those of the test 
set (SEtest=0.22).

The second set included 42 flavones (marked b in Table 
1). Two compounds were excluded from the set: 34 because 
of the very different structure and 42 because it was the 
same as 23. The new set (N=40) was also divided into the 
training (N=31) and test set (N=9) (17). Regressions on the 
full (N=40) and the training set (N=31) of flavones yielded 
similar statistics (Table 2, Figure 2), and the standard error 
of prediction of the test set (SEtest=0.24) was even lower.

The third set (marked c in Table 1) consisted of 78 
flavonoids, including calcone (compounds 1-22), flavone 
(compounds 23-64), and aurone derivatives (compounds 
65-78) (18). We excluded the derivatives of dehydrosylibin 
and xanthone (18) and compounds 14, 34, and 67 because 

of their unrelated structure and flavone 42 because of the 
same structure as flavone 23.

Regression on the new set of 74 flavonoid derivatives 
yielded R2=0.790 and SE=0.37 (Table 2, Figure 3). The 
regressions on separate groups of compounds gave similar 
standard errors (N=21, R2=0.861, SE=0.26 for calcones and 
N=40, R2=0.900, SE=0.30 for flavones). The results for 
aurones however were much worse: N=13, R2=0.073, 
SE=0.59, but they lie around the same regression line as 
calcones and flavones.

DISCUSSION

The first set was previously investigated by Li et al. (16) 
using pharmacophore modelling and comparative molecular 
field analysis (CoMFA). They built three models for the 
training set (N=25) with steric, electrostatic, and both steric 
and electrostatic descriptors (standard CoMFA).

The steric model yielded worse results (R2=0.951, 
R2

cv=0.764, SE=0.200) than the electrostatic model 
(R2=0.987, R2

cv=0.789, SE=0.105). The standard model was 
in between (R2=0.980, R2

cv=0.716, SE=0.131), but it also 
gave the best predictions for the test set (N=7). The SEtest 
was 0.35, 0.30, and 0.24, for the steric, electrostatic, and 
standard CoMFA model, respectively.

Our model yielded worse fit statistics (R2=0.918, 
SE=0.24) but better cross-validated statistics (R2

cv=0.905, 
SEcv=0.26), and the best predictions for the test set of all 
CoMFA models (SEtest=0.22).

The second set (41 flavonoids without compound 35) 
was previously investigated by Kothandan et al. (17) using 
ligand-based and receptor-guided alignment molecular 
docking and 3D-QSAR. On the training set (N=32) the best 
CoMFA and CoMSIA models for ligand-based alignment 
yielded R2=0.951, R2

cv=0.747, SE=0.21 and R2=0.936, 
R2

cv=0.810, SE=0.25, respectively. For receptor-guided 
alignment the models yielded R2=0.976, R2

cv=0.712, 
SE=0.16 and R2=0.987, R2

cv=0.805, SE=0.12, for CoMFA 
and CoMSIA respectively. But these models gave the SE 
of predictions of the constants from the test set (N=9) in 
the range from 0.42 to 0.54.

On a similar training set (N=31; we excluded compounds 
34 and 42 but kept 35) our model gave worse fit statistics 
(R2=0.885, SE=0.32), but again better cross-validated 
statistics (R2

cv=0.870, SEcv=0.34) and far better test set (N=9; 
the same as in reference 17) predictions (SEtest=0.24).

The third set originally consisted of 89 flavonoids, but 
Boccard et al. (18) obtained an acceptable model for 83 
compounds (after omitting compounds 13, 14, 68, 71, 72, 
and 78 in reference 3). Using the 3D-QSAR and statistical 
tools [principal component analysis (PCA) and partial least-
squares (PLS) regression], their model yielded R2=0.76 and 
R2

cv=0.71.
Our model was built on a smaller set (N=74) and yielded 

both better fit (R2=0.790, SE=0.37) and cross-validated 
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Table 1 pKd of flavonoid complexes with P-glycoprotein, SMILES formula, and 0χv index of flavonoids
No.* SMILES formula Set(s) pKd

0χv

1 O=C(/C=C/C1=CC=CC=C1)C2=C(O)C=C(O)C=C2O c 5.34 2.555
2 O=C(/C=C/C1=CC=C(O)C=C1)C2=C(O)C=C(O)C=C2O c 5.32 2.648
3 O=C(/C=C/C1=CC=C(OC)C=C1)C2=C(O)C=C(O)C=C2O c 5.64 2.871
4 O=C(/C=C/C1=CC=C(F)C=C1)C2=C(O)C=C(O)C=C2O c 5.44 2.625
5 O=C(/C=C/C1=CC=C(Cl)C=C1)C2=C(O)C=C(O)C=C2O c 5.89 2.877
6 O=C(/C=C/C1=CC=C(Br)C=C1)C2=C(O)C=C(O)C=C2O c 6.24 3.154
7 O=C(/C=C/C1=CC=C(I)C=C1)C2=C(O)C=C(O)C=C2O c 6.60 3.344
8 O=C(/C=C/C1=CC=C(CC)C=C1)C2=C(O)C=C(O)C=C2O c 5.68 3.143
9 O=C(/C=C/C1=CC=C(CCC)C=C1)C2=C(O)C=C(O)C=C2O c 6.00 3.273
10 O=C(/C=C/C1=CC=C(CCCCCC)C=C1)C2=C(O)C=C(O)C=C2O c 6.57 4.054
11 O=C(/C=C/C1=CC=C(C2CCCCC2)C=C1)C3=C(O)C=C(O)C=C3O c 6.28 4.768
12 O=C(/C=C/C1=CC=C(CCCCCCCC)C=C1)C2=C(O)C=C(O)C=C2O c 7.70 4.554
13 O=C(/C=C/C1=CC=C(CCCCCCCCCC)C=C1)C2=C(O)C=C(O)C=C2O c 7.22 5.054
14 O=C(/C=C/C1=CC=C(CCCCCCCCCCCCCC)C=C1)C2=C(O)C=C(O)C=C2O c 4.85 6.054
15 O=C(/C=C/C1=CC=C(C/C=C(C)/C)C=C1)C2=C(O)C=C(O)C=C2O c 6.28 3.481
16 O=C(/C=C/C1=CC(O)=C(O)C=C1)C2=C(O)C=C(O)C(C/C=C(C)\C)=C2O c 6.36 3.749
17 O=C(/C=C/C1=CC=CC=C1)C2=C(O)C=CC=C2 c 5.05 2.396
18 O=C(/C=C/C1=CC=CC=C1)C2=C(O)C=CC(C(C)(C=C)C)=C2 c 6.36 3.743
19 O=C(/C=C/C1=CC=C(O)C=C1)C2=C(O)C=CC=C2 c 4.96 2.49
20 O=C(/C=C/C1=CC(C/C=C(C)/C)=CC=C1)C2=C(O)C=CC=C2 c 6.28 3.294
21 O=C(/C=C/C1=CC=C(OC)C=C1)C2=C(O)C=CC=C2 c 5.74 2.712
22 O=C(/C=C/C1=CC(C/C=C(C)/C)=C(OC)C=C1)C2=C(O)C=CC=C2 c 6.57 3.631
23 O=C1C2=CC=CC=C2OC(C3=CC=CC=C3)=C1O at, bt, c 5.00 2.81
24 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=CC=C3)=C1O a, b, c 5.23 2.971
25 O=C1C2=C(C=C(C(C(C)(C)C=C)=C2OC(C3=CC=CC=C3)=C1O)O)O at, b, c 6.35 4.292
26 O=C1C2=C(O)C(C/C=C(C)/C)=C(O)C=C2OC(C3=CC=CC=C3)=C1O a, bt, c 6.68 3.966
27 O=C1C2=C(O)C=C(O)C(C/C=C(C)/C)=C2OC(C3=CC=CC=C3)=C1O a, b, c 6.66 3.952
28 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(O)C=C3)=C1O a, b, c 5.17 3.065
29 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(OC)C=C3)=C1O a, b, c 5.35 3.288
30 O=C1C2=C(C=C(C(C(C)(C)C=C)=C2OC(C3=CC=C(C=C3)OC)=C1O)O)O a, b, c 6.70 4.608
31 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(F)C=C3)=C1O a, b, c 5.17 3.042
32 O=C1C2=C(O)C=C(O)C=C2OC(C3=C(Cl)C=C(Cl)C=C3)=C1O a, b, c 5.40 3.659
33 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(I)C=C3)=C1O a, bt, c 5.96 3.761
34 O=C1C2=C(O)C=C(O)C=C2OC(C(C3=CC=CC=C3)C4=CC=CC=C4)=C1O b, c 5.70 4.49
35 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(CCCCCCCC)C=C3)=C1O at, b, c 7.22 4.97
36 O=C1C2=C(C=C(C=C2OC(C3=CC=CC=C3)=C1OC)O)O a, b, c 5.05 3.158
37 O=C1C2=C(C=C(C(C(C)(C)C=C)=C2OC(C3=CC=CC=C3)=C1OC)OC)O a, b, c 6.82 4.683
38 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC(O)=C(O)C=C3)=C1O a, b, c 5.15 3.173
39 O=C1C2=C(C=C(C=C2OC=C1C3=CC=C(C=C3)O)O)O b, c 4.58 3.02
40 O=C1C2=CC=CC=C2OC(C3=CC=CC=C3)=C1 bt, c 4.47 2.693
41 O=C1C2=CC=C(O)C=C2OC(C3=CC=CC=C3)=C1 a, b, c 4.46 2.771
42 O=C1C2=CC=CC=C2OC(C3=CC=CC=C3)=C1O b, c 5.00 2.81
43 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=CC=C3)=C1 a, bt, c 5.05 2.853
44 O=C1C2=C(O)C(C)=C(O)C=C2OC(C3=CC=CC=C3)=C1 at, b, c 5.51 3.277
45 O=C1C2=C(O)C=C(OC)C=C2OC(C3=CC=CC=C3)=C1 at, b, c 5.20 3.077
46 O=C1C2=C(O)C(C)=C(OC)C=C2OC(C3=CC=CC=C3)=C1 a, b, c 5.89 3.477
47 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC=C(O)C=C3)=C1 a, bt, c 5.00 2.946
48 O=C1C2=C(O)C=C(O)C=C2OC(C3=CC(F)=C(F)C=C3)=C1 at, b, c 5.2 2.999
49 O=C1C2=C(C=C(C=C2OC(C3=CC=C(C=C3)I)=C1)O)O a, b, c 5.66 3.643
50 O=C1C2=C(O)C=C(OC(C)C)C=C2OC(C3=CC=CC=C3)=C1 a, b, c 6.00 3.213
51 O=C1C2=C(O)C(C(C)C)=C(O)C=C2OC(C3=CC=CC=C3)=C1 b, c 6.68 3.646
52 O=C1C2=C(O)C(C(C)C)=C(OC(C)C)C=C2OC(C3=CC=CC=C3)=C1 b, c 6.55 3.993
53 O=C1C2=C(C(C(C)C)=C(C(C(C)C)=C2OC(C3=CC=CC=C3)=C1)OC(C)C)O bt, c 7.48 4.74
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No.* SMILES formula Set(s) pKd
0χv

54 O=C1C2=C(O)C(CC3=CC=CC=C3)=C(O)C=C2OC(C4=CC=CC=C4)=C1 a, b, c 6.47 4.357
55 O=C1C2=C(C=C(C(CC3=CC=CC=C3)=C2OC(C4=CC=CC=C4)=C1)O)O at, bt, c 6.00 4.343
56 O=C1C2=C(O)C(CC3=CC=CC=C3)=C(O)C(CC4=CC=CC=C4)=C2OC(C5=CC=CC=C5)=C1 b, c 7.44 5.822
57 O=C1C2=C(O)C=C(OCC3=CC=CC=C3)C=C2OC(C4=CC=CC=C4)=C1 b, c 7.17 4.075
58 O=C1C2=C(O)C(C/C=C(C)/C)=C(O)C=C2OC(C3=CC=CC=C3)=C1 a, b, c 6.52 3.847
59 O=C1C2=C(O)C=C(O)C(C(C=C)(C)C)=C2OC(C3=CC=CC=C3)=C1 a, b, c 6.7. 4.173
60 O=C1C2=C(O)C=C(O)C(C/C=C(C)/C)=C2OC(C3=CC=CC=C3)=C1 a, b, c 6.55 3.833
61 O=C1C2=C(O)C(C/C=C(C)\C)=C(O)C(C/C=C(C)/C)=C2OC(C3=CC=CC=C3)=C1 b, c 7.82 4.803
62 O=C1C2=C(O)C(C/C=C(C)/CC/C=C(C)/C)=C(O)C=C2OC(C3=CC=CC=C3)=C1 a, b, c 7.35 4.879
63 O=C1C2=C(O)C=C(O)C(C/C=C(C)/CC/C=C(C)/C)=C2OC(C3=CC=CC=C3)=C1 a, b, c 7.60 4.865
64 O=C1C2=C(O)C=C(O)C(C(C)(C)C=C)=C2OC(C3=CC=C(O)C=C3)=C1 a, bt, c 6.15 4.267
65 (76) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(C#N)C=C3 c 4.70 3.503
66 (77) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(N(C)C)C=C3 c 5.59 3.873
67 (78) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC(OC)=C(OC)C=C3OC c 4.04 4.188
68 (79) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=CC=C3 c 5.88 3.059
69 (80) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=C(F)C=C3 c 5.57 3.129
70 (81) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=C(Cl)C=C3 c 6.34 3.381
71 (82) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=C(Br)C=C3 c 6.82 3.658
72 (83) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=C(I)C=C3 c 6.59 3.848
73 (84) O=C1C2=C(O)C=C(OC)C=C2O/C1=C\C3=CC=C(CN)C=C3 c 5.54 3.475
74 (85) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=CC=C3 c 5.15 3.263
75 (86) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(F)C=C3 c 5.54 3.334
76 (87) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(Cl)C=C3 c 6.00 3.586
77 (88) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(Br)C=C3 c 6.09 3.862
78 (89) O=C1C2=C(OC)C=C(OC)C=C2O/C1=C\C3=CC=C(I)C=C3 c 6.27 4.053

*Numbers in parentheses correspond to notation in Ref 18.
tTest set

Figure 2 Linear dependence of the pKd of flavone complexes with 
P-glycoprotein (set b) on the 0χv index of flavones (R2=0.885, 
SE=0.32, SEcv=0.34, SEtest=0.24). Triangles denote predicted 
values of the pKd of the test set compounds (N=9) from the 
calibration model made on the training set (circles, N=31)

Figure 1 Linear dependence of the pKd of flavonoid complexes 
with P-glycoprotein (set a) on the 0χv index of flavonoids 
(R2=0.918, SE=0.24, SEcv=0.26, SEtest=0.22). Triangles denote 
predicted values of the pKd of the test set compounds (N=7) from 
the calibration model made on the training set (circles, N=25)
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statistics (R2
cv=0.781, SEcv=0.38). Other valence connectivity 

indices (1χv, 2χv, 3χv, 4χv, and 5χv) yielded R2 in the range 
0.542-0.787, and SE 0.37-0.55.

CONCLUSION

Our model for the prediction of dissociation constants 
of the flavonoid-P-glycoprotein system (Kd) gives results 
comparable to much more demanding 3D QSAR - CoMFA 
and CoMSIA models. It may have fared worse in fitting the 
data but gave better internal (cross-validation) and external 
predictions (for test sets). In this most important aspect in 
modelling, our model surpasses CoMFA and CoMSIA.

Our results also show that the model is stable 
(SE≈SEcv≈SEtest for the same set), yielding consistent 
results, regardless of the grouping of flavonoid derivatives 
(for not too big structural diversity).

The comparison of our model (Set 1, Table 2; N=32) 
with the CoMFA models gave standard errors of 0.99, 0.96, 
and 0.99 log Kd units for the electrostatic, steric, and 
standard model, respectively. These standard errors are 
much bigger than those obtained by comparison between 
the CoMFA models: 0.27, 0.15, and 0.21 for the comparison 
between steric and electrostatic, steric and standard, and 
electrostatic and standard models, respectively. Therefore, 
our model gives quite different predictions than the CoMFA 
models despite similar general agreement with the 

experiment (SE=0.24 and 0.13, for 0χv and the standard 
CoMFA model, respectively). A much bigger difference in 
standard error between 0χv and each of the CoMFA models, 
as well as the difference in standard errors between the 
CoMFA models suggest that the 0χv model is not an 
approximation of the CoMFA models but is the model in 
its own right.

Our model, as well as models based on topological 
indices in general, is essentially holistic, which means that 
it fits all the relevant interactions in a molecule equally well.
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