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Concentrations of arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were 
determined in water samples and five fish organs (gills, liver, kidney, spleen, and muscle) of common carp 
(Cyprinus carpio L.) and common rudd (Scardinius erythrophthalmus L.) from the Topolnitsa reservoir 
(Bulgaria) in three seasons (spring, summer, and autumn). This water ecosystem is located in a copper 
mining and metallurgical region. Water metal concentrations were significantly higher in the summer than 
in the spring (p<0.05). Moreover, As, Cd, Cu, and Zn concentrations were higher than the national limits. 
Qualitative factors “element” and “fish organ” had a stronger influence on metal bioaccumulation than the 
factors “season” and “fish species”. In fish, the highest metal levels were detected in the liver, spleen, 
kidney and gills, and the lowest in the dorsal muscle. Tissue levels were higher in the summer, but in 
general they were similar between the two Cyprinid fish. Fish muscles had the lowest metal levels at all 
times, but As and Pb exceeded the national and international standards. Therefore, we would not recommend 
fish consumption from Topolnitsa, as continuous metal contamination of the reservoir may seem to present 
human health risk.
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Contamination of aquatic ecosystems with metals 
has received increasing attention worldwide (1, 2). 
Metal contaminants are of particular concern due to 
high toxicity, persistence, and ability to accumulate 
in the food chain and aquatic ecosystems (3, 4). Metals 
enter the aquatic environment through atmospheric 
deposition and erosion of the geological matrix. 
Anthropogenic sources include fuel combustion, 
industrial effluents, wastewater from smelting, 
metallurgical or mining enterprises, and leaching from 
waste rocks and mine tailings (5, 6). After entering 
the water, metals may precipitate or adsorb on the 
surface of solids, remain soluble or suspended in it, 
or may be taken up by flora and fauna (7).

Fish are a major protein source for humans, fish 
muscle in particular, and health risks of food poisoning 

with metals have become a major concern in recent 
decades (8-10). Fish may also serve as reliable 
indicators of metal contamination because they are 
more sensitive to changes in the aquatic environment 
than invertebrates and tend to accumulate metals in 
concentrations several times higher than that of the 
ambient medium (11, 12). Fish are exposed to metals 
through water and food (13). Metal bioaccumulation 
depends on many factors such as fish species, age, 
tissue, season, pH, water temperature, and hardness 
(14). In teleosts, the most common tissues used in 
toxicology studies are the gills, liver, kidney, and 
muscles (15, 16). Metal levels in gills reflect metal 
concentrations in the surrounding water; liver is an 
organ for storage and detoxification of metals, whereas 
kidney is involved in the process of excretion (17). 
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Spleen in fish is a haematopoietic organ with important 
functions. However, it has not been investigated in 
bioaccumulation studies as thoroughly as the liver and 
kidney (18, 19).

Topolnitsa (Bulgaria, 42° 25’ 90” N 23° 59’ 38” 
E) is a reservoir built on the Topolnitsa River which 
runs through a region rich with copper mines, mine 
tailings, and metallurgy plants. In addition, the 
reservoir serves as a final sink for all types of 
contaminants which are carried with the river and its 
tributaries. Even though these circumstances call for 
a full investigation and monitoring, no data have been 
published over the last few decades on metal levels 
and their effects on fish from this artificial lake. 
Gecheva et al. (20) recently provided information on 
metal levels in water and sediment samples along the 
Topolnista River basin. However, their results cannot 
be used as reference, as we investigate still water and 
their study a flowing water.

The aim of our study was to address all of the above 
issues: 1) to establish current water pollution data on 
As, Cd, Cu, Ni, Pb, and Zn concentrations of the 
Topolnitsa reservoir and see if there are seasonal 
differences; 2) to compare metal bioaccumulation in 
common carp and common rudd gills, liver, kidney, 
spleen, and muscle and to see how metal pollution 
reflects on organs with different structure and 
functions; and 3) to compare metal levels in the fish 
muscle with national and international standards for 
safe consumption.

MATERIALS AND METHODS

Sampling area

The Topolnitsa reservoir (Figure 1) is located near 
the village of Muhovo, south-west Bulgaria (63 km 
from the capital Sofia, 444 m above the sea level). The 
reservoir was built in 1961 and is one of the largest 
artificial lakes in the country with a total volume of 
140 million m3 of water. All samples were collected 
near the dam wall (86 m high, 338 m long) in the 
spring, summer, and autumn of 2012.

Water sampling and analysis

Surface water samples for metal analysis were 
collected in triplicates in prewashed, double-caped 
polyethylene bottles following the procedures 
described by the ISO standard 5667-4 (21). Samples 

were acidified with 1 % HNO3 and stored on ice for 
as short time as possible to minimise changes in metal 
physicochemical properties before analysis. We also 
recorded water pH, temperature (°C), dissolved 
oxygen, and conductivity (µS cm-1).

For reference we used water from the ponds in 
which the Institute of Fisheries and Aquaculture in 
Plovdiv rears fish under strict toxicant-free conditions.

Water was analysed for metals according to the 
ISO standard 17294-2 (22) with an Agilent 7500ce 
(Agilent Technologies, Tokyo, Japan) inductively 
coupled plasma mass spectrometer (ICP-MS), and the 
findings are reported as µg L-1. The detection limit of 
the instrument was 0.5 µg L-1 for Аs, 0.05 µg L-1 for 
Cd, 0.5 µg L-1 for Cu, 0.5 µg L-1 for Ni, 10 µg L-1 for 
Pb, and 10 µg L-1 for Zn.

Fish sampling and analysis

Common carp (Cyprinus carpio, L.) is spread and 
farmed all over Bulgaria and Europe and has been 
used as a test organism in many toxicological assays 
(23-25) because of its relative resilience even to heavy 
pollution (26, 27). Common rudd (Scardinius 
erythrophtalamus, L.) is a Cyprinid species of many 
European rivers and lakes, fished recreationally. Even 
though metal levels have been reported in common 
rudd organs, mainly in the gills, liver, and muscle (28, 
29), toxicological data on common rudd are quite 
scarce compared to other Cyprinids.

In parallel with water sampling, ten fish of each 
species were caught with fishing nets in each season, 
which totalled 60 fish. All samples were collected 
following the EMERGE Fish Sampling Manual for 
Live Fish (30). Prior to dissection, fish length and 
weight were measured to the nearest millimetre and 
gram (mean common carp and rudd weight was 

Yancheva V, et al. METAL ACCUMULATION IN TOPOLNITSA CARP AND RUDD
Arh Hig Rada Toksikol 2014;65:57-66

Figure 1 The location of the Topolnitsa reservoir in Bulgaria
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101.1±4 g and 55.2±13.2 g and length 15.5±0.7 cm 
and 15.4±1.2 cm, respectively). Dissection was 
performed in a provisional field laboratory with clean 
stainless steel scalpel blades, scissors, and tweezers. 
We first dissected the second gill arch on the right side 
and then carefully removed the liver, kidney, and 
spleen. Finally, we took a small piece of the dorsal 
muscle. All samples were placed in pre-marked clean 
polyethylene zip-lock bags and kept on ice until we 
froze them in our laboratory at -25 °C for analysis.

For reference we obtained from the national 
Institute of Fisheries and Aquaculture in Plovdiv five 
healthy fish of each species for each of the three 
seasons, totalling 15 carps (mean weight 120±1.2 g; 
mean length 14.9±1.9 cm) and 15 rudds (mean weight 
51±13.2 g; mean length 13±1.5 cm).

All experiments were conducted in accordance 
with the Directive 2010/63/EU on the protection of 
animals used for scientific purposes (31).

Metal bioaccumulation was analysed in the gills, 
liver, kidney, spleen, and dorsal muscle of the two fish 
species. Approximately 1 g of each tissue sample was 
wet mineralised using a microwave digestion system 
(Milestone Ethos Plus, Italy) at 200 °C. Digestion 
solution was prepared with 6 mL of 65 % HNO3 and 
2 mL of 30 % H2О2. After mineralisation, samples 
were diluted to 25 mL by adding ultra-pure water and 
analysed for metal content using an Agilent 7500ce 
ICP-MS. Data are reported as µg kg-1 wet weight. The 
detection limit of the instrument was: 10 µg kg-1 for 
As, 1 µg kg-1 for Cd, 10 µg kg-1 for Cu, 10 µg kg-1 for 
Ni, 30 µg kg-1 for Pb, and 30 µg kg-1 for Zn.

All analyses were carried out at the regional 
laboratory of the Executive Environment Agency in 
Plovdiv, Bulgaria. Reagents were purchased from the 
Merck Group (Darmstadt, Germany) and were of 
analytical and Suprapur® quality. Glassware was 
washed with non-ionic detergent, treated with a 
solution of 10 % HNO3 for 48 h, and rinsed thoroughly 

with deionised water before use to minimise 
contamination.

Method validation

Analysis included samples in triplicates and 
batches with blanks. Accuracy was validated using 
standard reference materials for trace elements in 
water SRM 1643е (National Institute of Standards and 
Technology, Gaithersburg, MD, USA) and fish protein 
DORM-3 (National Research Council Canada, 
Ottawa, ON, Canada). All results showed a good 
agreement with the standards, and recovery ranged 
between 96 % and 105 % for fish and 92 % and 101 % 
for water.

Statistical analysis

Raw data on metal concentrations in water and fish 
samples were distributed normally and analysed using 
STATISTICA version 7.0 for Windows (StatSoft Inc., 
New York, NY, USA). Differences between the 
variables were tested for significance using Student’s 
t-test (p<0.05). Relationships between metal 
concentrations in water and in fish tissues were tested 
using Pearson’s product-moment correlation, principal 
components analysis (PCA) (p<0.05). Data are 
reported as mean±SD.

RESULTS AND DISCUSSION

Metal concentrations in water

Table 1 shows general Topolnitsa water quality 
parameters, which meet the Basin Directorate for 
Water Management – East Aegean Region (Bulgaria) 
requirements for healthy aquatic environment for fish 
(unpublished data).

Table 2 shows metal concentrations in water 
samples taken from Topolnitsa. In reference water all 
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Table 1 Topolnitsa reservoir water quality parameters

Season pH T (°C) Conductivity
(µS cm-1)

Dissolved oxygen 
(mg L-1)

Spring 8.3 5.1 330 8.3
Summer 8 19.4 620 7
Autumn 6.1 4.2 410 9
Mean±SD 8.1±0.2 9.6±8.5 453.3±150 8.1±1
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metal concentrations were below the detection limit 
of the instrument. Lead concentrations in the 
Topolnitsa water also kept below the detection limit 
in all three seasons, whereas other metal concentrations 
varied significantly between the spring and summer 
(p<0.05). Cadmium concentrations dropped below the 
detection limit in the autumn, Ni concentrations in the 
summer and autumn, and Zn concentrations in the 
autumn. In contrast, As and Cu were measurable in 
all three seasons, which may indicate chronic exposure 
of the biota to these toxicants. Spring As and Cd, and 
summer Zn concentrations exceeded the maximum 
permissible values set by the Bulgarian regulations 
(32, 33) based on the Directive 2000/60/EC (34). 
Autumn As and spring Zn concentrations were 
borderline. Furthermore, Cu concentrations were 
above the permissible levels in all three seasons, 
probably due to intensive copper mining in the region. 
However, concentrations of the other metals are more 
likely related to background levels and complex 
interactions between water, sediment, and biota, or 
may be caused by anthropogenic factors other than 
mining (domestic sewage, industrial waste waters and 
agricultural runoff).

Metal bioaccumulation in fish

We wanted to see which of the selected qualitative 
factors, namely “element”, “fish organ”, and “season” 
had stronger influence on metal bioaccumulation in 
either of the Cyprinid fish. Our PCA analysis (Figures 
2 and 3) determined that “element” had more influence 
(common carp − 71.73 %; common rudd − 64.05 %) 
than “season” (common carp − 20.23 %; common 
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Table 2 Metal concentrations (mean±SD) in the Topolnitsa reservoir water (n=3 in each season)

Element
Metal concentrations (µg L-1)

Spring Summer Autumn Bulgarian limits

As 200±10* 4±0.1* 10±1* 10

Cd 0.6±0.1 0.4±0.1 -* 0.5

Cu 20±1 20±1 10±5 1

Ni 3±1 - - 20

Pb - - - 7

Zn 8±0.001** 200±0.01** * 8
below the detection limit: 0.5 µg L-1 for Аs, 0.05 µg L-1 for Cd, 0.5 µg L-1 for Cu, 0.5 µg L-1 for Ni, 10 µg L-1 for Pb, and 10 µg L-1 
for Zn
*significantly different between the seasons (p<0.05)
Bold – above the Bulgarian limit

Figure 2 Relationship between qualitative factors “element” 
and “season” for common carp: axis x represents the 
significance of the factor “element” (71.73 %); axis y 
represents the significance of the factor “season” (20.23 %)

Figure 3 Relationship between qualitative factors “element” 
and “season” for common rudd: axis x represents the 
significance of the factor “element” (64.05 %); axis y 
represents the significance of the factor “season” (18.09 %)



61

rudd − 18.09 %), which suggests that metal properties 
and bioavailability in the aquatic environment are 
important for metal bioaccumulation. 

Qualitative factor “fish organ” also proved 
important for metal bioaccumulation (Figure 4), as 
the studied organs differed in their affinity to metals. 
Internal organs (liver, kidney, and spleen) showed the 
highest affinity, followed by the gills and muscles. 
Qualitative factor “season” had less influence on metal 
bioaccumulation.

Cyprinid fish gills can accurately reflect water metal 
contamination. We share the opinion of Teien et al. 
(36), Hansen et al. (37), and Terra et al. (38), who 
think that the reason for this is that the gills, being 
negatively charged, bind positively charged metal 
species in the water. Our results confirm other reports 
that fish gills reflect lower water quality (39-41).

Once metals cross the biological barrier and enter 
the bloodstream, they will reach and accumulate in 
the internal organs of fish, which explains the 
significantly higher internal organ metal levels in our 
study. Another reason for higher metal levels in the 
internal organs may be gastrointestinal route of 
exposure (13), rendering the liver and the kidney 
additionally vulnerable to chronic metal exposure (42). 
Similar to Falfushynska and Stoliar (43) and Siscar et 
al. (44), we think that metal accumulation in internal 
organs is associated not only with organ function such 
as haematopoiesis, antioxidant defence, detoxification, 
and excretion, but also with metallothionein synthesis. 
Our results are also in agreement with those of Shinn 
et al. (45) and Poleksić et al. (46), who measured the 
highest metal levels in the internal organs. All metal 
variations in our study may be related to changes in 
the abiotic factors and fish metabolic activity or to 
individual fish susceptibility and features in the 
biology of common carp and common rudd. We also 
agree with Sokolova and Lannig (47) that toxicant 
bioaccumulation increases with water temperature, as 
it accelerates the crossing of metals over biological 
barriers, which may account for seasonal variations. 
The positive correlation we found between water and 
carp liver Cu (r=0.80) and water and rudd liver Cu 
(r=0.72) in all three seasons as well as between water 
and carp kidney Cd (r=0.65) support the leading role 
these organs have for metal storage.

The spleen also showed high metal levels in both 
fish species. Cd and Cu in common rudd spleen 
significantly varied between some of the seasons and 
were significantly higher than carp findings (Table 3). 
Summer Pb and Zn in common carp spleen were 
significantly higher than in the spring and autumn. In 
addition, our results suggest that Zn has strong affinity 
for this organ (r=0.72 for carp; r=0.63 for rudd) and 
that the spleen is as important depot for metals as the 
liver and kidney. It carries important functions such 
as new lymphocyte formation, breakdown of old red 
blood cells, and overall immune response. We 
therefore think that toxicology studies should stop 
underestimating this organ and use it more often to 
assess transfer and distribution of metals in fish, as 
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Figure 4 Relationship between qualitative factors “element” 
and “organ” for common carp and common rudd: axis x 
represents the significance of the factor “element” (64.05 %); 
axis y represents the significance of the factor “organ” 
(8.09 %)

Metal mass fractions in the organs of common carp 
and common rudd from Topolnitsa were higher than 
the reservoir water concentrations (Table 3), whereas 
all reference fish metal levels were below the detection 
limit of the instrument. The highest metal mass 
fractions in both fish species were measured in the 
summer, even though not all seasonal differences were 
significant.

Gills are considered an important point of entry 
into the organism for essential (Cu, Zn, Se, Mn, Fe) 
and non-essential elements (Al, As, Cd, Cr, Pb) (35) 
and are a useful tool for assessing metal bioavailability 
and accumulation in water (17). We found a positive 
correlation between water and spring gill As 
concentrations irrespective of the fish species (r=0.84 
for carp and r=0.63 for rudd), as both had similar metal 
concentrations. The same is true for the summer gill 
Zn concentrations (r=0.72 for carp and r=0.64 for 
rudd). Even though statistics did not establish 
significant correlations between other gill metal levels 
and water metal levels, we believe that the correlations 
established for As and Zn sufficiently support that the 
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high metal levels in this organ can point to oxidative 
stress, morphological alterations, or biochemical 
disturbances.

Dorsal muscles of both species had the lowest 
metal concentrations, and our findings are in 
agreement with earlier reports (48, 49). It is well 
known that the muscle does not actively accumulate 
metals and seems to have a very fast decontamination 
rate. The increasing concern about the health risks 
of food poisoning (50) due to consumption of fish 

meat contaminated with metals has prompted Bulgaria 
to adopt several standards and recommendations (51-
53) into national legislation (Table 4). However, there 
are huge differences between the maximum permissible 
metal levels in fish meat set by the Bulgarian 
regulations and the Joint FAO/WHO standards (53). 
In addition, the European Commission has omitted 
As, Cu, Ni, and Zn from its regulations, and the FAO/
WHO have omitted Cd, Ni, and Zn. This calls for 
crucial changes in environmental legislation. 
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Table 3 Metal mass fractions (mean±SD) in common carp and common rudd organs from the Topolnitsa reservoir (ten samples 
per fish species per season)

Se
as

on

Fi
sh Organ

Element (µg kg-1)

As Cd Cu Ni Pb Zn

Sp
ri

ng

C
ar

p

gills 60±10* 700±30 900±50 300±10 400±10§ 126000±1000
liver 900±10 900*±50 16000*±300 1700±50* 2400±300 109000±100
kidney 1200±300 200±10*,§ 1600±300§ 1100±50* 1000±500* 134000±500
spleen 1100±300 100±10§ 2000±500 1500±50* 1700±500* 397000±300
muscles 70±10 1±0.5 500±30↑ 400±10 300±10↑ 8000±500

R
ud

d

gills 100±10 100±10 1300±200 100±10 11000±300§ 40000±500
liver 1300±500 1300±10§ 8000±500§ 1400±10 1300±300§ 170000±500
kidney 1140±500 2100±300*,§ 4000±300 1100±10 2300±500 290000±3500
spleen 1200±30 500±10 1500*±10 1500±10 2000±20 198000±500§

muscles 100±10↑ 10±1 300±10 40±10 60±10 7000±500

Su
m

m
er

C
ar

p

gills 90±20 700±30 2800±300 300±1 300±10§ 152000±730
liver 1300±10 8800±500*,§ 53000±200*,§ 5500±300*,§ 5500±500§ 174000±500
kidney 1600±400 2000±50*,§ 3000±500 3300±500*,§ 3300±100* 313000±1500
spleen 1900±500 200±10 2000±500 3900±500*,§ 3900±300* 654000±550*,§

muscles 60±1 30±10 300±10 200±10 200±10↑ 8200±300

R
ud

d

gills 100±10 300±0.01 1800±200 200±10 1200±50 50000±200
liver 2000±700 1600±0.05§ 17000±1000§ 1500±10 1300±10§ 56000±500
kidney 2000±500 5500±0.2* 6000±500§ 1400±500§ 2100±500 283500±1000
spleen 1400±300 800±0.01§ 5000±500*,§ 1500±300 2100±100 46000±1500§

muscles 100±1↑ 20±0.001 300±10 100±3 30±1 8000±300

A
ut

um
n

C
ar

p

gills 700±30* 200±10 1900±400 400±10 500±1 124000±250
liver 900±50 1300±50*,§ 19000±2000*,§ 2500±300 2500±100 134000±2500
kidney 1000±200 800±50*,§ 1300±50 1900±500 2000±100 287000±2500
spleen 1300±500 150±30 1500±300§ 2200±200 1900±500* 385000±5*
muscles 70±2 40±1 260±40 150±10 150±30 7800±300

R
ud

d

gills 100±10 100±1 2000±500 200±10 800±10 50000±500
liver 1300±500 1100±1§ 16000±1500§ 2000±10 1600±300 263000±500
kidney 1140±500 3000±500§ 3000±500 1200±10§ 2400±400 243000±300
spleen 1200±300 100±1§ 2000±500 1400±10 2700±500 272000±300§

muscles 100±10↑ 10±1 200±50 15±1 20±1 5600±100
* – significant differences in metal concentrations for the same species between different seasons
§ – significant differences between metal concentrations in common carp and common rudd in the same/or different seasons
↑ – borderline or above the Bulgarian limit and FAO/WHO guidelines
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Therefore, even though our measurements show 
borderline or excessive levels only for Pb in carp and 
As in rudd dorsal muscle, we would not recommend 
Topolnitsa fish consumption, having in mind the 
toxicity and the ability of these metals to bioaccumulate 
in the food web. Moreover, Topolnitsa has constantly 
been contaminated with a cocktail of metals since the 
early 1960s, and the anthropogenic pressure has not 
faltered. We therefore propose regular monitoring that 
would involve metal analysis in both the abiotic and 
biotic compartments (fish muscles).
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Bulgarian regulation (2004) 1000 50 10000 50 200 50000
EC Regulation (2006) - 50 - - 300 -
FAO/WHO (2014) 100 - 400 - 300 -
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Sažetak

Akumulacija metala u šarana i crvenperki iz umjetnog jezera Topolnitsa u Bugarskoj

Izmjerena je koncentracija arsena (As), kadmija (Cd), bakra (Cu), nikla (Ni), olova (Pb) i cinka (Zn) u 
uzorcima vode te škrgama, jetrima, bubregu, slezeni i leđnom mišiću šarana (Cyprinus carpio L.) i 
crvenperke (Scardinius erythrophthalmus L.) iz umjetnog jezera Topolnitsa (Bugarska) tijekom tri godišnja 
doba (proljeće, ljeto i jesen) 2012. Taj se ekosustav nalazi u regiji poznatoj po rudnicima bakra i metalurgiji. 
Koncentracija metala u vodi bila je značajno viša u ljeto nego u proljeće (p<0.05), a koncentracija As, Cd, 
Cu i Zn prelazila je razinu dopuštenu državnim odredbama. Kvalitativni čimbenici “element” i “riblji 
organ” jače su utjecali na akumulaciju metala od čimbenika “godišnje doba” i “riblja vrsta”. Najviša razina 
metala u riba izmjerena je u jetrima, slezeni, bubregu i škrgama, a najniža u leđnom mišiću. Razina u 
tkivima bila je malo viša u ljeto, ali se uglavnom nije razlikovala između ribljih vrsta. Mišićna je razina 
cijelo vrijeme bila niska, ali su zato As i Pb bili iznad domaćih i međunarodnih normi. Stoga ne 
preporučujemo konzumaciju ribe iz Topolnitse s obzirom na to da stalno zagađenje umjetnog jezera za 
sobom povlači zdravstvene rizike.
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