GENERALIZED SEQUENCE SPACES IN 2-NORMED SPACES DEFINED BY IDEAL AND A MODULUS FUNCTION

BY

SUDHIR KUMAR, VIJAY KUMAR and S.S. BHATIA

Abstract. The main objective of this paper is to define some new kind of generalized convergent sequence spaces with respect to a modulus function, and difference operator Δ^m, $m \geq 1$ in a 2-normed space. We also examine some topological properties of the resulting sequence spaces. Finally, we have introduced a new class of generalized convergent sequences with the help of an ideal and difference sequences in the same space.

Mathematics Subject Classification 2010: 40A05, 40D25, 40A35.

Key words: statistical convergence, I-convergence, difference sequence, modulus function, 2-norm.

1. Introduction and background

The notion of statistical convergence has been introduced by Fast [9] in 1951 and later developed by Connor [1], Fridy [10], Maddox [21], Šalát [30] and many others. Furthermore, Kostyrko et al. [19] presented a very interesting generalization of statistical convergence called as I-convergence. The detailed history and development in this regard can be found in [2], [3], [4] and [12].

In 1960, Gähler [11] initially introduced the concept of 2-normed space as a generalization of normed linear space. Recently, many authors have started to study summability, sequence spaces in these nonlinear spaces (see, for instance [13]). In [28], Sahiner discussed ideal summability in these spaces and defined a new type of sequence spaces.
Kizmaz [18] introduced the notion of difference sequence spaces as follows \(\Delta(X) = \{ x = (x_k) : (\Delta x_k) \in X \} \), for \(X = \ell_\infty, c \) and \(c_0 \), where \(\Delta x = (x_k - x_{k+1}) \).

Continuing on this way, the notion was further generalized by Et and Çolak [5] by introducing the sequence spaces as follows \(\Delta^m(X) = \{ x = (x_k) : (\Delta^m x_k) \in X \} \), for \(X = \ell_\infty, c \) and \(c_0 \), where \(m \in \mathbb{N} \), \(\Delta^m x = \sum_{v=0}^{m} (-1)^v (\frac{m!}{v!}) x_{k+v} \). More applications of the difference sequences can be seen in [6], [7], [23] and [33].

The following inequality will be used throughout the paper. Let \(p = (p_k) \) be a positive sequence of real numbers with \(0 < p_k \leq \sup_k p_k = H \), \(C = \max(1, 2^{H-1}) \). Then for \(a_k, b_k \in \mathbb{C} \), we have

\[|a_k + b_k|^{p_k} \leq C \{ |a_k|^{p_k} + |b_k|^{p_k} \} , \quad \text{for all } k \in \mathbb{N}. \]

We recall [25] that a modulus function \(f \) is a function from \([0, \infty)\) to \([0, \infty)\) such that

(i) \(f(x) = 0 \) if and only if \(x = 0 \),
(ii) \(f(x + y) \leq f(x) + f(y) \) for all \(x, y \geq 0 \),
(iii) \(f \) is increasing,
(iv) \(f \) is continuous from right at 0.

It follows that \(f \) must be continuous everywhere on \([0, \infty)\). A modulus function may be bounded or unbounded. Subsequently, modulus function was used to define sequence spaces by Gürdal [15], Pehlivan [26] and Savas [31].

Let \(\lambda = (\lambda_n) \) be a non-decreasing sequence of positive numbers such that \(\lambda_{n+1} \leq \lambda_n + 1 \), \(\lambda_1 = 1 \), \(\lambda_n \to \infty \) as \(n \to \infty \) and \(I_n = \{ n - \lambda_n + 1, n \} \).

In [24], Mursaleen introduced the idea of \(\lambda \)-statistical convergence by extending the concept of \([V, \lambda]\) summability of [20]. Further, Savas [32] unified the two approaches and gave a new concepts of \(I \)-statistical convergence, \(I-S_\lambda \)-convergence and \(I-[V, \lambda] \) convergence.

Quite recently, many authors including [8], [22], [27] and [31] have constructed some sequence spaces by using modulus function, difference sequences and investigate their properties. In the present work, we also construct some sequence spaces defined by a modulus function, generalized difference sequences with the help of an ideal in a 2-normed space.

2. Preliminaries

Throughout the paper, \(\mathbb{N} \) will denote the set of all positive integers.

Let \((X, \| \cdot \|) \) be a normed linear space. We recall that a sequence \(x = (x_k) \in X \) is called statistically convergent to \(L \in X \) if for each \(\epsilon > 0 \), the set \(A(\epsilon) = \{ k \in \mathbb{N} : \| x_k - L \| \geq \epsilon \} \) having its natural density zero.
A family of sets $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an ideal in \mathbb{N} if and only if:

(i) $\emptyset \in \mathcal{I}$; (ii) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$; (iii) For $A \in \mathcal{I}$ and $B \subset A$ we have $B \in \mathcal{I}$.

A non-empty family of sets $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ is called a filter on \mathbb{N} if and only if:

(i) $\emptyset \notin \mathcal{F}$; (ii) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$; (iii) For $A \in \mathcal{F}$ and $B \supset A$ we have $B \in \mathcal{F}$.

An ideal \mathcal{I} is called non-trivial if $\mathcal{I} \neq \emptyset$ and $\mathbb{N} \notin \mathcal{I}$.

It immediately implies that $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is a non-trivial ideal if and only if the class $\mathcal{F} = \mathcal{F}(\mathcal{I}) = \{N - A : A \in \mathcal{I}\}$ is a filter on \mathbb{N}. The filter $\mathcal{F} = \mathcal{F}(\mathcal{I})$ is called the filter associated with the ideal \mathcal{I}.

A non-trivial ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is called an admissible ideal in \mathbb{N} if and only if it contains all singletons i.e., if it contains $\{\{n\} : n \in \mathbb{N}\}$. Throughout the paper, \mathcal{I} is considered as a non-trivial admissible ideal.

Let X be a real vector space of dimension d, where $2 \leq d < \infty$. A 2-norm on X is a function $\|.,.\| : X \times X \to \mathbb{R}$, which satisfies: (i) $\|x, y\| = 0$, if and only if x and y are linearly dependent, (ii) $\|x, y\| = \|y, x\|$, (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R}$ and (iv) $\|x, y + z\| \leq \|x, y\| + \|x, z\|$. Then the pair $(X, \|.,.\|)$ is called 2-normed space.

Using the above terminology, GÜRDAL [14] defined \mathcal{I}-convergence in 2-normed space which were further investigated in [17], [29] and [34].

Let $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ be a non-trivial ideal in \mathbb{N} and $(X, \|.,.\|)$ is a 2-normed space. A sequence $x = (x_k)$ in X is said to be \mathcal{I}-convergent to $L \in X$ if for each $\epsilon > 0$ and nonzero $z \in X$, the set $A(\epsilon) = \{k \in \mathbb{N} : \|x_k - L, z\| \geq \epsilon\} \in \mathcal{I}$. In this case, we write $\mathcal{I} - \lim_{k \to \infty} \|x_k, z\| = \|L, z\|$.

Definition 2.1 ([8]). A sequence $x = (x_k)$ is said to be λ^m_X-statistically convergent to the number L if, for every $\epsilon > 0$, $\lim_{n \to \infty} \frac{1}{n} \sum_{k \in I_n} \{k \in I_n : \|\Delta^m x_k - L\| \geq \epsilon\} = 0$. In this case, we write $S_\lambda(\Delta^m, X) - \lim_{k \to \infty} x_k = L$.

Recently, SAVAŞ ET AL. [32] combined the ideas of λ-statistical convergence and ideal convergence to introduce new concepts of $\mathcal{I} - S_\lambda$-convergence, $\mathcal{I} - [V, \lambda]$ convergence and later some pioneer works have been extended in this direction by numerous authors such as [2] and [16].

Definition 2.2 ([32]). A sequence $x = (x_k)$ is said to be $\mathcal{I} - [V, \lambda]$ summable to L, if for any $\delta > 0$, $\{n \in \mathbb{N} : \frac{1}{n} \sum_{k \in I_n} \|x_k - L\| \geq \delta\} \in \mathcal{I}$, where $I_n = [n - \lambda_n + 1, n]$.

Definition 2.3 ([32]). A sequence $x = (x_k)$ is said to be $\mathcal{I} - \lambda$-statistically convergent or $\mathcal{I} - S_\lambda$ convergent to L, if for every $\epsilon > 0$ and $\delta > 0$,

...
\(r \in \mathbb{N} : \frac{1}{r} \{ k \in I_n : \|x_k - L\| \geq \epsilon \} \geq \delta \} \in I \). In this case, we write \(x_k \to L(I - S_{\lambda}) \) or \(I - S_{\lambda} \lim_{k \to \infty} x_k = L \).

The following well-known lemma is required for establishing a very important result in our article.

Lemma 2.1. Let \(f \) be a modulus function and let \(0 < \delta < 1 \). Then for each \(x > \delta \) we have \(f(x) \leq \frac{2f(1)}{\delta} \).

3. Main results

In this section, we introduce a certain type of sequence spaces using modulus function and generalized difference operator \(\Delta^m \) in a 2-normed space, where \(S^2_X \) stands for the space of all sequences defined over 2-normed space \((X, \| \cdot \|)\).

Definition 3.1. Let \(I \subseteq 2^\mathbb{N} \) be an admissible ideal, \(f \) be a modulus function and \(p = (p_k) \) be a bounded sequence of positive (strictly) real numbers, then for each \(\epsilon > 0 \) and \(z \in X \), we define the following sequence spaces:

\[
V^f_0[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p]
= \left\{ x = (x_k) \in S^2_X : \{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq \delta \} \in I \right\},
\]

\[
V^f[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p]
= \left\{ x = (x_k) \in S^2_X : \{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq \delta \} \in I \right\}, \text{ for } L > 0,
\]

\[
V^f[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p]_\infty
= \left\{ x = (x_k) \in S^2_X : \{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq K \} \in I \right\}, \text{ for } K > 0.
\]

We can write it as \(x = (x_k) \in V^f[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p] \) or \(x_k \to L(V^f[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p]) \).

Remark 3.1. If we take \(f(x) = x \) in the above definition, then we obtain \(V^x[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p] \) instead of \(V^x[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p] \) and \(V^x[\| \cdot \|, \| \cdot \|, \Delta^m, \lambda, p] \) respectively.
Theorem 3.1. \(V_f^T[||.,||, \Delta^m, \lambda, p]_0, \ V_f^T[||.,||, \Delta^m, \lambda, p] \) and \(V_f^T[||.,||, \Delta^m, \lambda, p]_\infty \) are linear spaces over \(\mathbb{C} \).

Proof. We will prove the assertion for \(V_f^T[||.,||, \Delta^m, \lambda, p]_0 \) only and the others can be proved similarly.

We assume \(x = (x_k), y = (y_k) \in V_f^T[||.,||, \Delta^m, \lambda, p]_0 \) and \(\alpha, \beta \in \mathbb{C} \). Then for any \(\delta > 0 \) and for each \(z \in X \), the sets

\[
A_\delta(\lambda) = \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\alpha \Delta^m x_k + \beta \Delta^m y_k, z\|)]^{p_k} \geq \frac{\delta}{2} \right\},
\]

\[
B_\delta(\lambda) = \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq \frac{\delta}{2} \right\}
\]

belong to \(\mathcal{I} \).

Since \(f \) be a modulus function and \(||.,|| \) is a 2-norm function, then the following inequality holds

\[
\frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\alpha \Delta^m x_k + \beta \Delta^m y_k, z\|)]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\alpha \Delta^m x_k, z\|) + f(\|\beta \Delta^m y_k, z\|)]^{p_k} \leq C.(M_\alpha)^H \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k}
\]

\[
+ C.(M_\beta)^H \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m y_k, z\|)]^{p_k}, \quad \text{by (1)}
\]

where \(M_\alpha, M_\beta \) are positive integers such that \(|\alpha| \leq M_\alpha \) and \(|\beta| \leq M_\beta \). For given \(\delta > 0 \) and for all \(z \in X \), we have the following containment

\[
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\alpha \Delta^m x_k + \beta \Delta^m y_k, z\|)]^{p_k} \geq \delta \right\}
\]

\[
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq \frac{\delta}{2C.(M_\alpha)^H} \right\}
\]

\[
\cup \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m y_k, z\|)]^{p_k} \geq \frac{\delta}{2C.(M_\beta)^H} \right\}.
\]

By using (2) and (3), the set \(\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\alpha \Delta^m x_k + \beta \Delta^m y_k, z\|)]^{p_k} \geq \delta \right\} \in \mathcal{I} \). This completes the proof. \(\square \)
Theorem 3.2. Let $p = (p_k)$ be a sequence of strictly positive real numbers, then for $m \geq 1$ the inclusion $V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0,\infty} \subset V_f[[\cdot, \cdot], \Delta^m, \lambda, p]_{0,\infty}$ is strict.

Proof. We will prove the result for $V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0}$ only. The others can be proved similarly.

Suppose $x \in V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0}$, by definition for every $\delta > 0$ and $z \in X$, we have

$$\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^{m-1}x_k, z\|)]^{p_k} \geq \delta \right\} \in \mathcal{I}.$$

By the property of modulus function, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^{m-1} x_k, z\|)]^{p_k} + f(\|\Delta^{m-1} x_{k+1}, z\|)]^{p_k} \leq C, \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^{m-1} x_{k+1}, z\|)]^{p_k}$$

by (1).

Now for given $\delta > 0$, we have

$$\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k, z\|)]^{p_k} \geq \delta \right\}$$

$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^{m-1} x_k, z\|)]^{p_k} \geq \frac{\delta}{2C} \right\}$$

$$\cup \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^{m-1} x_{k+1}, z\|)]^{p_k} \geq \frac{\delta}{2C} \right\},$$

for each $z \in X$.

Since $x \in V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0}$, it follows that the sets on the right hand side in the above containment belong to \mathcal{I}. Hence $x \in V_f[[\cdot, \cdot], \Delta^m, \lambda, p]_{0}$. To show that the inclusion is strict, we give the following example:

We take $f(x) = x$, $\lambda_n = n$ and consider a sequence $x = (x_k) = k^{m-1}$, then $x \in V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0}$ but does not belong to $V_f[[\cdot, \cdot], \Delta^{m-1}, \lambda, p]_{0}$ for $p_k = 1$, $k \in \mathbb{N}$. This shows that the inclusion is strict. \hfill \Box

Theorem 3.3. Let f', f'' are modulus functions. If $\limsup_{t \to \infty} \frac{f'(t)}{f''(t)} = P > 0$, then $V_f^T[[\cdot, \cdot], \Delta^m, \lambda, p] \subset V_{f''}^T[[\cdot, \cdot], \Delta^m, \lambda, p].$
Proof. Let \(\limsup_{t \to \infty} \frac{f'(t)}{f''(t)} = P \), then there exists a constant \(M > 0 \) such that \(f'(t) \geq Mf''(t) \), for all \(t \geq 0 \). Therefore for each \(z \in X \), we have

\[
\frac{1}{\lambda_n} \sum_{k \in I_n} [f'(||\Delta^m x_k - L, z||)]^{p_k} \geq (M)^H \frac{1}{\lambda_n} \sum_{k \in I_n} [f''(||\Delta^m x_k - L, Z||)]^{p_k}.
\]

Then for every \(\delta > 0 \) and \(z \in X \), we have following relationship

\[
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f''(||\Delta^m x_k - L, Z||)]^{p_k} \geq \delta \right\}
\subseteq \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f'(||\Delta^m x_k - L, z||)]^{p_k} \geq \delta, (K)^H \right\}.
\]

Since \(x \in V_f^I[\| \cdot \|, \Delta^m, \lambda, p] \), it follows that the set on left side of the above containment belong to \(I \). Which gives that \(x \in V_f^I[\| \cdot \|, \Delta^m, \lambda, p] \).

Theorem 3.4. If \(f, f' \) and \(f'' \) are modulus functions, then:

(i) \(V_f^I[\| \cdot \|, \Delta^m, \lambda, p] \subset V_{f'f'}^I[\| \cdot \|, \Delta^m, \lambda, p] \),

(ii) \(V_f^I[\| \cdot \|, \Delta^m, \lambda, p] \cap V_{f''}^I[\| \cdot \|, \Delta^m, \lambda, p] \subset V_{f'f''}^I[\| \cdot \|, \Delta^m, \lambda, p] \).

Proof. (i) Let \(x = (x_k) \in V_f^I[\| \cdot \|, \Delta^m, \lambda, p] \), then for every \(\epsilon > 0 \) and for some \(L > 0 \) such that

\[
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f'(||\Delta^m x_k - L, z||)]^{p_k} \geq \epsilon \right\} \in I,
\]

for each \(z \in X \). For given \(\epsilon > 0 \), we choose \(\delta \in (0, 1) \) such that \(f(t) < \epsilon \) for all \(0 < t < \delta \). On the other hand, we have

\[
\frac{1}{\lambda_n} \sum_{k \in I_n} [f' \circ f'(||\Delta^m x_k - L, z||)]^{p_k}
= \frac{1}{\lambda_n} \sum_{k \in I_n, |f'(||\Delta^m x_k - L, z||)|^{p_k} < \delta} [f \circ f'(||\Delta^m x_k - L, z||)]^{p_k}
+ \frac{1}{\lambda_n} \sum_{k \in I_n, |f'(||\Delta^m x_k - L, z||)|^{p_k} \geq \delta} [f \circ f'(||\Delta^m x_k - L||)]^{p_k}
\leq (\epsilon)^H + \max(1, (2f(1))^{1/H}) \frac{1}{\lambda_n} \sum_{k \in I_n} [f'(||\Delta^m x_k - L, z||)]^{p_k} \text{ by Lemma 2.1.}
\]
By using (5), we obtain $x \in V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$.

(ii) The result of the theorem is proved by using the following inequality

$$\frac{1}{\lambda_n} \sum_{k \in I_n} [(f' + f'')(\|\Delta^m x_k - L, z\|)]^{p_k} \leq \frac{C}{\lambda_n} \sum_{k \in I_n} [f'(\|\Delta^m x_k - L, z\|)]^{p_k}$$

$$+ \frac{C}{\lambda_n} \sum_{k \in I_n} [f''(\|\Delta^m x_k - L, z\|)]^{p_k},$$

where $\sup_k p_k = H$ and $C = \max(1, 2^{H-1})$.

Theorem 3.5. Let f be a modulus function and $p = (p_k)$ be a sequence of positive real numbers, then $V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p] \subseteq V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$.

Proof. This can be proved by using the techniques similar to those used in Theorem 3.4 (i).

Theorem 3.6. Let f be a modulus function. If $\limsup_{t \to \infty} \frac{f(t)}{t} = M > 0$, then $V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p] \subseteq V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$.

Proof. Suppose $x = (x_k) \in V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$ and $\limsup_{t \to \infty} \frac{f(t)}{t} = M > 0$, then there exists a constant $K > 0$ such that $f(t) \geq Kt$, for all $t \geq 0$. Which implies that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k - L, z\|)]^{p_k} \geq (K)^H \frac{1}{\lambda_n} \sum_{k \in I_n} \|\Delta^m x_k - L, z\|^{p_k},$$

for each $z \in X$. Which gives the result.

Theorem 3.7. If $0 < p_k \leq q_k$ and $(\frac{q_k}{p_k})$ be bounded, then $V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, q] \subset V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$.

Proof. The proof of this theorem is omitted.

4. $\mathcal{S}^\Delta^m_\lambda[\|\cdot\|, \mathcal{I}]$-convergence

In this section, we define a new class of generalized statistical convergent sequences with the help of an ideal and difference sequences. Furthermore, we also establish a strong connection between this convergence and the sequence space $V_f^{\mathcal{I}}[\|\cdot\|, \Delta^m, \lambda, p]$.
Definition 4.1. Let $I \subseteq \mathcal{P}(\mathbb{N})$ be a non-trivial ideal and $\lambda = (\lambda_n)$ be a non-decreasing sequence. A sequence $x = (x_k) \in X$ is said to be $S_\lambda^m(I)$-convergent to a number L provided that for every $\epsilon > 0$, $\delta > 0$ and $z \in X$, the set $\{n \in \mathbb{N} : \frac{1}{\lambda_n} \max \{k \mid k \in I_n : \|\Delta^m x_k - L, z\|\} \geq \epsilon\} \subseteq I$. In this case, we write $S_\lambda^m(I) - \lim_{k \to \infty}^{} \|x_k, z\| = \|L, z\|$. Let $S_\lambda^m(||, ||, I)$ denotes the set of all $S_\lambda^m(I)$-convergent sequences in X.

Theorem 4.1. Let f be a modulus function and $0 < \inf_k p_k = h \leq p_k \leq \sup_k p_k = H < \infty$, then $V_f^T(||, ||, \Delta^m, \lambda, p) \subset S_\lambda^m(||, ||, I)$.

Proof. Suppose $x \in V_f^T(||, ||, \Delta^m, \lambda, p)$ and $\epsilon > 0$ be given. Then for each $z \in X$, we obtain

$$
\frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k - L, z\|)]^{p_k} = \frac{1}{\lambda_n} \sum_{k \in I_n\|\Delta^m x_k - L, z\| \geq \epsilon} [f(\|\Delta^m x_k - L, z\|)]^{p_k} + \frac{1}{\lambda_n} \sum_{k \in I_n\|\Delta^m x_k - L, z\| < \epsilon} [f(\|\Delta^m x_k - L, z\|)]^{p_k} \geq \frac{1}{\lambda_n} \sum_{k \in I_n\|\Delta^m x_k - L, z\| \geq \epsilon} [f(\|\Delta^m x_k - L, z\|)]^{p_k} \geq \frac{1}{\lambda_n} \min \{[f(\epsilon)]^h, [f(\epsilon)]^H\} \geq K \frac{1}{\lambda_n} \min \{k \in I_n : \|\Delta^m x_k - L, z\| \geq \epsilon\},
$$

where $K = \min \{[f(\epsilon)]^h, [f(\epsilon)]^H\}$. Then for every $\delta > 0$ and $z \in X$, we have

$$
\left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \max \{k \mid k \in I_n : \|\Delta^m x_k - L, z\| \geq \epsilon\} \geq \delta \right\} \subseteq \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^m x_k - L, z\|)]^{p_k} \geq K. \delta \right\}.
$$

Since $x_k \to L(V_f^T(||, ||, \Delta^m, \lambda, p))$ so that $S_\lambda^m(I) - \lim_{k \to \infty}^{} \|x_k, z\| = \|L, z\|$. \qed

Theorem 4.2. Let $p = (p_k)$ be a sequence of strictly positive real numbers and f be a bounded modulus function. If $0 < \inf_k p_k = h \leq p_k \leq \sup_k p_k = H < \infty$, then $S_\lambda^m(||, ||, I) \subset V_f^T(||, ||, \Delta^m, \lambda, p)$.

Proof. Using the same technique of [8, Theorem 3.5], it is easy to prove this theorem. \qed
Theorem 4.3. If f be bounded and $0 < \inf_k p_k = h \leq p_k \leq \sup_k p_k = H < \infty$, then $S_{\Delta}^m(\|., .\|, \mathcal{I}) = V_f^Z[\|., .\|, \Delta^m, \lambda, p]$ if and only if f is bounded.

Proof. This part can be obtained by combining Theorems 4.1 and 4.2.

Conversely. Suppose f is unbounded defined by $f(k) = k$ for all $k \in \mathbb{N}$. We take a fixed set $A \in \mathcal{I}$, where \mathcal{I} be an admissible ideal and define $x = (x_k)$ as follows:

$$x_k = \begin{cases} k^{m+1}, & \text{for } n - \lfloor \sqrt[n]{\lambda_n} \rfloor + 1 \leq k \leq n \notin A, \\ k^{m+1}, & \text{for } n - \lambda_n + 1 \leq k \leq n, \in A, \\ 0, & \text{otherwise.} \end{cases}$$

For given $\epsilon > 0$ and for each $z \in X$, we have $\lim_{n \to \infty} \frac{1}{X_n} \{ k \in I_n : \|\Delta^m x_k - 0, z\| \geq \epsilon \} \leq \frac{\lfloor \sqrt[n]{\lambda_n} \rfloor}{\lambda_n} \to 0$ for $n \notin A$. Hence for $\delta > 0$, there exists a positive integer n_0 such that $\frac{1}{X_n} \{ k \in I_n : \|\Delta^m x_k - 0, z\| \geq \epsilon \} < \delta$ for $n \notin A$ and $n \geq n_0$. Now, we have $\{ n \in \mathbb{N} : \frac{1}{X_n} \{ k \in I_n : \|\Delta^m x_k - 0, z\| \geq \epsilon \} \geq \delta \} \subset \{ A \cup (1, 2, \cdots, n_0 - 1) \}$. Since \mathcal{I} be an admissible ideal. It follows that $S_{\Delta}^m(\mathcal{I}) - \lim_{k \to \infty} \|x_k, z\| \to 0$ for each $z \in X$.

On the other hand, if we take $p_k = 1$, for all $k = 1, 2, \cdots$, then $x_k \notin V_f^Z[\|., .\|, \Delta^m, \lambda, p]$. This contradicts the fact $S_{\Delta}^m(\|., .\|, \mathcal{I}) = V_f^Z[\|., .\|, \Delta^m, \lambda, p]$, so our supposition is wrong.

5. Acknowledgements

The authors express their sincere thanks to the reviewers and Prof. Dr. T. Precupanu for their valuable suggestions towards the improvement of the paper.

REFERENCES

8. Et, M.; Altın, Y.; Altınok, H. – On some generalized difference sequence spaces defined by a modulus function, Filomat, 17 (2003), 23–33.

Received: 28.VII.2012
Revised: 20.VII.2013
Accepted: 29.VII.2013