RINGS WHOSE MODULES ARE ⊕-COFINITELY SUPPLEMENTED

BY

ERGÜL TÜRKMEN

Abstract. It is known that a commutative ring R is an artinian principal ideal ring if and only if every left R-module is $⊕$-supplemented. In this paper, we show that a commutative ring R is a serial ring if every left R-module is $⊕$-cofinitely supplemented. The converse holds if R is a max ring. Moreover, we study maximally $⊕$-supplemented modules as a proper generalization of $⊕$-cofinitely supplemented modules. Using these modules, we also prove that a ring R is semiperfect if and only if every projective left R-module with small radical is supplemented.

Mathematics Subject Classification 2010: 16G10, 16D10.

Key words: supplement submodule, cofinite submodule, $⊕$-cofinitely supplemented module, maximally $⊕$-supplemented module, semiperfect ring, max ring, artinian principal ideal ring.

1. Introduction

Throughout this study by a ring R we mean an associative ring with identity and by an R-module we mean an arbitrary unital left R-module. A submodule N of an R-module M will be denoted by $N \leq M$. A submodule $N \leq M$ is called small (in M) and written by $N << M$, if $M \neq N + L$ for every proper submodule L of M. Let M be a module. M is called supplemented if every submodule N of M has a supplement, that is a submodule K minimal with respect to $N + K = M$. K is a supplement of N in M if and only if $N + K = M$ and $N \cap K << K$ ([17]). Clearly, supplements are a generalization of direct summands. In [12], a module M is called $⊕$-supplemented if every submodule N of M has a supplement that is a direct summand of M.
Let M be a module and $N \leq M$. N is said to be cofinite if M/N is finitely generated. Maximal submodules are cofinite. M is said to be cofinitely supplemented if every cofinite submodule of M has a supplement in M ([1]). It is clear that every supplemented module is cofinitely supplemented. It is shown in [1, Theorem 2.8] that a module M is cofinitely supplemented if and only if every maximal submodule has a supplement in M. In light of the characterization, we call a module M maximally \oplus-supplemented if every maximal submodule of M has a supplement that is a direct summand of M.

ÇALIŞCI and PANCAR [5] call a module M \oplus-cofinitely supplemented if every cofinite submodule N of M has a supplement that is a direct summand of M. From these definitions, every \oplus-cofinitely supplemented module is maximally \oplus-supplemented. Also, a maximally \oplus-supplemented module with the property (SSP) is \oplus-cofinitely supplemented by [5, Theorem 2.3], but it is not generally that every maximally \oplus-supplemented module is \oplus-cofinitely supplemented (see Example 2.2).

Let $f : P \rightarrow M$ be an epimorphism. XUE [18] calls f a (generalized) cover if $(\text{Ker}(f) \leq \text{Rad}(P)) \text{Ker}(f) \ll P$, and calls a (generalized) cover f a (generalized) projective cover if P is a projective module. In the spirit of [18], a module M is said to be (generalized) semiperfect if every factor module of M has a (generalized) projective cover.

A ring R is left (semi) perfect if every (finitely generated) left R-module has a projective cover ([10]).

The aim of this paper is to characterize the rings whose modules are \oplus-cofinitely supplemented. In particular, we prove that, for a commutative ring R, if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring. If R is a max ring, the converse holds. It follows that a commutative max ring R is an artinian principal ideal ring if and only if every left R-module is \oplus-cofinitely supplemented if and only if every left R-module is maximally \oplus-supplemented. Moreover, we obtain various properties of maximally \oplus-supplemented modules. Every projective maximally \oplus-supplemented, w-local module is local. We also prove that a ring R is semiperfect if and only if every projective left R-module with small radical is supplemented.

2. Maximally \oplus-supplemented modules

In this section, we develop some properties of maximally \oplus-supplemented
modules. Using these modules, we give a new characterization of semiperfect rings.

Let R be any ring and let M be an R-module. By $\text{Rad}(M)$, we denote the radical of M. M is called local if $\text{Rad}(M)$ is a maximal submodule and M is finitely generated. Local modules are \oplus-supplemented. Note that, from [17, 41.1(3)], supplements of a maximal submodule are local. A ring R is local if R_R (or R_R) is local.

To show that maximally \oplus-supplemented modules are a proper generalization of \oplus-cofinitely supplemented modules, we need the following simple Lemma.

Lemma 2.1. Let M be a module and N be a proper submodule of M. If K is a local submodule of M such that $M = N + K$, then K is a supplement of N in M.

Proof. By our assumption, it suffices to prove that $N \cap K$ is small in K. To see this, let $N \cap K + L = K$ for some submodule L of K. Since K is finitely generated, the submodule $N \cap K$ is contained in $\text{Rad}(K)$ and so we have $K = N \cap K + L = \text{Rad}(K) + L$. This implies that $L = K$. Hence, K is a supplement of N in M. □

Example 2.2. Let R be a commutative local ring which is not valuation. Let M be the R-module in [9, Example 2.3]. M is not \oplus-supplemented. Since finitely generated \oplus-cofinitely supplemented modules are \oplus-supplemented, M is not a \oplus-cofinitely supplemented module. Let N be any maximal submodule of M. By [9, Remark 3.4], there exists a local direct summand K of M such that $M = N + K$. It follows from Lemma 2.1 that N has a supplement that is a direct summand of M. Thus M is maximally \oplus-supplemented.

A module M is said to have the Summand Sum Property (SSP) if the sum of two direct summands of M is again a direct summand of M.

Let M be a non-zero module. M is called indecomposable if the only direct summands of M are 0 and M. Note that an indecomposable module has the property (SSP).

Corollary 2.3. Let M be an indecomposable module. M is \oplus-cofinitely supplemented if and only if it is maximally \oplus-supplemented.

For the next result see [5, Lemma 2.2].
Corollary 2.4. A module M is maximally \oplus-supplemented if and only if $\frac{M}{\text{Loc}^{\oplus}(M)}$ has no a maximal submodule, where $\text{Loc}^{\oplus}(M)$ is the direct sum of local direct summands of M.

A module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M. For Theorem 2.6, we need the following key Lemma.

Lemma 2.5. Let M be a projective module. M is maximally \oplus-supplemented if and only if every simple factor module of M has a projective cover.

Proof. Let N be any maximal submodule of M. By [17, 42.1], $\frac{M}{N}$ has a projective cover if and only if there exists a direct summand K of M such that $M = N + K$ and $N \cap K \ll K$. Then the proof follows. □

Theorem 2.6. For a projective coatomic module M, the following are equivalent.

1. M is maximally \oplus-supplemented.
2. M is \oplus-cofinitely supplemented.
3. M is \oplus-supplemented.
4. M is semiperfect.

Proof. (4) \implies (3) \implies (2) \implies (1) are obvious.

(1) \implies (4) Let M be a maximally \oplus-supplemented module. By Lemma 2.5, every simple factor module of M has a (generalized) projective cover. Since M is coatomic, M is generalized semiperfect according to [2, Theorem 2.4]. It follows from [14, Theorem 1.3] that M is semiperfect. □

Let R be a ring. R is called semilocal if $\frac{R}{\text{Rad}(R)}$ is semisimple. Note that semilocal rings properly contains semiperfect rings.

Corollary 2.7. Let R be a semilocal ring and let M be a projective R-module with small radical. M is semiperfect if and only if it is maximally \oplus-supplemented.

Proof. Necessity is clear. Conversely, suppose that M is maximally \oplus-supplemented. Let N be any proper submodule of M. Note that $N + \text{Rad}(M) \neq M$. Since R is semilocal, by [11, Theorem 3.5], $\frac{M}{\text{Rad}(M)}$ is
RINGS WHOSE MODULES ARE \oplus-COFINITELY SUPPLEMENTED

semisimple, and so $\frac{N + \text{Rad}(M)}{\text{Rad}(M)}$ is contained in a maximal submodule $\frac{K}{\text{Rad}(M)}$ of $\frac{M}{\text{Rad}(M)}$. Therefore, $N \leq K$. So M is coatomic. Applying Theorem 2.6, we have that M is semiperfect. \Box

Theorem 2.8. Every direct sum of maximally \oplus-supplemented modules is maximally \oplus-supplemented.

Proof. For any index set I, let $M = \bigoplus_{i \in I} M_i$, where each M_i is maximally \oplus-supplemented. Let N be any maximal submodule of M. So there exists an element i_0 of I such that $M = N + M_{i_0}$. It is easy to see that $N \cap M_{i_0}$ is a maximal submodule of M_{i_0}. By the hypothesis, we can write $M_{i_0} = N \cap M_{i_0} + K$ and $(N \cap M_{i_0}) \cap K << K$ for some direct summand K of M_{i_0}. Note that K is also a direct summand K of M. Then,

$$M = N + M_{i_0} = N + N \cap M_{i_0} + K = N + K$$

and

$$(N \cap M_{i_0}) \cap K = N \cap (M_{i_0} \cap K) = N \cap K << K.$$

Hence M is maximally \oplus-supplemented. \Box

A projective module M is \oplus-cofinitely supplemented if and only if every direct summand of M is \oplus-cofinitely supplemented (see [6, Corollary 2.10]). Now we give an analogous characterization of this fact for maximally \oplus-supplemented modules.

Proposition 2.9. A projective module M is maximally \oplus-supplemented if and only if every direct summand of M is maximally \oplus-supplemented.

Proof. (\Rightarrow) Let K be a direct summand of M. Then we have the decomposition $M = K \oplus L$ for some submodule $L \leq M$. By [10, 5.3.4.(b)], K is projective as direct summand of the projective module M. Let $\frac{K}{N}$ be any simple factor module of K. For the projection $\pi : M \rightarrow K$ and $\varphi : K \rightarrow \frac{K}{N}$, let $\phi = \varphi \pi$. Therefore, $\phi : M \rightarrow \frac{K}{N}$ is an epimorphism and $\text{Ker}(\phi) = N \oplus L$. So we can write the isomorphism $h : \frac{M}{N \oplus L} \rightarrow \frac{K}{N}$.

Thus $\frac{M}{N \oplus L}$ is simple. By Lemma 2.5, $\frac{M}{N \oplus L}$ has a projective cover $f : P \rightarrow \frac{M}{N \oplus L}$, where $\text{Ker}(f) << P$.

Let $g = hf$. It follows that $g : P \rightarrow \frac{K}{N}$ is an epimorphism and $\text{Ker}(g) << P$. That is, g is a projective cover of $\frac{K}{N}$. Hence K is maximally \oplus-supplemented by Lemma 2.5.
The following example shows that, in general, a factor module of a maximally \(\oplus\)-supplemented module need not be maximally \(\oplus\)-supplemented.

Example 2.10. Let \(R\) be a commutative local ring which is not valuation ring. Then we have a finitely presented factor module \(M\) of \(R^{(n)}\) \((n \geq 2)\) such that \(M\) can not be generated by fewer than \(n\) elements. According to Theorem 2.8, \(R^{(n)}\) is maximally \(\oplus\)-supplemented. Since \(M\) is indecomposable and finitely generated, the notions of \(\oplus\)-supplemented and being maximally \(\oplus\)-supplemented coincide by Corollary 2.3. Therefore \(M\) is \(\oplus\)-supplemented. This is a contradiction by [9, Example 2.2]. Hence \(M\) is not maximally \(\oplus\)-supplemented.

In [4], a module \(M\) is said to be *weakly distributive* if every submodule \(N\) of \(M\) is weak distributive, i.e. \(N = U \cap N + V \cap N\) whenever \(M = U + V\). Now we prove that any factor module of a weakly distributive maximally \(\oplus\)-supplemented module is maximally \(\oplus\)-supplemented.

Proposition 2.11. Let \(M\) be a module. Suppose that \(M\) is weakly distributive. If \(M\) is maximally \(\oplus\)-supplemented, then \(\frac{M}{U}\) is maximally \(\oplus\)-supplemented for every submodule \(U \leq M\). In particular, every direct summand of \(M\) is maximally \(\oplus\)-supplemented.

Proof. Let \(\frac{N}{U}\) be a maximal submodule of \(\frac{M}{U}\). So \(N\) is a maximal submodule of \(M\). Then there exist submodules \(K\) and \(L\) such that \(M = N + K\), \(N \cap K << K\) and \(K \oplus L = M\). By [17, 41.1(7)], \(\frac{K+U}{U}\) is a supplement of \(\frac{N}{U}\) of \(\frac{M}{U}\), i.e. \(\frac{M}{U} = \frac{N}{U} + \frac{(K+U)}{U}\) and \(\frac{N}{U} \cap \frac{(K+U)}{U} << \frac{(K+U)}{U}\). It remains to show that \(\frac{K+U}{U}\) is a direct summand of \(\frac{M}{U}\). Since \(M\) is a weakly distributive module, we have that \(U = K \cap U + L \cap U\). Then,

\[
\left(\frac{K + U}{U}\right) \cap \left(\frac{L + U}{U}\right) = \frac{(K + U) \cap L + U}{U} = \frac{(K + L \cap U) \cap L + U}{U} = \frac{K \cap L + L \cap U + U}{U} = 0.
\]

Hence \(\frac{K+U}{U}\) is a direct summand of \(\frac{M}{U}\). \(\square\)

It is well known that a ring \(R\) is left perfect if and only if every projective left \(R\)-module is \(\oplus\)-supplemented. Now we prove an analogue for semiperfect rings.
Theorem 2.12. A ring R is semiperfect if and only if every projective left R-module is maximally \oplus-supplemented.

Proof. Let M be any projective module. Since R is semiperfect, each simple factor module of M has a projective cover by [17, 42.6]. From Lemma 2.5, we obtain that M is maximally \oplus-supplemented. Conversely, suppose that R is maximally \oplus-supplemented. By Theorem 2.6, R is semiperfect.

Recall that every projective supplemented module is \oplus-supplemented. The following Corollary is an immediate consequence of Corollary 2.7 and Theorem 2.12

Corollary 2.13. Let R be a ring. R is semiperfect if and only if every projective left R-module with small radical is supplemented.

Proof. Suppose that R is a semiperfect ring. Let M be a projective R-module with small radical. By Theorem 2.12, M is maximally \oplus-supplemented. Note that R is semilocal. It follows from Corollary 2.7 that M is semiperfect. Hence, M is a supplemented module. The converse is clear.

In [3], a module M is called w-local if $\text{Rad}(M)$ is maximal in M. Clearly, every local module is w-local but a w-local module need not be local. GERASIMOV and SAKHAEV gave in [7] an example of a projective w-local module, which is not local. R. Ware proved that if R is commutative or Noetherian, then every projective w-local module is local ([16]). Using maximally \oplus-supplemented modules, we obtain the following fact.

Proposition 2.14. A projective maximally \oplus-supplemented, w-local module is local.

Proof. By the hypothesis, there exists a local direct summand N of M such that $M = \text{Rad}(M) + N$ and $N \cap \text{Rad}(M) \ll N$. Let $M = N \oplus K$. It follows from [17, 21.6.(5)] that $\text{Rad}(M) = \text{Rad}(N) \oplus \text{Rad}(K)$. Then, $M = \text{Rad}(M) + N = \text{Rad}(N) \oplus \text{Rad}(K) + N = \text{Rad}(K) \oplus N$. So $K = \text{Rad}(K)$. Therefore, $K = 0$ because K is projective according to [10, 5.3.4 (b)]. Hence $N = M$. That is, M is local.

3. Rings whose modules are \oplus-cofinitely supplemented

It is shown in [8, Theorem 1] that a commutative ring R is an artinian
principal ideal ring if and only if every left R-module is \oplus-supplemented. Our aim is to prove that if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring. It follows that a commutative max ring R is an artinian principal ideal ring if and only if every left R-module is \oplus-cofinitely supplemented if and only if every left R-module is maximally \oplus-supplemented.

Throughout this section, unless otherwise stated, it is assumed that R is a commutative ring.

Recall that a submodule N of M is said to be essential (or large) in M, denoted by $N \leq M$, if $N \cap K \neq 0$ for every non-zero submodule K of M. A module M is said to be uniform if every non-zero submodule of M is essential in M. M is called uniserial if its submodules are linearly ordered by inclusion. We call a commutative ring R uniserial if R is uniserial.

Proposition 3.1. Let R be a local ring and let M be a uniform R-module. Suppose that every submodule of M is maximally \oplus-supplemented. Then M is uniserial.

Proof. By [15, Lemma 6.2], it suffices to show that every finitely generated submodule of M is local. Let K be any finitely generated submodule of M. Then, K contains a maximal submodule N. By the assumption, N has a supplement V in K such that $V \oplus V' = K$ for some submodule V' of K. Note that $V' \subseteq M$. Therefore V is local according to [17, 41.1(3)]. Since M is uniform and N is maximal, we have $V' = 0$. In conclusion $V = K$. □

We denote by $E(M)$ the injective hull of M.

Corollary 3.2. Let R be local ring. If every submodule of $E(R_{\text{Rad}(R)})$ is maximally \oplus-supplemented, R is a uniserial ring.

Proof. Since $E(R_{\text{Rad}(R)})$ is uniform, the proof follows from Proposition 3.1 and [15, Corollary of Lemma 6.2]. □

Theorem 3.3. If every left R-module is maximally \oplus-supplemented, then R is a serial ring. In particular, if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring.

Proof. Assume that every left R-module is maximally \oplus-supplemented. Applying Theorem 2.12, we conclude that R is semiperfect. Then, there exist orthogonal idempotents $\{e_1, e_2, ..., e_n\}$ in R such that $R = Re_1 \oplus$
Let $R = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$ and each Re_i is local. It is easy to see that every left Re_i-module is maximally \oplus-supplemented. It follows from Corollary 3.2 that each Re_i is uniserial. Therefore R is a serial ring. The rest of the proof is clear by definitions.

A ring R is said to be a max ring if every non-zero left R-module has a maximal submodule. Note that a semilocal ring R is left perfect if and only if it is a max ring. Let M be a module.

Corollary 3.4. For a commutative max ring R the following statements are equivalent:

1. R is an artinian principal ideal ring.
2. Every left R-module is maximally \oplus-supplemented.
3. Every left R-module is \oplus-cofinitely supplemented.

Proof. (1) \implies (3) and (3) \implies (2) are clear.

(2) \implies (1) By Theorem 3.3, we have $R = Re_1 \oplus Re_2 \oplus \cdots \oplus Re_n$, where Re_i is uniserial. Since R is a max ring, it is perfect. Therefore, for all $i \in \{1,2,...,n\}$, Re_i is perfect. It follows that every non-zero ideal I of Re_i has a maximal submodule, say K. By the hypothesis and the proof of Theorem 3.3, every Re_i-module is maximally \oplus-supplemented, and so there exist ideals L and N of Re_i such that L is a supplement of K and $Re_i = L \oplus N$. Then L is local. Since Re_i is uniserial, we obtain that $N = 0$. Therefore K is local. So Re_i is a principal ideal ring. Hence R is an artinian principal ideal ring by [10, 11.6.4.(c)]. This completes the proof.

A module M is called \oplus-cofinitely Rad-supplemented if every cofinite submodule N of M has a Rad-supplement that is a direct summand of M. Here a submodule K of M is called Rad-supplement of N in M if $M = N + K$ and $N \cap K \subseteq \text{Rad}(K)$ ([13]). Every \oplus-cofinitely supplemented module is \oplus-cofinitely Rad-supplemented; however the converse is not always true (see [13, Example 2.2]). The following Lemma can be easily proven.

Lemma 3.5. Let $N, K \leq M$ be modules and let K be a Rad-supplement of N in M. If $\text{Rad}(K) \ll K$, then K is a supplement of N in M.

Proposition 3.6. Every \oplus-cofinitely Rad-supplemented module over a max ring is \oplus-cofinitely supplemented.
Proof. Let R be a max ring and let M be any \oplus-cofinitely Rad-supplemented R-module. Suppose that N is a cofinite submodule of M. By the hypothesis, there exists a direct summand K of M such that $M = N + K$ and $N \cap K \leq \text{Rad}(K)$. Since R is a max ring, $\text{Rad}(K)$ is small in K. Then, by Lemma 3.5, K is a supplement of N in M. Hence M is \oplus-cofinitely supplemented.

Using this fact and Corollary 3.4, we obtain the next result.

Corollary 3.7. For a commutative max ring R the following statements are equivalent:

1. R is an artinian principal ideal ring.
2. Every left R-module is maximally \oplus-supplemented.
3. Every left R-module is \oplus-cofinitely supplemented.
4. Every left R-module is \oplus-cofinitely Rad-supplemented.

Proposition 3.8. Let M be a weakly distributive module and $\Phi : M \to N$ be an epimorphism of modules. If M is \oplus-cofinitely (Rad-) supplemented module, then N is \oplus-cofinitely (Rad-) supplemented.

Proof. The proof is as in the case of maximally \oplus-supplemented modules. \square

Acknowledgements. The author thanks the referee for valuable comments.

REFERENCES

Received: 19.VI.2012
Revised: 4.IX.2013
Accepted: 30.IX.2013

Amasya University,
Faculty of Art and Science,
Department of Mathematics,
Ipekköy, Amasya,

TURKEY

ergulturkmen@hotmail.com