RINGS WHOSE MODULES ARE \oplus-COFINITELY SUPPLEMENTED

BY

ERGÜL TÜRKMEN

Abstract. It is known that a commutative ring R is an artinian principal ideal ring if and only if every left R-module is \oplus-supplemented. In this paper, we show that a commutative ring R is a serial ring if every left R-module is \oplus-cofinitely supplemented. The converse holds if R is a max ring. Moreover, we study maximally \oplus-supplemented modules as a proper generalization of \oplus-cofinitely supplemented modules. Using these modules, we also prove that a ring R is semiperfect if and only if every projective left R-module with small radical is supplemented.

Mathematics Subject Classification 2010: 16G10, 16D10.

Key words: supplement submodule, cofinite submodule, \oplus-cofinitely supplemented module, maximally \oplus-supplemented module, semiperfect ring, max ring, artinian principal ideal ring.

1. Introduction

Throughout this study by a ring R we mean an associative ring with identity and by an R-module we mean an arbitrary unital left R-module. A submodule N of an R-module M will be denoted by $N \leq M$. A submodule $N \leq M$ is called small (in M) and written by $N << M$, if $M \neq N + L$ for every proper submodule L of M. Let M be a module. M is called supplemented if every submodule N of M has a supplement, that is a submodule K minimal with respect to $N + K = M$. K is a supplement of N in M if and only if $N + K = M$ and $N \cap K << K$ ([17]). Clearly, supplements are a generalization of direct summands. In [12], a module M is called \oplus-supplemented if every submodule N of M has a supplement that is a direct summand of M.
Let M be a module and $N \leq M$. N is said to be cofinite if $\frac{M}{N}$ is finitely generated. Maximal submodules are cofinite. M is said to be cofinitely supplemented if every cofinite submodule of M has a supplement in M ([1]). It is clear that every supplemented module is cofinitely supplemented. It is shown in [1, Theorem 2.8] that a module M is cofinitely supplemented if and only if every maximal submodule has a supplement in M. In light of the characterization, we call a module M maximally \oplus-supplemented if every maximal submodule of M has a supplement that is a direct summand of M.

ÇALIŞICI and PANCAR [5] call a module $M \oplus$-cofinitely supplemented if every cofinite submodule N of M has a supplement that is a direct summand of M. From these definitions, every \oplus-cofinitely supplemented module is maximally \oplus-supplemented. Also, a maximally \oplus-supplemented module with the property (SSP) is \oplus-cofinitely supplemented by [5, Theorem 2.3], but it is not generally that every maximally \oplus-supplemented module is \oplus-cofinitely supplemented (see Example 2.2).

Let $f : P \rightarrow M$ be an epimorphism. XUE [18] calls f a (generalized) cover if $(\text{Ker}(f) \leq \text{Rad}(P)) \text{Ker}(f) \ll P$, and calls a (generalized) cover f a (generalized) projective cover if P is a projective module. In the spirit of [18], a module M is said to be (generalized) semiperfect if every factor module of M has a (generalized) projective cover.

A ring R is left (semi) perfect if every (finitely generated) left R-module has a projective cover ([10]).

The aim of this paper is to characterize the rings whose modules are \oplus-cofinitely supplemented. In particular, we prove that, for a commutative ring R, if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring. If R is a max ring, the converse holds. It follows that a commutative max ring R is an artinian principal ideal ring if and only if every left R-module is \oplus-cofinitely supplemented if and only if every left R-module is maximally \oplus-supplemented. Moreover, we obtain various properties of maximally \oplus-supplemented modules. Every projective maximally \oplus-supplemented, w-local module is local. We also prove that a ring R is semiperfect if and only if every projective left R-module with small radical is supplemented.

2. Maximally \oplus-supplemented modules

In this section, we develop some properties of maximally \oplus-supplemented
modules. Using these modules, we give a new characterization of semiperfect rings.

Let R be any ring and let M be an R-module. By $\text{Rad}(M)$, we denote the radical of M. M is called local if $\text{Rad}(M)$ is a maximal submodule and M is finitely generated. Local modules are \oplus-supplemented. Note that, from [17, 41.1(3)], supplements of a maximal submodule are local. A ring R is local if R_R (or R_R) is local.

To show that maximally \oplus-supplemented modules are a proper generalization of \oplus-cofinitely supplemented modules, we need the following simple Lemma.

Lemma 2.1. Let M be a module and N be a proper submodule of M. If K is a local submodule of M such that $M = N + K$, then K is a supplement of N in M.

Proof. By our assumption, it suffices to prove that $N \cap K$ is small in K. To see this, let $N \cap K + L = K$ for some submodule L of K. Since K is finitely generated, the submodule $N \cap K$ is contained in $\text{Rad}(K)$ and so we have $K = N \cap K + L = \text{Rad}(K) + L$. This implies that $L = K$. Hence, K is a supplement of N in M. \[\square\]

Example 2.2. Let R be a commutative local ring which is not valuation. Let M be the R-module in [9, Example 2.3]. M is not \oplus-supplemented. Since finitely generated \oplus-cofinitely supplemented modules are \oplus-supplemented, M is not a \oplus-cofinitely supplemented module. Let N be any maximal submodule of M. By [9, Remark 3.4], there exists a local direct summand K of M such that $M = N + K$. It follows from Lemma 2.1 that N has a supplement that is a direct summand of M. Thus M is maximally \oplus-supplemented.

A module M is said to have the Summand Sum Property (SSP) if the sum of two direct summands of M is again a direct summand of M.

Let M be a non-zero module. M is called indecomposable if the only direct summands of M are 0 and M. Note that an indecomposable module has the property (SSP).

Corollary 2.3. Let M be an indecomposable module. M is \oplus-cofinitely supplemented if and only if it is maximally \oplus-supplemented.

For the next result see [5, Lemma 2.2].
Corollary 2.4. A module M is maximally \oplus-supplemented if and only if $\frac{M}{\text{Loc}^\oplus(M)}$ has no a maximal submodule, where $\text{Loc}^\oplus(M)$ is the direct sum of local direct summands of M.

A module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M. For Theorem 2.6, we need the following key Lemma.

Lemma 2.5. Let M be a projective module. M is maximally \oplus-supplemented if and only if every simple factor module of M has a projective cover.

Proof. Let N be any maximal submodule of M. By [17, 42.1], $\frac{M}{N}$ has a projective cover if and only if there exists a direct summand K of M such that $M = N + K$ and $N \cap K << K$. Then the proof follows. □

Theorem 2.6. For a projective coatomic module M, the following are equivalent.

1. M is maximally \oplus-supplemented.
2. M is \oplus-cofinitely supplemented.
3. M is \oplus-supplemented.
4. M is semiperfect.

Proof. (4) \implies (3) \implies (2) \implies (1) are obvious.

(1) \implies (4) Let M be a maximally \oplus-supplemented module. By Lemma 2.5, every simple factor module of M has a (generalized) projective cover. Since M is coatomic, M is generalized semiperfect according to [2, Theorem 2.4]. It follows from [14, Theorem 1.3] that M is semiperfect. □

Let R be a ring. R is called semilocal if $\frac{R}{\text{rad}(R)}$ is semisimple. Note that semilocal rings properly contains semiperfect rings.

Corollary 2.7. Let R be a semilocal ring and let M be a projective R-module with small radical. M is semiperfect if and only if it is maximally \oplus-supplemented.

Proof. Necessity is clear. Conversely, suppose that M is maximally \oplus-supplemented. Let N be any proper submodule of M. Note that $N + \text{Rad}(M) \neq M$. Since R is semilocal, by [11, Theorem 3.5], $\frac{M}{\text{Rad}(M)}$ is
To be included in the generated document.
(⇐) By Theorem 2.8. □

The following example shows that, in general, a factor module of a maximally ⊕-supplemented module need not be maximally ⊕-supplemented.

Example 2.10. Let R be a commutative local ring which is not valuation ring. Then we have a finitely presented factor module M of R^n ($n \geq 2$) such that M can not be generated by fewer then n elements. According to Theorem 2.8, R^n is maximally ⊕-supplemented. Suppose that M is maximally ⊕-supplemented. Since M is indecomposable and finitely generated, the notions of ⊕-supplemented and being maximally ⊕-supplemented coincide by Corollary 2.3. Therefore M is ⊕-supplemented. This is a contradiction by [9, Example 2.2]. Hence M is not maximally ⊕-supplemented.

In [4], a module M is said to be weakly distributive if every submodule N of M is weak distributive, i.e. $N = U \cap N + V \cap N$ whenever $M = U + V$. Now we prove that any factor module of a weakly distributive maximally ⊕-supplemented module is maximally ⊕-supplemented.

Proposition 2.11. Let M be a module. Suppose that M is weakly distributive. If M is maximally ⊕-supplemented, then $\frac{M}{U}$ is maximally ⊕-supplemented for every submodule $U \leq M$. In particular, every direct summand of M is maximally ⊕-supplemented.

Proof. Let $\frac{N}{U}$ be a maximal submodule of $\frac{M}{U}$. So N is a maximal submodule of M. Then there exist submodules K and L such that $M = N + K$, $N \cap K < U$ and $K \cap L = M$. By [17, 41.1(7)], $\frac{K + U}{U}$ is a supplement of $\frac{N}{U}$ of $\frac{M}{U}$, i.e. $\frac{N}{U} = \frac{N}{U} + \frac{(K + U)}{U}$ and $\frac{N}{U} \cap \frac{(K + U)}{U} \ll \frac{(K + U)}{U}$. It remains to show that $\frac{K + U}{U}$ is a direct summand of $\frac{M}{U}$. Since M is a weakly distributive module, we have that $U = K \cap U + L \cap U$. Then,

$$\left(\frac{K + U}{U} \right) \cap \left(\frac{L + U}{U} \right) = \frac{(K + U) \cap L + U}{U} = \frac{(K + L \cap U) \cap L + U}{U} = \frac{K \cap L + L \cap U + U}{U} = 0.$$

Hence $\frac{K + U}{U}$ is a direct summand of $\frac{M}{U}$. □

It is well known that a ring R is left perfect if and only if every projective left R-module is ⊕-supplemented. Now we prove an analogue for semiperfect rings.
Theorem 2.12. A ring R is semiperfect if and only if every projective left R-module is maximally \oplus-supplemented.

Proof. Let M be any projective module. Since R is semiperfect, each simple factor module of M has a projective cover by [17, 42.6]. From Lemma 2.5, we obtain that M is maximally \oplus-supplemented. Conversely, suppose that RR is maximally \oplus-supplemented. By Theorem 2.6, R is semiperfect.

Recall that every projective supplemented module is \oplus-supplemented. The following Corollary is an immediate consequence of Corollary 2.7 and Theorem 2.12.

Corollary 2.13. Let R be a ring. R is semiperfect if and only if every projective left R-module with small radical is supplemented.

Proof. Suppose that R is a semiperfect ring. Let M be a projective R-module with small radical. By Theorem 2.12, M is maximally \oplus-supplemented. Note that R is semilocal. It follows from Corollary 2.7 that M is semiperfect. Hence, M is a supplemented module. The converse is clear.

In [3], a module M is called w-local if $\text{Rad}(M)$ is maximal in M. Clearly, every local module is w-local but a w-local module need not be local. Gerasimov and Sakhaev gave in [7] an example of a projective w-local module, which is not local. R. Ware proved that if R is commutative or Noetherian, then every projective w-local module is local ([16]). Using maximally \oplus-supplemented modules, we obtain the following fact.

Proposition 2.14. A projective maximally \oplus-supplemented, w-local module is local.

Proof. By the hypothesis, there exists a local direct summand N of M such that $M = \text{Rad}(M) + N$ and $N \cap \text{Rad}(M) \ll N$. Let $M = N \oplus K$. It follows from [17, 21.6.(5)] that $\text{Rad}(M) = \text{Rad}(N) \oplus \text{Rad}(K)$. Then, $M = \text{Rad}(M) + N = \text{Rad}(N) \oplus \text{Rad}(K) + N = \text{Rad}(K) \oplus N$. So $K = \text{Rad}(K)$. Therefore, $K = 0$ because K is projective according to [10, 5.3.4 (b)]. Hence $N = M$. That is, M is local.

3. Rings whose modules are \oplus-cofinitely supplemented

It is shown in [8, Theorem 1] that a commutative ring R is an artinian
principal ideal ring if and only if every left R-module is \oplus-supplemented. Our aim is to prove that if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring. It follows that a commutative max ring R is an artinian principal ideal ring if and only if every left R-module is \oplus-cofinitely supplemented if and only if every left R-module is maximally \oplus-supplemented.

Throughout this section, unless otherwise stated, it is assumed that R is a commutative ring.

Recall that a submodule N of M is said to be essential (or large) in M, denoted by $N \trianglelefteq M$, if $N \cap K \neq 0$ for every non-zero submodule K of M. A module M is said to be uniform if every non-zero submodule of M is essential in M. M is called uniserial if its submodules are linearly ordered by inclusion. We call a commutative ring R uniserial if R is uniserial.

Proposition 3.1. Let R be a local ring and let M be a uniform R-module. Suppose that every submodule of M is maximally \oplus-supplemented. Then M is uniserial.

Proof. By [15, Lemma 6.2], it suffices to show that every finitely generated submodule of M is local. Let K be any finitely generated submodule of M. Then, K contains a maximal submodule N. By the assumption, N has a supplement V in K such that $V \oplus V' = K$ for some submodule V' of K. Note that $V' \subseteq M$. Therefore V is local according to [17, 41.1(3)]. Since M is uniform and N is maximal, we have $V' = 0$. In conclusion $V = K$. □

We denote by $E(M)$ the injective hull of M.

Corollary 3.2. Let R be local ring. If every submodule of $E(\frac{R}{\text{Rad}(R)})$ is maximally \oplus-supplemented, R is a uniserial ring.

Proof. Since $E(\frac{R}{\text{Rad}(R)})$ is uniform, the proof follows from Proposition 3.1 and [15, Corollary of Lemma 6.2]. □

Theorem 3.3. If every left R-module is maximally \oplus-supplemented, then R is a serial ring. In particular, if every left R-module is \oplus-cofinitely supplemented, then R is a serial ring.

Proof. Assume that every left R-module is maximally \oplus-supplemented. Applying Theorem 2.12, we conclude that R is semiperfect. Then, there exist orthogonal idempotents $\{e_1, e_2, \ldots, e_n\}$ in R such that $R = Re_1 \oplus$
$Re_2 \oplus ... \oplus Re_n$ and each Re_i is local. It is easy to see that every left Re_i-module is maximally \oplus-supplemented. It follows from Corollary 3.2 that each Re_i is uniserial. Therefore R is a serial ring. The rest of the proof is clear by definitions.

A ring R is said to be a max ring if every non-zero left R-module has a maximal submodule. Note that a semilocal ring R is left perfect if and only if it is a max ring. Let M be a module.

Corollary 3.4. For a commutative max ring R the following statements are equivalent:

1. R is an artinian principal ideal ring.
2. Every left R-module is maximally \oplus-supplemented.
3. Every left R-module is \oplus-cofinitely supplemented.

Proof. (1) \implies (3) and (3) \implies (2) are clear.

(2) \implies (1) By Theorem 3.3, we have $R = Re_1 \oplus Re_2 \oplus ... \oplus Re_n$, where Re_i is uniserial. Since R is a max ring, it is perfect. Therefore, for all $i \in \{1,2,...,n\}$, Re_i is perfect. It follows that every non-zero ideal I of Re_i has a maximal submodule, say K. By the hypothesis and the proof of Theorem 3.3, every Re_i-module is maximally \oplus-supplemented, and so there exist ideals L and N of Re_i such that L is a supplement of K and $Re_i = L \oplus N$. Then L is local. Since Re_i is uniserial, we obtain that $N = 0$. Therefore K is local. So Re_i is a principal ideal ring. Hence R is an artinian principal ideal ring by [10, 11.6.4.(c)]. This completes the proof.

A module M is called \oplus-cofinitely Rad-supplemented if every cofinite submodule N of M has a Rad-supplement that is a direct summand of M. Here a submodule K of M is called Rad-supplement of N in M if $M = N + K$ and $N \cap K \leq Rad(K)$ ([13]). Every \oplus-cofinitely supplemented module is \oplus-cofinitely Rad-supplemented; however the converse is not always true (see [13, Example 2.2]). The following Lemma can be easily proven.

Lemma 3.5. Let $N, K \leq M$ be modules and let K be a Rad-supplement of N in M. If $Rad(K) \ll K$, then K is a supplement of N in M.

Proposition 3.6. Every \oplus-cofinitely Rad-supplemented module over a max ring is \oplus-cofinitely supplemented.
Proof. Let R be a max ring and let M be any \oplus-cofinitely Rad-supplemented R-module. Suppose that N is a cofinite submodule of M. By the hypothesis, there exists a direct summand K of M such that $M = N + K$ and $N \cap K \leq \text{Rad}(K)$. Since R is a max ring, $\text{Rad}(K)$ is small in K. Then, by Lemma 3.5, K is a supplement of N in M. Hence M is \oplus-cofinitely supplemented. □

Using this fact and Corollary 3.4, we obtain the next result.

Corollary 3.7. For a commutative max ring R the following statements are equivalent:

1. R is an artinian principal ideal ring.
2. Every left R-module is maximally \oplus-supplemented.
3. Every left R-module is \oplus-cofinitely supplemented.
4. Every left R-module is \oplus-cofinitely Rad-supplemented.

Proposition 3.8. Let M be a weakly distributive module and $\Phi : M \to N$ be an epimorphism of modules. If M is \oplus-cofinitely (Rad-) supplemented module, then N is \oplus-cofinitely (Rad-) supplemented.

Proof. The proof is as in the case of maximally \oplus-supplemented modules. □

Acknowledgements. The author thanks the referee for valuable comments.

REFERENCES