GENERALIZED COFINITELY δ-SEMIPERFECT MODULES

BY

FİĞEN YÜZBAŞI and ŞENOL EREN

Abstract. Let R be a ring and M be a left R-module. M is called a cofinitely generalized (weak) δ-supplemented module or briefly a δ-CGS-module (δ-CGWS-module) if every cofinite submodule of M has a generalized (weak) δ-supplement in M. In this paper, we give various properties of these modules. It is shown that (1) The class of cofinitely generalized (weak) δ-supplemented modules are closed under taking homomorphic images, arbitrary sums, generalized δ-covers and closed under extensions. (2) M is a generalized cofinitely δ-semiperfect module if and only if M is a cofinitely generalized δ-supplemented by generalized δ-supplements which have generalized projective δ-covers.

Mathematics Subject Classification 2010: 16E50, 16L30, 16D40.

Key words: cofinitely generalized δ-supplemented module, cofinitely generalized weak δ-supplemented module, generalized cofinitely δ-semiperfect module, generalized projective δ-cover.

1. Introduction

Throughout the paper, R will be an associative ring with identity and all modules are unital left R-modules unless otherwise specified. Let M be an R-module. By $N \leq M$ we mean that N is a submodule of M. Recall that a submodule $N \leq M$ is called small, denoted by $N \ll M$, if $N + L \neq M$, for all proper submodules L of M, and that $L \leq M$, is said to be essential in M, denoted by $L \leq M$, if $L \cap K \neq 0$ for each nonzero submodule $K \leq M$. A module M is said to be singular if $M \cong \frac{N}{L}$ for some module N and a submodule $L \leq N$ with $L \nleq N$. $\text{Rad}(M)$ will indicate Jacobson radical of M. M is called supplemented, if every submodule N of M has a supplement in M, i.e. a submodule K minimal with respect to $N + K = M$. K is a
supplement of \(N \) in \(M \) if and only if \(N + K = M \) and \(N \cap K \ll K \) (see [8]). If \(N + K = M \) and \(N \cap K \ll M \), then \(K \) is called a \textit{weak supplement} of \(N \) in \(M \), (see [4], [11]), and clearly in this situation \(N \) is a weak supplement of \(K \), too. \(M \) is a \textit{weakly supplemented} module if every submodule of \(M \) has a weak supplement in \(M \).

By Zhou [10], a submodule \(L \) of \(M \) is called \(\delta \)-\textit{small} in \(M \) (denoted by \(L \ll_{\delta} M \)) if for any submodule \(N \) of \(M \) with \(\frac{M}{N} \) singular, \(M = N + L \) implies that \(M = N \). The sum of \(\delta \)-small submodules of a module \(M \) is denoted by \(\delta(M) \). It is easy to see that every small submodule of a module \(M \) is \(\delta \)-small in \(M \), so \(\text{Rad}(M) \subseteq \delta(M) \) and \(\text{Rad}(M) = \delta(M) \) if \(M \) is singular. Also any non-singular semisimple submodule of \(M \) is \(\delta \)-small in \(M \) and \(\delta \)-small submodules of a singular module are small submodules. For more detailed discussion on \(\delta \)-small submodules we refer to [10].

Let \(K, N \) be submodules of a module \(M \), then \(N \) is called a \(\delta \)-supplement of \(K \) in \(M \), if \(N + K = M \) and \(N \cap K \ll_{\delta} N \). \(N \) is called a weak \(\delta \)-supplement of \(K \) in \(M \), if \(N + K = M \) and \(N \cap K \ll_{\delta} M \). A module \(M \) is called \(\delta \)-\textit{supplemented} if every submodule of \(M \) has a \(\delta \)-supplement in \(M \). Also \(M \) is called \textit{weakly \(\delta \)-supplemented} if every submodule of \(M \) has a weak \(\delta \)-supplement in \(M \).

A submodule \(N \) of a module \(M \) is said to be \textit{cofinite} if \(\frac{M}{N} \) is finitely generated. An \(R \)-module \(M \) is called cofinitely (weak) \(\delta \)-supplemented, if each cofinite submodule of \(M \) has a (weak) \(\delta \)-supplement in \(M \).

Let \(M \) be an \(R \)-module and let \(N \) and \(K \) be any submodules of \(M \) with \(M = N + K \). If \(N \cap K \leq \delta(N) \) (\(N \cap K \leq \delta(M) \)) then \(N \) is called a generalized (weak) \(\delta \)-supplement of \(K \) in \(M \). Following [5], \(M \) is called a \textit{generalized \(\delta \)-supplemented} module (or briefly \(\delta \)-GS-module) if every submodule \(N \) of \(M \) has a generalized \(\delta \)-supplement \(K \) in \(M \). In [5], an \(R \)-module \(M \) is called \textit{generalized weakly \(\delta \)-supplemented} (or briefly \(\delta \)-GWS-module) (\(\delta \)-WGS-module in [5]) if every submodule \(K \) of \(M \) has a generalized weak \(\delta \)-supplement \(N \) in \(M \). Also in [5], \(M \) is called a \textit{generalized amply \(\delta \)-supplemented} module (or briefly \(\delta \)-GAS-module) if whenever \(M = N + K \) for submodules \(N, K \) of \(M \), then \(N \) contains a generalized \(\delta \)-supplement of \(K \) in \(M \). For characterizations of generalized (amply) \(\delta \)-supplemented and generalized weakly \(\delta \)-supplemented modules we refer to [5].

Let \(M \) be an \(R \)-module and let \(N \) and \(K \) be any submodules of \(M \) with \(M = N + K \). If \(N \cap K \leq \text{Rad}(K) \) (\(N \cap K \leq \text{Rad}(M) \)) then \(K \) is called a generalized (weak) supplement of \(N \) in \(M \). Following [6], \(M \) is called \textit{generalized supplemented} module (or briefly \(GS \)-module) if every submodule \(N \)
of M has a generalized supplement K in M. In [6], an R-module M is called generalized weakly supplemented (or briefly GWS-module) (WGS-module in [6]) if every submodule K of M has a generalized weak supplement N in M. For characterizations of generalized supplemented and generalized weakly supplemented modules we refer to [6] and [9].

M is called a cofinitely (weak) supplemented module if every cofinite submodule of M has a (weak) supplement in M (see [1], [2]). Clearly supplemented modules are cofinitely supplemented and weakly supplemented modules are cofinitely weak supplemented. M is called cofinitely generalized supplemented if every cofinite submodule of M has a generalized supplement (see [3]). Since every submodule of a finitely generated module is cofinite, a finitely generated module is generalized supplemented if and only if it is cofinitely generalized supplemented.

A module M is called cofinitely generalized weak supplemented (or briefly a CGWS-module) if every cofinite submodule of M has a generalized weak supplement. Clearly generalized weakly supplemented modules and cofinitely weak supplemented modules are CGWS-modules.

In this paper, we define cofinitely generalized (weak) δ-supplemented modules and investigate some properties of them.

2. Cofinitely generalized δ-supplemented modules

Definition 2.1. An R-module M is called cofinitely generalized δ-supplemented, or briefly δ-CGS-module if each cofinite submodule of M has a generalized δ-supplement in M.

It is clear from definitions, that a generalized δ-supplemented module M is a δ-CGS-module, and if M is finitely generated, then the converse also holds. Next we give some properties of δ-CGS-modules.

Proposition 2.2. Let M be a δ-CGS-module, then any factor module of M is a δ-CGS-module.

Proof. Let M be a δ-CGS-module and N be a submodule of M. Any cofinite submodule of $\frac{M}{N}$ is of the form $\frac{U}{N}$, where U is a cofinite in M. So, there exists $K \leq M$, such that $M = U + K$ and $U \cap K \leq \delta(K)$. Thus $\frac{M}{N} = \frac{U}{N} + \frac{(K+N)}{N}$. Let $f : M \to \frac{M}{N}$ be a canonical epimorphism. Since
by Lemma 1.5 in [10]. Hence \((K + N) N\) is a generalized \(\delta\)-supplement of cofinite submodule \(U N\) in \(M N\). So \(\frac{M}{N}\) is a \(\delta\)-CGS-module. \(\square\)

Corollary 2.3. Any homomorphic image of a \(\delta\)-CGS-module is a \(\delta\)-CGS-module.

To show that an arbitrary sum of \(\delta\)-CGS-modules is a \(\delta\)-CGS-module, we use the following standard lemma.

Lemma 2.4. Let \(L, U\) be submodules of a module \(M\) such that \(L\) is a \(\delta\)-CGS-module, \(U\) is cofinite in \(M\) and \(L + U\) is a generalized \(\delta\)-supplement of \(K\) in \(M\). Then \(L \cap (K + U)\) has a generalized \(\delta\)-supplement \(X\) in \(L\). Moreover, \(K + X\) is a generalized \(\delta\)-supplement of \(U\) in \(M\).

Proof. Since \(K\) is a generalized \(\delta\)-supplement of \(L + U\) in \(M\), we have \(K + L + U = M\) and \(K \cap (L + U) \leq \delta(K)\). Now

\[
\frac{L}{L \cap (K + U)} \cong \frac{(K + (L + U))}{K + U} = \frac{M}{K + U} \cong \frac{(\frac{M}{N})}{(\frac{K + U}{N})},
\]

which is finitely generated, \(L \cap (K + U)\) is a cofinite submodule in \(L\). Since \(L\) is a \(\delta\)-CGS-module, there exists \(X \leq L\) a generalized \(\delta\)-supplement of \(L \cap (K + U)\) in \(L\). Thus \(L = [L \cap (K + U)] + X\) and \([L \cap (K + U)] \cap X = X \cap (K + U) \leq \delta(X)\). Since \(M = K + L + U = K + [L \cap (K + U)] + X + U = K + X + U\), \(X\) is a generalized \(\delta\)-supplement of \(K + U\) in \(M\). Therefore \(U \cap (K + X) \leq K \cap (L + U) + X \cap (K + U) \leq \delta(K) + \delta(X) \leq \delta(K + X)\). So \(K + X\) is a generalized \(\delta\)-supplement of \(U\) in \(M\). \(\square\)

Proposition 2.5. Any arbitrary sum of \(\delta\)-CGS-modules is a \(\delta\)-CGS-module.

Proof. Let \(M = \sum_{i \in I} M_i\) where each module \(M_i\) is a \(\delta\)-CGS-module and \(U\) be a cofinite submodule of \(M\). Then \(\frac{M}{U}\) is generated by some finite set \(\{x_1 + U, x_2 + U, \ldots, x_n + U\}\) and therefore \(M = Rx_1 + Rx_2 + \ldots +\)
$R_{x_n} + U$. Since each x_i is contained in the sum $\sum_{j \in J} M_j$ for some finite subset $J = \{1_1, \ldots, 1_{s(1)}, \ldots, n_{s(n)}\}$ of I, $M = M_{1_1} + \sum_{j \in J \setminus \{1_1\}} M_j + U$ has a trivial generalized δ-supplement 0 in M and since M_{1_1} is a δ-CGS-module, $U + \sum_{j \in J \setminus \{1_1\}} M_j$ has a generalized δ-supplement by Lemma 2.4. Continuing in this way we will obtain (after we have used Lemma 2.4 $\sum_{i=1}^n s(i)$ times) at last U has a generalized δ-supplement in M.

The following corollary follows from Corollary 2.3 and Proposition 2.5.

Corollary 2.6. If M is a δ-CGS-module, then any M-generated module is a δ-CGS module.

Proposition 2.7. Let M be a δ-CGS-module. Then every cofinite submodule of $\frac{M}{\delta(M)}$ is a direct summand.

Proof. Assume M is a δ-CGS-module. Every cofinite submodule of $\frac{M}{\delta(M)}$ has the form $\frac{U}{\delta(M)}$, where U is a cofinite submodule of M and $\delta(M) \leq U$. By assumption, there exists $K \leq M$ such that $M = K + U$ and $K \cap U \leq \delta(K) \leq \delta(M)$. So $\frac{M}{\delta(M)} = (\frac{K}{\delta(M)}) \oplus (\frac{U}{\delta(M)})$.

Lemma 2.8. Let M be a module with $\delta(M) \ll M$ and $U \leq M$. If U has a generalized δ-supplement that is a δ-supplement in M, then U has a δ-supplement in M.

Proof. Let V be a generalized δ-supplement of U in M. Note that $U \cap V \leq \delta(V) \leq \delta(M) \ll M$ and so $U \cap V \ll \delta M$. Since V is a δ-supplement in M, $U \cap V \ll \delta V$. Hence V is a δ-supplement of U in M.

Theorem 2.9. Let M be a module with $\delta(M) \ll M$. If M is cofinitely generalized δ-supplemented such that generalized δ-supplements are δ-supplements in M, then M is cofinitely δ-supplemented.

Proof. It can be seen from Lemma 2.8.

Proposition 2.10. Let M be a module. If every cofinite submodule U of M has a generalized δ-supplement V in M such that $U \cap V$ has a δ-supplement in V, then M is cofinitely δ-supplemented.

Proof. Let U be any cofinite submodule of M. By assumption, there is a submodule V in M such that V is a generalized δ-supplement of U in M and $U \cap V$ has a δ-supplement X in V. Then $U \cap V + X = V$, $(U \cap V) \cap X = U \cap X \ll X$. Now $M = U + V = U + U \cap V + X = U + X$.
Hence X is a δ-supplement of U in M and it follows that M is cofinitely δ-supplemented.

Let M and N be R-modules. An epimorphism $f : M \to N$ is called a δ-cover if $\text{Ker}(f) \leq \delta(M)$. Recall that an epimorphism $f : M \to N$ is called a generalized δ-cover if $\text{Ker}(f) \leq \delta(M)$ and M is called a generalized δ-cover of N with an epimorphism $f : M \to N$. A generalized δ-cover $f : P \to N$ is called a generalized projective δ-cover in case P is a projective module. $\delta(M)$ is the sum of all δ-small submodules of M, every δ-cover is generalized δ-cover. We have the following basic properties of (generalized) δ-covers.

Lemma 2.11. If both $f : P \to M$ and $g : M \to N$ are (generalized) δ-covers, then $gf : P \to N$ is a (generalized) δ-cover.

Proof. If both f and g are δ-covers, then gf is a δ-cover by Proposition 4.3 in [7].

Now let both f and g be generalized δ-covers. To show $\text{Ker}(gf) \leq \delta(P)$, we let $p \in \text{Ker}(gf)$. Then $g(f(p)) = 0$ and $f(p) \in \text{Ker}(g) \leq \delta(M)$. Since $\text{Ker}(f) \leq \delta(P)$, it follows from [7, Proposition 4.2] that $f(\delta(P)) = \delta(M)$. Hence $f(p) = f(p_1)$ for some $p_1 \in \delta(P)$, so $p - p_1 \in \text{Ker}(f) \leq \delta(P)$. We obtain $p \in \delta(P)$.

Lemma 2.12. (1) If each $f_i : P_i \to M_i$, $(i = 1, 2, \ldots, n)$ is a δ-cover, then $\oplus_{i=1}^{n} f_i : \oplus_{i=1}^{n} P_i \to \oplus_{i=1}^{n} M_i$ is a δ-cover.

(2) If each $f_i : P_i \to M_i$, $(i = 1, 2, \ldots, n)$ is a generalized δ-cover, then

$$\bigoplus_{i=1}^{n} f_i : \bigoplus_{i=1}^{n} P_i \to \bigoplus_{i=1}^{n} M_i$$

is a generalized δ-cover.

Proof. (1) Lemma 4.4 in [7]

(2) Since each $\text{Ker}(f_i) \leq \delta(P_i)$ we have $\text{Ker}(\oplus_{i \in I} f_i) = \oplus_{i \in I} \text{Ker}(f_i) \leq \oplus_{i \in I} \delta(P_i) = \delta(\oplus_{i \in I} P_i)$ by Lemma 2.2 in [7]. So $\oplus_{i \in I} f_i$ is a generalized δ-cover.

3. Cofinitely generalized weak δ-supplemented modules

In this section we define and study cofinitely generalized weak δ-supplemented modules.
Definition 3.1. A module M is called cofinitely generalized weak δ-supplemented, or briefly δ-CGWS-module if every cofinite submodule of M has a generalized weak δ-supplement in M.

Proposition 3.2. Let M be a δ-CGWS-module, then every factor module of M is a δ-CGWS-module.

Proof. Let M be a δ-CGWS-module and L be a submodule of M. Suppose that $\frac{M}{L}$ is a cofinite submodule of $\frac{M}{L}$. Note that $\frac{(\frac{M}{L})}{(\frac{M}{L})} \cong \frac{M}{L}$. Then U is a cofinite submodule of M. Since M is a δ-CGWS-module, U has a generalized weak δ-supplement V in M, i.e. $U + V = M$ and $U \cap V \leq \delta(M).$ Thus $\frac{M}{L} = \frac{U}{L} + \frac{(V + L)}{L}$. Let $f : M \rightarrow \frac{M}{L}$ be a canonical epimorphism. Since $U \cap V \leq \delta(M)$, $\frac{U}{L} \cap \frac{(V + L)}{L} = \frac{U \cap (V + L)}{L} = f(U \cap V) \leq f(\delta(M)) \leq \delta(\frac{M}{L})$ by Lemma 1.5 in [10]. This completes the proof. \qed

Corollary 3.3. Any homomorphic image of a δ-CGWS-module is a δ-CGWS-module.

To show that an arbitrary sum of δ-CGWS-modules is a δ-CGWS-module, we use the following standard lemma.

Lemma 3.4. Let M be a module, N and U be submodules of M with δ-CGWS-module N and cofinite U. If $N + U$ has a generalized weak δ-supplement in M, then U also has a generalized weak δ-supplement in M.

Proof. Let X be a generalized weak δ-supplement of $N + U$ in M. Then we have

$$\frac{N}{[N \cap (X + U)]} \cong \frac{N + (X + U)}{X + U} = \frac{M}{X + U} \cong \frac{(\frac{M}{U})}{(\frac{(X + U)}{U})}.$$

Since U is a cofinite submodule, $\frac{M}{U}$ is a finitely generated module. The last module is a finitely generated module hence $N \cap (X + U)$ has a generalized weak δ-supplement Y in N, i.e. $Y + [N \cap (X + U)] = N; Y \cap [N \cap (X + U)] = Y \cap (X + U) \leq \delta(N) \leq \delta(M)$. Since $M = U + X + N = U + X + Y + [N \cap (X + U)] = X + U + Y$, we get Y is a generalized weak δ-supplement of $X + U$ in M. Therefore $U \cap (X + Y) \leq [X \cap (Y + U)] + [Y \cap (X + U)] \leq \delta(M)$. So $X + Y$ is a generalized weak δ-supplement of U in M. \qed
Proposition 3.5. Any arbitrary sum of δ-CGWS-modules is a δ-CGWS-module.

Proof. Let $M = \sum_{i \in I} M_i$ where each module M_i is a cofinitely generalized δ-weak supplemented and N be a cofinite submodule of M. Then $\frac{M}{N}$ is generated by some finite set $\{x_1 + N, x_2 + N, \ldots, x_n + N\}$ and therefore $M = Rx_1 + Rx_2 + \ldots + Rx_n + N$. Since each x_i is contained in the sum $\sum_{j \in J} M_j$ for some finite subset $J = \{1, \ldots, 1_{s(1)}, \ldots, n_{s(n)}\}$ of I, $M = M_{1_1} + \sum_{j \in J - \{1_1\}} M_j + N$ has a trivial generalized weak δ-supplement 0 in M and since M_{1_1} is a δ-CGWS module, $N + \sum_{j \in J - \{1_1\}} M_j$ has a generalized weak δ-supplement by Lemma 3.4. Continuing in this way we will obtain (after we have used Lemma 3.4 $\sum_{i=1}^n s(i)$ times) at last N has a generalized weak δ-supplement in M. \qed

Corollary 3.6. If M is a δ-CGWS module, then any M-generated module is a δ-CGWS module.

Theorem 3.7. Let M be a δ-CGWS-module and $\delta(M) \leq N$. Then every cofinite submodule of $\frac{M}{N}$ is a direct summand.

Proof. Let $\frac{U}{N}$ be a cofinite submodule of $\frac{M}{N}$. Since $\left(\frac{\frac{M}{N}}{\frac{N}{N}}\right) \cong \frac{M}{U}$, U is a cofinite submodule of M. Since M is a δ-CGWS-module, U has a generalized weak δ-supplement V, i.e. $U + V = M$ and $U \cap V \leq \delta(M)$. Let $f : M \to \frac{M}{N}$ be a canonical epimorphism. Then $\left(\frac{\frac{U}{N} + \frac{N}{N}}{N}\right)$ is a generalized weak δ-supplement of $\frac{U}{N}$ in $\frac{M}{N}$ by Proposition 3.2 in [5]. Note that $U \cap V \leq \delta(M) \leq N$. So $\frac{U}{N}$ is a direct summand of $\frac{M}{N}$. \qed

Corollary 3.8. Let M be a δ-CGWS-module. Then every cofinite submodule of $\frac{M}{\delta(M)}$ is a direct summand.

Theorem 3.9. Let M be a module and N be a submodule with $N \leq \delta(M)$. If $\frac{M}{N}$ is a δ-CGWS-module, then M is a δ-CGWS-module.

Proof. Let U be any cofinite submodule of M. Note that $\left(\frac{M}{U+N}\right) \cong \left(\frac{\frac{M}{U}}{\frac{U+N}{N}}\right)$. Then $U+N$ is a cofinite submodule of M. Since $\frac{U+N}{N}$ is a cofinite submodule of $\frac{M}{N}$, there is a submodule X of $\frac{M}{N}$ such that $\left(\frac{\frac{U+N}{N}}{N}\right) + X = \frac{M}{N}$.
and \((U + N) \cap \left(\frac{X}{N} \right) = \left(\frac{U \cap X + N}{N} \right) \leq \delta \left(\frac{M}{N} \right)\). So \(N \leq \delta(M)\), \(\delta \left(\frac{M}{N} \right) = \frac{\delta(M)}{N}\).

So \(U \cap X \leq \delta(M)\). Note that \(U + X = M\). Therefore, \(X\) is a generalized weak \(\delta\)-supplement of \(U\) in \(M\).

\[\square \]

Corollary 3.10. A generalized \(\delta\)-cover of a \(\delta\)-CGWS-module is a \(\delta\)-CGWS-module.

Theorem 3.11. Let \(R\) be a ring. Then \(\frac{R}{\delta(H)}\) is semisimple if and only if every \(R\)-module is a \(\delta\)-CGWS-module.

Proof. Let \(M\) be an \(R\)-module. Suppose \(\frac{R}{\delta(H)}\) is semisimple. Then \(\frac{M}{\delta(M)}\) is an \(\frac{R}{\delta(H)}\)-module, hence semisimple. Therefore \(\frac{M}{\delta(M)}\) is semisimple and so \(M\) is a \(\delta\)-CGWS-module by Theorem 3.9.

The converse is by Corollary 3.8.

\[\square \]

Theorem 3.12. Let \(0 \to L \to M \to N \to 0\) be a short exact sequence. If \(L\) and \(N\) are \(\delta\)-CGWS-modules and \(L\) has a generalized weak \(\delta\)-supplement in \(M\), then \(M\) is a \(\delta\)-CGWS-module.

Proof. Without restriction of generality, we will assume that \(L \leq M\). Let \(S\) be a generalized weak \(\delta\)-supplement of \(L\) in \(M\), i.e. \(L + S = M\) and \(L \cap S \ll_{\delta} M\). Then we have, \(\frac{M}{L + S} \cong \frac{L}{L + S} \oplus \frac{S}{L + S}\). \(\frac{L}{L + S}\) is cotinently generalized weak \(\delta\)-supplemented as a factor module of \(L\) which is cotinently generalized weak \(\delta\)-supplemented. On the other hand, \(\frac{S}{L + S} \cong \frac{M}{L} \cong N\) is cotinently generalized \(\delta\)-weak supplemented. Then \(\frac{M}{L + S}\) is cotinently generalized weak \(\delta\)-supplemented as a sum of cotinently generalized cotinently weak \(\delta\)-supplemented. Therefore \(M\) is a \(\delta\)-CGWS-module by Corollary 3.10.

\[\square \]

Theorem 3.13. Suppose that \(M\) is a module with \(\delta(M) \ll_{\delta} M\). Then \(M\) is a cotinently generalized weak \(\delta\)-supplemented if and only if \(M\) is a cotinently weak \(\delta\)-supplemented.

Proof. Since \(\delta(M) = (\sum_{K \ll_{\delta} M} K) \ll_{\delta} M\), proof is obvious.

\[\square \]

Corollary 3.14. For a finitely generated module \(M\), the following statements are equivalent:

(i) \(M\) is generalized weakly \(\delta\)-supplemented;

(ii) \(M\) is cotinently generalized weak \(\delta\)-supplemented;

(iii) \(M\) is cotinently weak \(\delta\)-supplemented;
(iv) M is weakly δ-supplemented.

Proof. (i) \Rightarrow (ii) It is obvious.
(ii) \Rightarrow (iii) Since M is finitely generated, the result follows from Theorem 3.13.
(iii) \Rightarrow (iv) Let U be a submodule of M. Since M is finitely generated, U is a cofinite submodule of M. By the assumption, M is weakly δ-supplemented.
(iv) \Rightarrow (i) It is an immediate result of $\delta(M) = \sum K \ll M K$.

4. Generalized cofinitely δ-semiperfect modules

In this section, we characterize generalized cofinitely δ-semiperfect modules via generalized projective δ-covers of the generalized δ-supplement submodules.

Definition 4.1. M is called cofinitely generalized amply δ-supplemented, or briefly δ-CGAS-module if every cofinite submodule of M has a generalized ample δ-supplement in M.

Definition 4.2. A module M is called generalized cofinitely δ-semiperfect, or briefly $\text{gcof} \delta$-semiperfect, if every finitely generated factor module of M has a generalized projective δ-cover.

Lemma 4.3. Let N be a submodule of the module and $f : M \to \frac{M}{N}$ be the canonical epimorphism. Also let P be any module, $g : P \to \frac{M}{N}$ and $h : P \to M$ such that g is composed with f. If the map g is a generalized δ-cover then $\text{Im}(h)$ is a generalized δ-supplement of N and $\text{Ker}(h) \leq \delta(P)$.

Proof. If g is a generalized δ-cover, then $N \cap \text{Im}(h) = \text{Ker}(f) \cap \text{Im}(h) = h(\text{Ker}(g)) \leq h(\delta(P)) \leq \delta(h(P)) = \delta(\text{Im}(h))$. It is clear that $M = \text{Im}(h) + \text{Ker}(f)$. This implies that $\text{Im}(h) = h(P)$ is a generalized δ-supplement of $N = \text{Ker}(f)$ in M. Note that $\text{Ker}(h) \subseteq \text{Ker}(g)$. Therefore, we can obtain $\text{Ker}(h) \leq \delta(P)$.

Theorem 4.4. For any module M, the following statements are equivalent:

(1) M is a generalized cofinitely δ-semiperfect module;

(2) M is cofinitely generalized amply δ-supplemented by generalized δ-supplements which have generalized projective δ-covers;
(3) \(M \) is cofinitely generalized \(\delta \)-supplemented by generalized \(\delta \)-supplements which have generalized projective \(\delta \)-covers.

Proof. (1)⇒(2): Let \(M = U + Y \), \(U \) is a cofinite submodule of \(M \). By assumption, there exists a generalized projective \(\delta \)-cover \(f : P \to \frac{M}{U} \). Let \(\pi : Y \to \frac{Y}{U \cap Y} \cong \frac{M}{U} \) be a canonical epimorphism. Since \(P \) is projective, there exists a homomorphism, \(g : P \to Y \), such that \(\pi g = f \). By Lemma 4.3, \(g(P) \) is a generalized \(\delta \)-supplement of \(\text{Ker}(\pi) = U \cap Y \) in \(Y \). Hence, \(M = U + Y = U + U \cap Y + g(P) = U + g(P) \). From this, it follows that \(g(P) \) is a generalized \(\delta \)-supplement of \(U \) in \(M \) and \(g(P) \subseteq Y \). It is clear that, \(g : P \to g(P) \) is a generalized projective \(\delta \)-cover of \(g(P) \).

(2)⇒(3): This is clear.

(3)⇒(1): Let \(U \) be a cofinite submodule of \(M \). By assumption, \(U \) has a generalized \(\delta \)-supplement \(K \) in \(M \) and \(K \) has a generalized projective \(\delta \)-cover \(f : P \to K \). Since \(U \cap K \leq \delta(K) \), then the canonical map \(\pi : K \to \frac{K}{U \cap Y} \cong \frac{M}{U} \) is a generalized \(\delta \)-cover of \(\frac{M}{U} \). The composition \(\alpha = \pi f : P \to \frac{M}{U} \) is a generalized projective \(\delta \)-cover of \(\frac{M}{U} \) by Lemma 2.11. Therefore \(M \) is a generalized cofinitely \(\delta \)-semiperfect module. \(\Box \)

Acknowledgements. The authors would like to thank the referee for carefully reading the manuscript and considerable remarks.

REFERENCES

Received: 18.V.2011
Revised: 8.II.2012
Accepted: 8.II.2012

Ondokuz Mayis University,
Faculty of Sciences and Arts,
Department of Mathematics,
55139 Kurupelit, Samsun,
TURKEY
figenyuzbas@gmail.com
seren@omu.edu.tr