Mnin restraining stepover – evidence of significant Cretaceous–Cenozoic dextral strike-slip faulting along the Teisseyre-Tornquist Zone?

ANDRZEJ KONON1*, SZYMON OSTROWSKI1, BARBARA RYBAK-OSTROWSKA1, MIROSŁAW LUDWINIAK1, MICHAŁ ŚMIGIELSKI1, MICHAŁ WYGLĄDALA1, JOANNA URODA1, SEBASTIAN KOWALCZYK1, RADOSŁAW MIESZKOWSKI1 and AGNIESZKA KŁOPOTOWSKA1

1*Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland.
2Polish Geological Institute –National Research Institute, Rakowiecka 4, PL-00-975 Warszawa, Poland.

ABSTRACT:

A newly recognized Mnin restraining stepover is identified in the Permo-Mesozoic cover of the western part of the Late Palaeozoic Holy Cross Mountains Fold Belt (Poland), within a fault pattern consisting of dextral strike-slip faults. The formation of a large contractional structure at the Late Cretaceous – Cenozoic transition displays the significant role of strike-slip faulting along the western border of the Teisseyre-Tornquist Zone, in the foreland of the Polish part of the Carpathian Orogen. Theoretical relationships between the maximum fault offsets/mean step length, as well as between the maximum fault offsets/mean step width allowed the estimation of the values of possible offsets along the Snochowice and Mieczyn faults forming the Mnin stepover. The estimated values suggest displacements of as much as several tens of kilometres. The observed offset along the Tokarnia Fault and theoretical calculations suggest that the strike-slip faults west of the Late Palaeozoic Holy Cross Mountains Fold Belt belong to a large strike-slip fault system.

We postulate that the observed significant refraction of the faults forming the anastomosing fault pattern is related also to the interaction of the NW-SE-striking faults formed along the western border of the Teisseyre-Tornquist Zone and the reactivated WNW-ESE-striking faults belonging to the fault systems of the northern margin of the Tethys Ocean.

Keywords: Strike-slip fault pattern; Restraining stepover; Permo-Mesozoic cover; Holy Cross Mountains Fold Belt.

INTRODUCTION

Progress in the recognition of strike-slip structures that began about 60 years ago has allowed the identification of different extensional and contractional structures associated with strike-slip faulting all over the world. The investigations have shown that strike-slip faulting plays a significant role in intercontinental deformation within e.g., collisional ‘mobile’ belts and inverted sedimentary basins (for discussion see e.g., Moody and Hill 1956; Sylvester 1988; Woodcock and Schubert 1994 and citations therein). Strike-slip structures need the precise identification of diagnostic tectonic structures that formed as a result of the strike-

B – Location of the study area
slip movements, as e.g., restraining (contractional) and releasing (extensional) stepovers or bends along the major fault (Woodcock and Fisher 1986; Woodcock and Schubert 1994; McClay and Bonora 2001; Wakabayashi et al. 2004; Wakabayashi 2007).

Restraining stepovers form in response to transpressional stress. Concentrations of lower and large-magnitude earthquake epicentres may be observed within restraining stepovers all of the world. For example, one of the famous earthquakes, the M 7.9 1906 San Francisco, California earthquake is likely to have nucleated in a stepover structure (Zoback et al. 1999; Oglesby 2005). Another example comes from the Indes-Qom stepover, where analysis of the earthquake focal mechanisms (for >Mw 5) revealed dextral oblique thrusting along the northern margin of the Sanandaj-Sirjan Zone within the restraining stepover zone (Morley et al. 2009; Babaahmadi et al. 2010).

Other structures useful for the precise identification of strike-slip movements in vertical cross-sections and on seismic profiles, as well as on geological maps and satellite images are: flower structures (e.g., Wilcox et al. 1973), folds with a helicoidal geometry of the axial surfaces in restraining stepovers (Sylvestre 1988; Babaahmadi et al. 2010; Nadimi and Konon 2012), especially when they form an en échelon arrangement (Moody and Hill 1956; Jamison 1991; Woodcock and Schubert 1994), and vertical-axis rotated tectonic blocks bounded by major strike-slip faults (Woodcock and Fisher 1986; Mandl 1987; Sylvestre 1988; Peacock et al. 1998; Woodcock and Rickards 2003; Kim et al. 2004; Konon 2007; Nadimi and Konon 2012). Apart from map-scale structures, identification of minor structures associated with major faults, such as slickensides observed within the near-surface parts of fault zones, horsetail splays, wing cracks or antithetic faults at the terminations of major faults, also demonstrate the presence of strike-slip movements.

The aim of this paper is to describe a newly discovered large-scale structure as a restraining stepover associated with dextral strike-slip faulting within the Permo-Mesozoic cover of the western part of the Late Palaeozoic Holy Cross Mountains Fold Belt (HCFB).

The contractional structure, termed the Mnin stepover, is discussed in the context of the activity of the main fault systems as a result of the inversion tectonics along the northern Peri-Tethyan Platform.
GEOLOGICAL SETTING

The strike-slip fault pattern in the study area is developed within the Permo-Mesozoic cover, which unconformably overlies the Palaeozoic rocks of the Holy Cross Mountains Folded Belt (Text-figs 1, 2). The Holy Cross Mountains area is situated in the transition zone between the Polish and North German basins (e.g., Kutek and Glazek 1972; Ziegler 1982, 1990b; Dadlez et al. 1995, 1997; Krzywiec 2000, 2002; Kutek 2001; Dadlez 2003) and the northern Tethys shelf, from probably the Middle/Late Jurassic transition (Matyja 2009).

The Polish and North German basins formed along two regional zones of crustal weakness: the Teisseyre-Tornquist Zone (TTZ) and the Elbe Fault System (EFS), respectively (Text-fig. 1b) (e.g., Dadlez 1997; Scheck et al. 2002; Mazur et al. 2005; Scheck and Lamarche 2005). The study area is located near the western border of the NW-SE-striking Teisseyre-Tornquist Zone (TTZ), which represents a crustal-scale boundary that separates the East European Craton from the Palaeozoic Platform of Western Europe (e.g., Kutek and Glazek 1972; Pożaryski and Brochowitz-Lewiński 1978; Dadlez 1997; Dadlez et al. 1995, 1997; Dadlez 2006).

The significant role of strike-slip faulting during the inversion of the Polish Basin was suggested by e.g., Dadlez (1994), from analysis of the offsets of the folds, salt diapirs or synsedimentary grabens on geological maps; by Krzywiec (2000, 2002, 2009b) and Krzywiec et al. (2003, 2009), from the analysis of seismic profiles across the fault zones; and by Gutowski and Koyi (2007) from results of three-dimensional (3D) analogue models. The prevailing compressional/transpressional stress regime resulted in inversion tectonics at the end of the Cretaceous and the beginning of the Cenozoic along the northern Peri-Tethyan Platform (e.g., Ziegler 1987). Transmission of horizontal stress resulted from the collisional phases in the Alpine and Carpathian orogens, and additionally the Late Cretaceous Atlantic opening (e.g., Ziegler 1987, 1990a, b; Golonka et al. 2000; Dadlez 2003; Mazur et al. 2005).

Mesozoic succession of the Permo-Mesozoic cover

The Mesozoic succession of the Permo-Mesozoic cover of the HCFB is composed of epicratonic sediments reaching a thickness of 2 to 4 km (Text-fig. 3). Triassic rocks rest upon the Palaeozoic basement characterized by a diverse morphology, usually on Middle and Upper Devonian rocks and only locally on Permian strata. The lowermost part of the Triassic succession is built of clastic sediments: conglomerates, ferruginous quartz sandstones with mudstone interbeds, mudstones and claystones, and subordinately marls with interbeds of limestones, dolomites and anhydrites (Senkowiczowa 1961; Kuleta and Zbroja 2006). The thickness of the Lower Triassic is estimated at about 780 m (Jurkiewicz 1968; Szajn 1984).

The clastic rocks are overlain by Middle Triassic pelitic limestones, with interbeds of dolomites, marls and claystones, with a thickness of about 140 m and 200 m in the south-western, and 200 m in the north-western part of the study area, respectively (Szajn 1984). The Upper Triassic comprises claystones and mudstones with interbeds of sandstones, marls, dolomites, anhydrites and gypsum, with a strongly variable thickness, from over 10 m to 700 m (Szajn 1984).

Sedimentation of Jurassic strata was preceded by erosion, indicated by erosional incisions within the Upper Triassic, which reach down to depth of several tens of metres (Jurkiewiczowa 1967). The Lower Jurassic is represented by largely terrestrial clastic sediments (Pieńkowski 1991, 2004; Świdrowska et al. 2008). They include gravels and conglomerates (Snochowice Beds), overlain by fine-grained quartz sandstones and mudstone-sandstone-claystone sediments with interbeds of siderites. Lack of the upper Toarcian indicates lack of continuous sedimentation between the Early and Middle Jurassic (Świdrowska et al. 2008; Matyja 2012). Lower Jurassic strata are preserved only in the north-eastern, northern and north-western part of the study area and their thickness varies from 58 m to about 800 m.

The Middle Jurassic is composed of clastic marine sediments passing into limestones (Matyja 2012). Clay sediments (Aalenian–Bajocian) occur solely within the north-eastern and northern part of the study area. Above occur white, fine-grained sandstones and siltstones with interbeds of limestones, ferruginous sands, detritic limestones and dark clays (Bajocian-Bathonian), and calcareous sandstones, sandy limestones with cherts and flints, gaizes and detritic limestones (Callovian) (Siemiątkowska-Giżejewska 1974; Giżejewska 1975; Barski 1999). In the zone of the studied fault network, the thickness of the Middle Jurassic does not exceed 150 m.

The Upper Jurassic is dominated by limestones (e.g., Kutek 1968; Matyja 1977; Matyja et al. 1996). The succession includes pelitic limestones and clay marls, medium- and thick-bedded limestones with flints, microbial-sponge limestones interbedded with thick-bedded limestones and marly limestones (Oxfordian). Above occur marls, oolite limestones, oyster
lumachells, marly clays and marls (Kimmeridgian) (Kutek 1968). The total thickness of the Upper Jurassic in the south-western part of the Permo-Mesozoic cover reaches slightly below 1100 m, and to the west of Mnin – about 870 m (Szajn 1984).

There is a stratigraphic gap between the Jurassic and Cretaceous (Senkowicz 1959; Kutek 1968; Hakenberg 1978). Kimmeridgian sediments are unconformably overlain by Lower Cretaceous sandstones, occasionally glauconitic sandstones, with interbeds of gaizes and spongiolites (Albian). The maximal thickness of the Lower Cretaceous in the study area reaches 130 m.

The Upper Cretaceous is represented by sandy limestones with gaizes, calcareous sandstones and conglomerates (Cenomanian); clays with flints and sandy limestones (Turonian); opokas, marls and gaizes (Turonian to Maastrichtian) (Marcinowski and Radwański 1983). The thickness of the Upper Cretaceous with the opokas of the lowermost Palaeocene reaches slightly above 1000 m.

In the southern and south-eastern part of the study area, the eroded, morphologically variable surface of Palaeozoic and Mesozoic rocks is covered by transgressive Miocene sediments of the Carpathian Foredeep Basin (Radwański 1969, 1973; Radwański and Górka 2012). The thickness of the Miocene strata does not exceed 300 m in the study area (Czapowski 2004).

Strike-slip fault pattern

The fault pattern within the Permo-Mesozoic cover and the HCFB is very complex and displays significant differences. Straight traces of faults dominate in the HCFB, whereas to the west of the HCFB, in the Permo-Mesozoic strata, the faults form an anastomosing fault pattern with prevailing non-planar faults (Text-fig. 1a) (Mastella and Konon 2002; Konon 2007, 2015).

The folds of the HCFB were formed after the Visean, probably during the late Carboniferous and before the late Permian (e.g., Czarnocki 1938, 1950).
The folds are cut by map-scale, WNW-ESE-striking, longitudinal, and N-S to NNW-SSE-striking, transverse and oblique faults (Text-fig. 1a) (e.g., Czarnocki 1938; Konon 2007). The longitudinal fault traces are up to tens of kilometres long. The traces of the transverse and oblique faults are a few kilometres long. Strike-slip and shortening components prevail across the planes of longitudinal faults, whereas strike-slip, shortening and extension components may occur across transverse and oblique fault planes (e.g., Czarnocki 1950, 1956; Jaroszewski 1973, 1980; Mizierski 1991; Mizierski and Orłowski 1993; Konon and Śmigielski 2006; Konon 2007). A dextral strike-slip component dominated during the Late Palaeozoic (probably late Carboniferous and early Permian) along the major longitudinal faults, such as the Holy Cross Fault and the Northern Lysogóry Fault, when the shortening direction was approximately NW-SE-trending (Konon 2007; Szaniawski et al. 2011). Transmission of horizontal stress resulted from the collisional phases in the Variscan Orogen (op. cit.). The strike-slip fault network in the HCFB was later overprinted during the Maastrichtian/Palaeocene strike-slip stage of deformation (e.g., Jaroszewski 1972; Konon and Mastella 2001; Mastella and Konon 2002; Konon 2007).

Longitudinal faults, with axes parallel to Mesozoic–Cenozoic folds, dominate in the fault pattern within the Permo-Mesozoic strata overlying the lower Cambrian to lower Carboniferous rocks of the HCFB. NW-SE and NNW-SSE-striking faults, as well as WNW-SSE-striking faults, prevail west of the HCFB and south of the fold belt, respectively (Text-fig. 2) (Czarnocki 1938, 1948; Kutek and Glazek 1972; Stupnicka 1972; Konon and Mastella 2001; Mastella and Konon 2002; Konon 2015). Faults with several tens of kilometres-long traces were recognized as dip-slip faults (Text-figs 1b, 2 and 4) (Filonowicz 1967, 1968; Stupnicka 1972; Hakenberg 1973, 1974; Filonowicz and Lindner 1986). The possibility of the occurrence of a strike-slip component on their planes was also assumed (Kutek and Glazek 1972; Stupnicka 1972; Kowalski 1975; Pożaryski 1976; Konon and Mastella 2001; Mastella and Konon 2002). The strike-slip activity within the Permo-Mesozoic strata has already been recognized along the map-scale Gniezdziska-Brzeziny Fault, with a several tens of kilometres-long trace (Konon and Mastella 2001; Mastella and Konon 2002) and along the faults forming the Mnin stepover (Konon et al. 2013, 2014; Konon 2015). The faults developed in the Maastrichtian/Palaeocene times when the maximum horizontal compressional stress S_{nax} was $\sim 10^6$ (Konon and Mastella 2001; Mastella and Konon 2002).

METHODS

Structural analysis

The analyses were made based on field observations in quarries and outcrops, geological maps, DEM-derived images of structures associated with strike-slip faults and geophysical investigations. The strike-slip component was identified based on the analysis of lineations on the slickensides and folds formed in the restraining stepover. Slickensides of first-order major faults and second-order minor faults consistent with Riedel shears as R and R’ were noted along the strike-slip faults (Text-figs 5, 6 and 7).

Field mapping and near-surface geophysical methods based on electrical resistivity tomography (ERT) allowed for a detailed analysis of the broad fault zones (Text-figs 8 and 9).

Geophysical investigations

Geophysical investigations enabled the precise localization of the fault zones and the recognition of the shallow damage zones. The near-surface geophysical method ERT was applied for detailed imaging of three segments of the Mieczyn and Snochowice Fault zones, whose presence was evident from cartographic and geomorphologic data but which otherwise were poorly or randomly exposed in the outcrops (Text-fig. 2b).

The application of the ERT technique in basic geology evolved from engineering geophysics – a branch of near-surface geophysics applied for geotechnical, civil engineering and construction issues. The method found its way to applications in imaging geological structures and its usefulness in this field is well proven, especially for fault detecting and characterisation (e.g., Colella et al. 2004; Diaferia et al. 2006; Terrizzano et al. 2010, 2012; Pánek et al. 2011). An exhaustive discussion of different aspects of the ERT method such as DC measurement theory, field acquisitions and processing can be found elsewhere (e.g., Dahlin 1996; Loke and Barker 1996; Loke 2001). The direct outcome of the ERT technique is a detailed section showing distribution of the rock medium resistivity – the value that depends on rock lithology (including mineral composition, porosity, grain size, etc.) and the presence and salinity of fluids in the pore space. Identification and outlining of the fault zones are possible by two main phenomena – the occurrence of differing lithologies on the opposite walls of the fault, resulting in contrasting zones of resistivity values, contacting across sharp boundaries, and the occurrence of fissured rocks, fault gauges, microkarst residua and smearing of fine-grained sediments.
(mineral particles) within the fault zones resulting in a drop in resistivity along the fault zone itself.

ERT measurements with 5 m electrode spacing and active measurement length up to 400 m were performed in the current study. Measurement of sections longer than 400 m would require a roll-along technique. The selected setting allowed us to image fairly compact geological objects with a penetration depth reaching 100 m. A dipole-dipole array was used due to its dense point coverage and high lateral sensitivity.

Low ambient electromagnetic noise did not cause interference with the noise-sensitive dipole-dipole array. Measurement data files were processed with Res2Dinv software, and presented as resistivity sections followed by a geological interpretation.

MNIN RESTRAINING STEPOVER

Major NW-SE and NNW-SSE-striking faults forming a complex fault pattern to the west and north-west of the HCFB are faults included in the Przedbórz-Mieczyn Fault System, and the Snochowice, Radoszyce and Diabla Góra faults belonging to the Radoszyce Fault System (Text-figs 1a and 2). The Radoszyce Fault System links with the Holy Cross Fault, the major fault in the HCFB, whereas the Straszów Fault probably connects with the Northern Lysogóry Fault (Czarnocki 1938; Jurkiewiczowa 1961; Mastella and Mizerski 2002; Konon 2007, 2015). The Snochowice Fault links in its southern part with the Mieczyn Fault and with the Gnieździska-Brzeziny and Tokarnia faults (Text-figs 1, 2). The Mieczyn Fault belonging to the Przedbórz-Mieczyn Fault System links in its southern part with the Snochowice Fault. The faults dissect Triassic, Jurassic and Cretaceous rocks characterized by strong differences in the strengths of the individual rocks.

The fault surfaces dissect Mesozoic strata, and contact at larger depths with the Palaeozoic basement formed by rocks of the HCFB (Text-fig. 4) (e.g., Czarnocki 1938, 1961; Jurkiewiczowa 1961; Jurkiewicz 1965; Filonowicz 1967; Jurkiewicz 1967; Hakenberg 1973; Filonowicz and Lindner 1986; Mastella and Konon 2002; Konon 2007). Strong differences in the strengths of the individual rocks have resulted in the formation of an anastomosing fault pattern (Text-fig. 1). Due to the curved traces, the faults merge and diverge along their strikes. Locally, the fault zones include also subparallel faults. The fault traces refract strongly at the contact between the HCFB and the Permo-Mesozoic strata (Text-fig. 1). The strike of the fault traces changes in the range of 50° of strike. The non-planar geometry of the fault planes facilitates the development of different contractional and extensional structures along the faults, such as releasing or restraining bends (e.g., Woodcock and Schubert 1994). This relationship is manifested in the Permo-Mesozoic strata by the formation of numerous bends, for example along the Gnieździska-Brzeziny Fault (Konon and Mastella 2001; Mastella and Konon 2002), and the Tokarnia, Snochowice and Mieczyn faults (Konon 2015).

In the study area, some of the fault zones consist of segments, the presence of which facilitated the for-
mation of overlaps of the ends of fault traces termed as stepovers, such as the Mnin restraining stepover (Text-figs 1–4). The Mnin stepover is one of the largest contractional structures within the Permo–Mesozoic succession (Konon et al. 2013, 2014; Konon 2015). The stepover formed at the overlap between the NNW-SSE-trending Mieczyn Fault linked with the Przedbórz Fault and the Snochowice Fault (op. cit.). The structure is c. 9 km wide and c. 27 km long (Text-figs 2 and 10). Several map-scale folds formed within the stepover. In the central part of the stepover, near Mnin town, the fold axes are W–E-trending, whereas at the northern and southern ends of the stepover, they are subparallel to the surfaces of the Mieczyn and Snochowice faults (Text-fig. 2). The deflection of the fold axes suggests that the folds have a helicoidal geometry of their axial surfaces. This strong change of the fold trend suggests that the folds might have undergone modifications as a result of fault-associated dragging. Dragging of the beds resulted from the occurrence of a dextral strike-slip component along the main strike-slip faults bordering the stepover. The strike-slip component of movement along the main faults is also confirmed by field observations of slickensides (Text-figs 5, 6).

Shallow damage zones of strike-slip faults in the area adjacent to the Mnin stepover

Damage within large strike-slip fault zones mainly depends on their geometry and the material properties of the dissected rocks. Analysis based on seismic profiles (e.g., Krzywiec 2002, 2007; Woodcock and Rickards 2003) and numerical simulations performed for complex segmented structures documents the formation of flower structures at shallow depths and highly localized damage zones at larger depths (e.g., Finzi et al. 2009). Strain concentrates mainly along the fault cores of major fault zones. The analysis of the strike-slip fault zones dissecting the Permo–Mesozoic strata reveals that the fault cores consist of numerous slip surfaces and that the fault rocks are represented by breccias, gouges and cataclasites (Text-fig. 7).

Strike-slip fault zones display two main units: the fault core and the damage zone, which is typical of fault zones (Chester and Logan 1986; Caine et al. 1996, Billi et al. 2003; Faulkner et al. 2010). Detailed field mapping across the fault zones within the Permo-Mesozoic strata shows their variable width, from a few metres to several tens of metres, limited by the size of
the exposures (Text-figs 7–9). The shallow damage zones display complex structural patterns comprising subsidiary faults and fractures at different scales generated during their multistage evolution. Damage covers a relatively wide part of the fault zones that reaches up to at least 100 m (Text-figs 8 and 9). The geometry of the faults defines the failure of rocks observed e.g., along the Gnieździska-Brzeziny Fault: strong lithologies within the restraining bands resulting in broad damage zones with numerous subsidiary faults and fractures, and weaker lithologies within the releasing bends with less common fracturing (Mastella and Konon 2002; Konon 2015; Rybak-Ostrowska et al. 2015, 2016).

The results of failure vary along the major and subsidiary faults and depend on the location of tip-linking or wall-damage zones (e.g., Segall and Pollard 1980; Kim et al. 2004).

Slickensides of the major strike-slip faults are more weakly preserved in comparison with the slickensides of the subsidiary faults. Intense damage often removes the main fault planes due to significant offsets. Observations of wall- and linking-damage zones within the Permo-Mesozoic rocks reveal subsidiary faults termed as R, R’ and R1, R1’, with offsets of tens of meters and up to a few tens of centimetres wide fault zones (Text-fig. 6). The sense of movements and the shear angles (θ) indicate that the subsidiary faults R and R’ represent dextral strike-slip faults and sinistral strike-slip faults, corresponding to Riedel shears, respectively (Riedel 1929). Faults R1 and R1’ are also consistent with Riedel shears but their relation to the major fault zones, such as the Gnieździska-Brzeziny Fault, suggests their formation in a transpression regime (e.g., Vialon 1979; Gamond and Giraud 1982; Mastella 1988; Mastella and Konon 2002).

Some of the fault zones, e.g., the Mieczyn Fault, consist of upward-diverging faults, which cut an antiformal push-up forming the Mieczyn-Lasocin Anticline (Text-figs 4 and 9). Bordering reverse faults belonging to the Mieczyn Fault Zone form a positive flower structure along this segment of the fault, indicating the presence of a contractional deformation. The reverse movement component is present in the western limb of the Mnín Syncline (Text-fig. 9). The reverse component across the fault planes suggests that both the strike-slip and the dip-slip movements occurred along the faults forming the Mnín stepover.

The effects of deformation of different rocks within the fault zones are controlled by their rock fabric and porosity. The brecciation zones mentioned above are associated both with the Middle and Upper Jurassic, and Cretaceous, limestone sequences, and reach up to several tens of metres (Text-fig. 7). The cataclastic fault rocks, typical of the Lower Jurassic sandstone sequences, show very narrow, up to a few centimetres wide, localized slip zones (Rybak-Ostrowska et al. 2015).

The Miocene sediments of the Carpathian Foredeep Basin mentioned above unconformably overlying the folded Mesozoic rocks as well as the Palaeozoic basement suggest that erosion could have removed 1 km or even over 2 km after the Maastrichtian and before the sedimentation of the Miocene deposits (Text-fig. 3) (Czarnocki 1938).
Due to this fact, it is possible to observe exhumed damage zones within the Permo-Mesozoic cover. The major dextral strike-slip fault zones show a mostly asymmetric structural pattern of damage zones recognizable in near-surface crustal conditions, in the top 1-2 km of the fault zones (Text-figs 7–9). The asymmetric pattern within the exhumed damage zones to the west of the HCFB is controlled by the non-planar geometry of the faults and the juxtaposition of strongly differing sedimentary rocks, such as incompetent Triassic claystones and competent Jurassic siliciclastic and carbonate rocks with damage concentrated predominantly within the competent rocks.

DISCUSSION AND CONCLUSIONS

The fault pattern consisting of dextral strike-slip faults, recognized within the Permo-Mesozoic cover, west of the exhumed HCFB, demonstrates the signif-
significant role of strike-slip faulting along the western border of the Teisseyre-Tornquist Zone, in the foreland of the Polish part of the Carpathian Orogen in the western Peri-Tethyan domain (e.g., Ziegler 1982, 1990a, b; Stampfl et al. 2001).

One of these structures is the large-scale Mnin restraining stepover included in the fault pattern, formed within the Permo-Mesozoic cover, where significant refraction of the strikes of the fault traces (about 50°) is present. The refraction probably resulted from the propagation of faults through rocks of different strengths within the HCFB and its Permo-Mesozoic cover (e.g., Czarnocki 1938; Konon 2007, 2015). The change of the strikes suggests the possibility of limited reactivation of the fault zones of the HCFB. The refraction of the faults dissecting the Permo-Mesozoic rocks, to the west and south of the HCFB, is likely related also to the interaction of the two fault systems.
Text-fig. 10. A - Simplified tectonic sketch of the Mnin stepover with step length and width marked. B - Theoretical relationship between step width and step length of the Mnin stepover (based on de Joussineau and Aydin 2009, modified)

Text-fig. 11. Simplified tectonic sketch-map of the western part of the Holy Cross Mountains area with location of epicentres of earthquakes (based on: Shebalin et al. 1998; Guterch 2015) projected on a shaded-relief Shuttle Radar Topography Mission (SRTM) image. See text and Table 1 for explanations.
NW-SE-striking faults forming probably the western border of the Teisseyre-Tornquist Zone, and WNW-ENE-striking faults belonging to the fault system of the northern margin of the Tethys Ocean (Matyja 2009).

Such a large-scale restraining stepover has so far not been described from Poland, although similar structures have been widely recognized all over the world (e.g., Sylvester 1988; Wakabayashi et al. 2004; Restrainting Stepover along the Teisseyre-Tornquist Zone 441).

<table>
<thead>
<tr>
<th>No.</th>
<th>Type of event</th>
<th>Data</th>
<th>Latitude (Y)</th>
<th>Longitude (X)</th>
<th>Source quality</th>
<th>coordinates accuracy</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>n/a</td>
<td>08.08.1303</td>
<td>51.0</td>
<td>20.0</td>
<td>n/a</td>
<td>(X, Y) +/- 1 degree</td>
<td>6 (+/- 1.5) (based on MSK-64 scale)</td>
</tr>
<tr>
<td>2**</td>
<td>n/a</td>
<td>05.02.1837</td>
<td>50.68</td>
<td>21.04</td>
<td>reliable sources data</td>
<td>6' < (X, Y) < 15'</td>
<td>6 (+/- 1) (based on EMS-98 scale)</td>
</tr>
<tr>
<td>3**</td>
<td>main event</td>
<td>20.11.1926</td>
<td>51.28</td>
<td>19.90</td>
<td>reliable sources data</td>
<td>6' < (X, Y) < 15'</td>
<td>6 (+/- 1) (based on EMS-98 scale)</td>
</tr>
<tr>
<td>4**</td>
<td>earthquake swarm</td>
<td>06.02.1932</td>
<td>50.6</td>
<td>21.2</td>
<td>reliable sources data</td>
<td>6' < (X, Y) < 15'</td>
<td>6 (+/- 1) (based on EMS-98 scale)</td>
</tr>
</tbody>
</table>

* - based on Shebalin et al. (1998); ** - based on Guterch (2015)

Intensity scales: EMS-98 (European Macroseismic Scale); MSK-64 (Medvedev–Sponheuer–Karnik scale).

Table 1. Historical earthquake epicentres in the Holy Cross Mountains region based on Shebalin et al. (1998) and Guterch (2015). Location of seismic events in Text-fig. 11.
Stepovers associated with strike-slip faulting, where the folds are modified in a contractional overlap of faults, and the length-to-width ratios range from 2.5 to 3, were described e.g., along the San Andreas Fault (Sylvester 1988; Wakabayashi et al. 2004; Wakabayashi 2007), along the northern margin of the Sanandaj-Sirjan Zone in the Zagros Orogen (Morley et al. 2009; Babaahmadi et al. 2010), and in the central part of this zone (Nadimi and Konon 2012).

Significant offsets facilitate the migration of stepovers as in the case of the active Mount Diablo restraining stepover (Wakabayashi 1999, 2007; Wakabayashi et al. 2004). The active Mount Diablo fold-and-thrust belt, whose strike is oblique to the boundary faults, formed within the stepover. The mean step length of the Mount Diablo stepover is c. 30 km. The total late Cenozoic dextral slip that has been transferred through the Mount Diablo stepover is at least 18 km, whereas the total displacement along the eastern faults of the San Andreas Fault System is about 230–250 km (Wakabayashi 2007). According to Wakabayashi (1999), individual structures associated with strike-slip faulting, such as restraining stepovers, slip transfers, or bends have accommodated tens of kilometres of slip along the San Andreas Fault System.

Another example of active fault stepovers affecting the initiation of earthquakes is the overlap between the Indes and Qom faults and the Zefreh and Nain-Dehshir faults, and the length-to-width ratios range from 2.5 to 3, were described e.g., along the San Andreas Fault (Sylvester 1988; Wakabayashi et al. 2004; Wakabayashi 2007), along the northern margin of the Sanandaj-Sirjan Zone in the Zagros Orogen (Morley et al. 2009; Babaahmadi et al. 2010), and in the central part of this zone (Nadimi and Konon 2012).

Significant offsets facilitate the migration of stepovers as in the case of the active Mount Diablo restraining stepover (Wakabayashi 1999, 2007; Wakabayashi et al. 2004). The active Mount Diablo fold-and-thrust belt, whose strike is oblique to the boundary faults, formed within the stepover. The mean step length of the Mount Diablo stepover is c. 30 km. The total late Cenozoic dextral slip that has been transferred through the Mount Diablo stepover is at least 18 km, whereas the total displacement along the eastern faults of the San Andreas Fault System is about 230–250 km (Wakabayashi 2007). According to Wakabayashi (1999), individual structures associated with strike-slip faulting, such as restraining stepovers, slip transfers, or bends have accommodated tens of kilometres of slip along the San Andreas Fault System.

Another example of active fault stepovers affecting the initiation of earthquakes is the overlap between the Indes and Qom faults and the Zefreh and Nain-Dehshir faults forming en échelon arrays, where restraining stepover zones were recognized (Morley et al. 2009; Babaahmadi et al. 2010). The estimated total offsets along the Indes and the Qom-Zefreh faults are approximately 40–50 km (Allen et al. 2011).

Similar active restraining stepovers as e.g., the Hasan Robat, Pars and Najafabad restraining stepovers formed along the longitudinal fault systems to the south of the Indes and Qom Faults in the central part of the Sanandaj-Sirjan zone (SSZ). The tectonic block was horizontally sheared in a manner consistent with the simple shear ‘card-deck model’ (Nadimi and Konon 2012). The mean step lengths of the Hasan Robat, Pars and Najafabad stepovers are c. 50, 15 and 30 km, respectively. In the left-stepping stepover zone, between the segments of the major faults, developed map-scale folds with a helicoidal geometry of the axial surfaces. A similar restraining stepover, in which the folds have a helicoidal geometry of the axial surfaces, formed between the left stepping segments of the major faults near Najafabad.

These examples show that large restraining stepovers with the mean step lengths over 20-30 km form when the offsets along the strike-slip faults exceed at least 10 km. This suggests that the displacements along the strike-slip faults in the study area might be also significant. Most of the strike-slip faults dissecting the Permo-Mesozoic strata, which were recognized to the west of the HCFB are longitudinal, and the magnitudes of displacements along the faults are difficult to estimate due to the lack of clearly determined markers, such as e.g., the offset of Holocene deposits, rivers, streams or other geological structures. One example of the measured strike-separation of the Oxfordian-Kimmeridgian limestones comes from the southern limb of the Bolmin Syncline, where Jurassic rocks are dextrally offset by the Tokarnia Fault by about 2 km (Text-fig. 2c).

The area of Poland displays a generally low-magnitude seismicity (e.g., Shebalin et al. 1998; Guterch 2009, 2015). Epicentres of seismic events are located mostly in the Western Carpathians, in the Sudetes and along the Teisseyre-Tornquist Zone showing the activity of the fault zones. A few historical earthquakes with an estimated epicentral intensity $I_{MSK-64} = 5-6$ in the EMS-98 and MSK-64 scales occurred in the vicinity of the investigated faults near the Holy Cross Mountains (op. cit.) (Text-fig. 11, Table 1). Low-magnitude seismicity limits the identification of geomorphic evidence for active strike-slip faulting.

For estimation of the magnitudes of maximum displacements along strike-slip faults based on the stepover parameters, it is necessary to consider the theoretical relationships between the maximum fault offsets/mean step length, as well as between the maximum fault offsets/mean step width according to the laws of de Joussineau and Aydin (2009). In the case of the Snochowice and Mieczyn faults, the Mnin stepover is the only structure available for measurements. This causes significant uncertainty in the estimation of the displacement.

The step length and mean step width of the Mnin stepover are c. 27 km and 9 km, respectively (Text-fig. 10). The length-to-width ratio equal to 3, calculated for the Mnin stepover demonstrates an almost best fit to the quasi-linear positive power law relationship: $y = 2.69x^{0.97}/R^2 = 0.93$ (de Joussineau and Aydin 2009). This puts the Mnin stepover close to the most typical structures of this type.

The estimated value of the maximum offset along the Snochowice and Mieczyn Fault System, calculated based on the relationships between the step length/maximum fault offset as well as the mean step width/maximum fault offset, ranges between 9-20 km and 169–275 km (Text-fig. 12). Only the lower values
of the estimated range seems to fit into the tectonic setting of the area. Significant values of the length and width of the stepover suggest that the Snochowice and Mieczyn faults belong to a large strike-slip fault system. The obtained results based on the present state of knowledge are difficult to prove and they indicate the need for further research.

The precise timing of the formation of the Mnin restraining stepover is difficult. The youngest folded rocks involved in the folds within the stepover are of Jurassic age. Cretaceous rocks occur to the south of the structure near Małogoszcz, within the hinges of the antitcline and syncline, in a situation similar to that with the hinge of the Bolmin Syncline dissected by the Gnieżdziska-Brzeziny and Tokarnia Faults. Constraints on the timing of the formation of the strike-slip faults in the Permo-Mesozoic strata are provided by deflection of the fold axes within the Mnin stepover. The folds might have undergone modifications as a result of fault-associated dragging after the Cretaceous and before the Miocene, which is consistent with the observation that the folded rocks are unconformably overlain by Miocene rocks (Text-fig. 2a) (e.g., Czarnocki 1938). Consequently, the deformation might have been associated with the Cretaceous/Palaeogene inversion stage (Pożaryski 1964; Kutek and Głązêk 1972, Dadlez et al. 1997; Krzywiec 2000, 2002, 2007; Hakenberg and Świdrowska 2001; Świdrowska 2007; Świdrowska et al. 2008). The lack of Palaeocene deposits (Piwocki 2004) in the study area does not allow a clear estimation of the age of the end of the inversional deformation. According to some authors (Pożaryski and Brochwicz-Lewiński 1979; Krzywiec 2006), the inversion ended in the Palaeocene or in the early Eocene (Kutek and Głązêk 1972; Narkiewicz et al. 2010).

Strike-slip faulting during the Late Cretaceous – Palaeogene was documented along the Grójec Fault (Krzywiec 2009a), north-east of the study area (Text-fig. 1b). Similarly, strike-slip faulting during the Late Cretaceous–early Cenozoic times, was recognized south-west of the study area, along the WNW-ESE-striking Elbe Fault System (Text-fig. 1b). This fault system responded to regional compression with a significant uplift of up to 4 km (Scheck et al. 2002).

A younger strike-slip component on the fault planes dissecting the Cenozoic rocks was observed to the west of Przedbórz in the Kleszczów Graben (e.g., Hałuszczak 2002). The observations suggest that the faults forming the fault pattern east of the Kleszczów graben, where the Mnin stepover occurs, could be reactivated during the Cenozoic or even during present-day deformation, which is suggested by earthquake analysis (e.g., Shebalin et al. 1998; Guterch 2009, 2015).

Acknowledgments

This study was supported by Grant No. 2011/03/B/ST10/06341 of the National Science Centre, Poland “The role of strike-slip faulting during inversion of the south-western part of the Holy Cross segment of the Polish Basin”. The final version of the manuscript benefited greatly from the constructive reviews by Piotr Krzywiec and Stanisław Mazur.

REFERENCES

Relevant references:

Pożaryski, W. 1964. Outline of Palaeozoic and Mesozoic tectonics of the Polish Lowland. Kwartalnik Geologiczny, 8, 1–41. [In Polish with English summary]

Woodcock, N.H. and Fisher, M. 1986. Strike-slip du-

*Manuscript submitted: 17th May 2016
Revised version accepted: 25th July 2016*