An early Middle Anisian (Middle Triassic) *Tubiphytes* and
cement crusts-dominated reef from North Dobrogea
(Romania): facies, depositional environment
and diagenesis

LIVIA POPA1, 3, CRISTINA E. PANAIOTU2 AND EUGEN GRĂDINARU1

1Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, Bd. Bălcescu Nicolae 1,
RO-010041 Bucharest, Romania.
E-mails: livia.dobre@gmail.com; eugen.gradinaru@g.unibuc.ro
2Department of Mineralogy, Faculty of Geology and Geophysics, University of Bucharest, Bd. Bălcescu Nicolae 1,
RO-010041 Bucharest, Romania.
E-mail: cris.panaiotu@gmail.com
3OMV Petrom S.A., Reservoir Management Department, Asset IV Moesia South, 22nd Coralilor Street,
013329, Bucharest, Romania.

ABSTRACT:

Popa, L., Panaiotu, C.E. and Grădinaru, E. 2014. An early Middle Anisian (Middle Triassic) *Tubiphytes* and cement
crusts-dominated reef from North Dobrogea (Romania): facies, depositional environment and diagenesis. *Acta

A well-developed Triassic carbonate platform is exposed in the eastern part of the Tulcea Unit, in the Cimmerian
North Dobrogean Orogen, southeastern Romania. Facies analysis of the 200 m thick succession of lower Middle
Anisian limestones exposed in a large limestone quarry south of the village of Mahmudia suggests a transition
from upper slope towards toe-of-slope carbonate facies, reflecting sea-level fluctuations and tectonic tilting. The
slope is dominated by *in situ* microbialites in the upper portion, consisting of reefal boundstone facies, and by mol-
luscan coquina and cement boundstones. A key role is played by the cosmopolitan micro-encruster *Tubiphytes*,
which became common in the aftermath of the mass extinction at the Permian/Triassic boundary, and by au-
tochthonous micrite and synsedimentary marine cement. The absence of metazoan reef builders, such as sponges
and corals, reflects the fact that microbes were the first organisms to recover after the Permian/Triassic crisis under
unusual marine conditions and that their main role in reef formation was sediment stabilization along the upper
slopes. The lower slope is mostly detrital, being dominated by platform-derived bioclastic rudstones and crinoidal
floatstones, which are interbedded with basinal carbonate hemipelagics. The toe-of-slope is composed of pelagic
wackestones framed by thin tongues of intraclast breccia. All these observations are in agreement with the slope-
shedding model described for the Pennsylvanian microbial margin in Asturias (northern Spain) and the Anisian–
Ladinian flat-topped, steep-rimmed Latemar platform (Dolomites, Italy).

As most of the Anisian reefs were described from western and eastern Tethys (Southern Alps, Hungary, China),
the occurrence of the early Middle Anisian *Tubiphytes*-reef from North Dobrogea (Romania) contributes to re-
solving the puzzle of the geographic distribution of reef recovery in the Middle Triassic.

Key words: Anisian (Middle Triassic); Carbonate slope; Microbialites; *Tubiphytes*-buildup; North Dobrogea; Romania.
INTRODUCTION

The dominance of microbial carbonates seems to be the main characteristics of carbonate buildups during times of skeletal metazoan crisis after extinction events (Webb 1996). This is recorded after the end-Palaeozoic or Early–Middle Triassic extinctions (Della Porta et al. 2004), which deeply affected the carbonate production in the following time intervals. The Early Triassic ‘reef gap’ lasted more than 5 Ma (Payne et al. 2006), before the reef communities re-diversified during the Middle Triassic (Flügel and Stanley 1984; Stanley 1988; Senowbari-Daryan et al. 1993; Flügel 1994, 2002). During this time, the intense hothouse climate that caused the extinction persisted and the equator to pole temperature gradient was very low (Preto et al. 2010). The dry climate that generally dominated the earliest Triassic was interrupted later by a few moister phases, such as the one during the Middle Anisian (Stefani et al. 2010; Preto et al. 2010), revealing the unstable and pulsatory character of the environmental conditions.

A key role in the biotic evolution of the Triassic was played by the warming trend noted throughout this period, causing a reduction in the proportional contribution of microbes versus scleractinian corals in reef construction and an increase in the latitudinal extent of the tropical reefs (Kiessling 2010).

The present paper deals with in situ upper slope boundstones belonging to an M-carbonate factory (one of the three carbonate factories identified by Schlager 2000, 2003), dominated by microbial precipitation. This facies is equivalent to non-skeletal microbialite, one of the four categories into which reef frameworks were divided by Webb (1996). According to this author, the microbial buildup represents a non-enzymatic framework.

The studied constructional reef from Mahmudia, North Dobrogea, composed of microbial boundstones, is referred to herein as a biostrome (according to Kiessling et al. 1999 classification), as no apparent depositional high relief can be inferred in the field. It was formed by a micro-framework consisting of Tubiphytes, very small encrusting and low-growing organisms, as well as abundant fine-grained internal sediment, microbial crusts, and autochthonous micrite (automicrite), all reinforced by large volumes of marine cement, showing similarities with both Permian (Wood 1999, 2000; Weidlich 2002) and Ladinian reefs (Flügel 2002). From a compositional point of view, the Tubiphytes-reef is a microbial reef, one of the eight major compositional reef types distinguished by Flügel (1994, 2002).

Starting with the early Middle Anisian bioconstruction in Mahmudia, the reefs expanded throughout the Northern Tethys, the area being considered as reef-free during that time (e.g. Flügel 2002). From this perspective, the Tubiphytes-buildup from North Dobrogea is one of the few early Middle Anisian reefs known from the Tethys, thus completing the geological and geographical extension of this type of construction throughout this major marine domain.

The present paper gives the sedimentological characteristics of the Middle Triassic carbonate platform located in the easternmost part of the Tulcea Unit, North Dobrogea (Romania), with the aim of assessing the stratigraphic architecture, facies pattern and depositional environments of the Anisian sequence in the context of biotic recovery after the Permian/Triassic extinction. The role of diageneis is highlighted as well.

GEOLOGIC AND STRATIGRAPHIC SETTING

The Triassic carbonate platform of the Tulcea Unit is located in the eastern part of the North Dobrogean Orogen (Text-fig. 1). This orogen represents the westernmost segment of the Palaeo-Tethyan Cimmeride orogenic system (Text-fig. 1, inset), which continuous to the east into the Mountainous Crimea and the Greater Caucasus (Şengör 1984, 1986).

The North Dobrogean Orogen is built up of several tectonic units, making up a pile of northeasterly-verging high-angle overthrusts, or nappes. From south to north the following units were distinguished: Măcin (the uppermost), Consul, Niculiţel, and Tulcea (the lowermost) (Text-fig. 1). Whereas both innermost units (Măcin and Consul), and the outermost (Tulcea) unit are continental, basement-sheared nappes including relics of a Variscan Orogen, the median unit (Niculiţel) is interpreted as a suture zone, based on the extensive occurrence of Middle Triassic basaltic rocks (Sândulescu 1995; Visarion et al. 1990). The Triassic succession of the North Dobrogean Orogen is of Tethyan type, in contrast to the Germanic-type Triassic of the Moesian and Scythian platforms (Grădinaru 1995, 2000), lying to the south and north of the North Dobrogean Orogen (Text-fig. 1) respectively. The puzzling position of the North Dobrogean Triassic in the foreland of the Alpine Carpathian Orogen can be interpreted as a result of post-Triassic large-scale horizontal displacements of Tethyan terranes in close connection with the opening of the West Black Sea Basin (e.g. Grădinaru 1988; Okay et al. 1994; Banks and Robinson, 1997).

The studied Middle Anisian Mahmudia section is exposed in a 1.5-km long quarry for limestone used in
the iron and steel industry. The quarry is located in the Caeracul Mare Hill area (N45°03′12.41″, E29°03′34.52″) south of the village of Mahmudia, 35 km east of Tulcea (Text-fig. 2). The exposed carbonate rocks represent the Caerace Formation. Due to block faulting and the quarrying activity, the stratigraphic succession in the quarry is highly disturbed. Similarly, due to poor exposure, the details of the geometry of the Tubiphytes-buildup remain unclear. The samples were taken from a 200-m thick succession exposed in a vertical wall in the northeastern corner of the quarry (Text-fig. 3).

The early Middle Anisian (Bithynian, in the European Triassic time scale; e.g. Shevyrev 1990; Mietto and Manfrin 1995) age of the Tubiphytes-buildup in the Mahmudia Quarry is documented by the ammonoid fauna (Grădinaru, in prep.), including Robinsonites sp., Unionvillites sp., Alamites sp. aff. A. visendus Shevyrev, Gymnites sp. aff. G. tozeri Bucher, Megaphyllites prometheus Shevyrev, Longobarditoides solimani (Toula), Hollandites silberlingi Bucher, Caucasites inflatus Shevyrev, Acrochordiceras hyatti Meek, Ussurites sp. aff. U. arthaberi (Welter), etc. This fauna indicates the lower Middle Anisian Osmani Zone of the North-Western Caucasus (Shevyrev 1995) and the lower Middle Anisian Hyatti Zone of Western Nevada (Silberling and Nichols 1982; Bucher 1992; Monnet and Bucher 2006). The macrofauna associated with the Tubiphytes-buildup also includes rich coiled nautiloids, abundant and diverse bivalves and gastropods, and less diverse brachiopods.

MATERIALS AND METHODS

From the measured section, more than 150 samples were collected (see sample location in Text-fig. 4) and 70 thin sections and polished slabs were prepared for petrographic analysis by polarized light microscopy, UV fluorescence microscopy and cold cathodoluminescence microscopy (CITL). Small polished slabs, mainly from the cement-rich parts, were etched with diluted acetic acid and studied with a scanning electron microscope (SEM). Other larger polished slabs were
etched with 10% HCl, stained with alizarine and potassium ferri cyanide, and fingerprinted on acetophane peels in order to detect the mineralogy of the different carbonate components. Carbon and oxygen stable isotopes were measured on samples taken from polished slabs with a handheld micro-drill. The powders were reacted with 100% phosphoric acid at 75°C, and the evolved CO₂ gas was analyzed with a Finnigan MAT 251 mass spectrometer. The δ¹³C and δ¹⁸O values are corrected according to the NBS19 standard and re-

Text-fig. 2. Geologic map of the Mahmudia region (modified after Mirăuţă and Panin 1976). The study area is shown by a black box.

Text-fig. 3. The carbonate deposits of the Middle Triassic Caerace Formation exposed in northeastern corner of the Caeracul Mare Hill sector of the Mahmudia Quarry, with the stratigraphic section detailed in the lithofacies column (B) in Text-fig. 4. The main lithofacies detailed in Table 1 are overwritten (S1 – Tubiphytes boundstone; S2 – bivalve coquina with automicrite; S3 – cemented-dominated boundstone; S4 – bioclastic rudstone; S5 – laminated bindstone; S6 – crinoidal floatstone; S7 – intraclast breccias; S8 – pelagic wackestone).
ported in per mill (‰) relative to the V-PDB (Vienna-PeeDee Belenite) standard (standard deviation smaller than 0.04‰).

CARBONATE FACIES BELTS AND THE TUBIPHYES-BUILDUP FRAMEWORK

The Caerace Formation is subdivided into a number of lithological units (in ascending stratigraphic order): massive dolostone, pelagic dolomitized limestone,stromatactis limestone, bioclastic limestone, nodular limestone, reefal (Tubiphytes) limestone and pelagic limestone, some of them recurring in the succession (Text-fig. 4). A depositional slope with three facies belts (upper slope, lower slope and toe-of-slope, and its transition to basinal sediments) can be distinguished in the studied sequence that includes the Tubiphytes-builup.

Macroscopically, the reefal (Tubiphytes) limestone is strongly compacted with poorly developed sedimentary structures. The depositional slope sequence, as shown in Table 1, consists of: 1) Upper slope, 120 m of massive limestones incorporating Tubiphytes boundstones, molluscan coquina and cement boundstones, without any evidences of subaerial exposure; 2) Lower slope, 40 m thick, dominated by bioclastic rudstones and crinoidal floatstones, which are interbedded with carbonate hemipelagics; 3) Toe of slope, 30 m thick, mainly composed of thin intraclastic breccia tongues framing pelagic wackestones and peloidal bindstones.

Facies types

Tubiphytes boundstone [S1] (Pl. 1; Pl. 2; Pl. 3, Figs 1, 2) is the dominant facies, representing in-situ accumulation with the highest growth potential. It has a massive appearance and mound morphology (Pl. 1, Fig. 1). Its fossiliferous zones are rich in bivalves (lithofacies S2), ammonoids, nautiloids, numerous gastropods and rare brachiopods. In parts Tubiphytes is embedded in marine cement 2–3 cm thick (Pl. 1, Figs 2, 4).

The main biotic constituent of this facies consists of ramose individuals of the problematic organism Tubiphytes (up to 2 cm long, Pl. 2; Pl. 3, Fig. 2), a common fossil of the Anisian reef assemblages. Also important are local concentrations of ostracods, foraminifera, thin-shelled bivalves, brachiopods (Pl. 2, Fig. 2) and crinoids, all embedded in large amounts of isopachous fibrous cm-thick cements (Pl. 1, Fig. 5; Pl. 2, Fig. 1; Pl. 3, Figs 1, 2).

The framestone is characterised by the abundance of Tubiphytes in growth position (see Enos et al. 2006), the prominence of encrusting organisms (Tubiphytes and foraminifera, Pl. 1, Fig. 5; Pl. 2, Fig. 1), the massive macroscopic appearance and the abundance of constructional pores (growth-framework porosity of Croquette and Pray 1970), which reach up to 50% of the rock volume.

Biogenic crusts with clotted peloidal fabric and gravity-defying structures evolved around Tubiphytes (Pl. 2, Fig. 1). Internal sediment is present in considerable amounts, exposing peloidal textures with traces of possibly microbial filaments (Pl. 1, Fig. 5, inset detail) which, together with the automicrite (Pl. 2, Figs 3–5; Pl. 3, Fig. 1), could have been biologically mediated. Bio-turbation is also present (Pl. 3, Fig. 1).

Cements make up to 50% of the total rock volume. The cement sequence is: fibrous calcite, radiaxial fibrous calcite (RFC) and drusy cement (now all low-magnesium calcite - LMC). Isopachous crusts of brown bladed or fibrous crystals are by far the most common cement within the boundstone facies with growth framework porosity. Thin micrite films (‘dust lines’) are intercalated by different cement generations (Pl. 2, Fig. 1).

Mm- to cm-thick crusts consisting of RFC, growing on an extended Tubiphytes framework, are common within the boundstones (Pl. 1, Figs 2, 3). In some cases dissolution preceded its precipitation, as demonstrated by the truncation of the sedimentary fabric in the surrounding boundstone facies (Pl. 2, Fig. 1). Isopachous RFC cement often contains dark and light coloured zones indicating several episodes of cement precipitation. Fluorescence investigations show alternations of fluorescent and non-fluorescent laminae (Pl. 8, Fig. 6). Equant sparry calcite is a minor component of the boundstone facies found within framework voids that remained after marine syndepositional cementation (Pl. 2, Fig. 3; Pl. 3, Figs 1, 2; Pl. 8, Fig. 8).

Bivalve coquina with automicrite [S2] (Pl. 3, Figs 3–6) is interbedded with Tubiphytes boundstone, and consists of thin-shelled bivalves, rarely brachiopods, gastropods, ammonoids, and ostracods. The bivalves are microbiially encrusted (Pl. 3, Fig. 5). Some of the bivalve shells are preserved with both valves, including internal shell structures. Their internal cavities were filled partially with peloidal cement, before embedment in fibrous cement (Pl. 3, Fig. 6). The automicrite, the other component of the microfacies, is characterized by clotted peloid aggregates without traces of bedding (Pl. 3, Figs 3, 4).

Cement boundstone [S3] (Pl. 3, Figs 7, 8; Pl. 7, Figs 1–4) consists of cm-scale cement arrangements with rare
patches of automicrite and thin-shelled bivalves. Recrystallized fibrous cement prevails, followed by a band of scalenohedral dolomite cement ("dog-tooth cement" – DTC) (Pl. 8, Figs 1, 2). The remaining voids are filled by equant blocky calcite (Pl. 7, Fig. 1). The wavy micrite layers, intercalated by fibrous cement, mimic a distinct growth structure probably determined by organic mats (Keim and Schlager 1999). Black and white peloids (Pl. 3, Figs 7, 8), viewed in stained thin section, have a low magnesium calcite (LMC) centre and a dolomite rim. Automicrite occurs in small patches (Pl. 7, Figs 1, 2, 4). Stromatactis structures are spotted in some samples (Pl. 7, Fig. 4) marking cavities with a flat floor, composed of peloids, and a digitate top, filled by RFC and blocky calcite. These reveal the sedimentation sequence.

Text-fig. 4. Synthetic lithological column (A) of the Middle Anisian Caerce Formation in the Mahmudia Quarry, and detailed lithofacies column (B continued) of the studied section (marked by the red quadrangle) with sample log for the lower Middle Anisian (Bithynian) Tubiphytes-buildup. Symbols S1 to S8 as shown in Text-fig. 3 and Table 1.
Bioclastic rudstone facies [S4] (Pl. 4; Pl. 5, Figs 1–6) is generally structureless, sometimes with clotted peloidal micrite inside cryptic cavities, and is occasionally interbedded with laminated mudstones that represent basin carbonate hemipelagics. A wide range of bioclasts is common: crinoids, bivalves, gastropods,

<table>
<thead>
<tr>
<th>Facies belt</th>
<th>Name</th>
<th>Lithofacies type</th>
<th>Texture, Composition</th>
<th>Microbial fabric</th>
<th>Depositional environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>Bivalve coquina with automicrite Cement dominated boundstone</td>
<td></td>
<td></td>
<td>Automicrite and shell encrustations. Microproblematic unknown structures. Automicrite. Black and white peloids (Muranelia)</td>
<td>Upper slope</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper slope</td>
</tr>
<tr>
<td>S4</td>
<td>Bioclastic rudstone</td>
<td></td>
<td>Rudstone, crinoid fragments, bivalves, gastropods, Tubiphytes, bryozoans, foraminifera, juvenile ammonoids, brachiopods, dasycladaceae algae, intraclasts. Thick radiarial fibrous cement crusts and selective dolomitization affecting especially intraclasts. Peloids alternating with micrite layers. No fossils observed. Whole fossils: brachiopods, gastropods, juvenile ammonoids and large crinoidal parts (columnals, stems), dolomitized micrite matrix.</td>
<td>Laminated fine-grained, stromatolite consisting of alternating peloid and micrite layers common in cryptic cavities</td>
<td>Lower slope</td>
</tr>
<tr>
<td>S5</td>
<td>Laminated bindstone</td>
<td></td>
<td></td>
<td>Irregular micrite laminae as interbeds</td>
<td>Geopetal infilling</td>
</tr>
<tr>
<td>S6</td>
<td>Crinoidal floatstone</td>
<td></td>
<td></td>
<td>Irregular microbial encrustations and oncoids</td>
<td>Slope, reef flanks, precursor reef stage</td>
</tr>
<tr>
<td>S7</td>
<td>Intraclast breccia</td>
<td></td>
<td>Nodules and matrix are pelagic microbioclastic wackestones.</td>
<td></td>
<td>Toe of slope</td>
</tr>
<tr>
<td>S8</td>
<td>Pelagic wackestone</td>
<td></td>
<td>Wackestone with thin-shelled bivalves, sponge spicules, ostracods, radiolarians, pelagic foraminifera and rare crinoidal fragments, burrows - alternating with dolomite layers (2-3 cm).</td>
<td></td>
<td>Basinal sediments</td>
</tr>
</tbody>
</table>

Table 1. Facies and facies associations, and related depositional environments, of the lower Middle Anisian section of the Caerace Formation in the Mahmudia Quarry, North Dobrogea
The foraminiferal assemblage includes Duostominidae, biserial foraminifera (Eaalandinidae), multiserial types (Trochaminidae and Endotrianidae), encrusting Geinitzina tcherdynevi Miklukho-Maklay (Pl. 4, Fig. 6; Pl. 5, Fig. 4) and Meandrospira dinarica Kochansky-Devidé and Pantić, a typical foraminifer in the Anisian carbonate platforms of the Tethyan realm (Berra et al. 2005). Sessile foraminifera that encrust crinoid columns (Pl. 4, Fig. 5), Tubiphytes specimens encrusting by foraminifera (Pl. 4, Fig. 5; Pl. 5, Fig. 3), gastropods (Pl. 5, Fig. 4) and juvenile ammonoids are observed as well. This facies contains the bryozoan Reptonomitrypa cautaica Schäfer and Fois, in some cases enveloped by a micritic crust (Pl. 5, Fig. 2). Recrystallized and reworked dasycladacean algae are also present (Pl. 4, Fig. 6; Pl. 5, Fig. 1). An interesting feature of this facies is the occurrence of laminated geopetal infillings formed by alternations of irregular peloid and micrite laminae (Pl. 4, Fig. 6, right). Most of the peloids are bordered by calcite rims.

Large isopachous cement crusts, several cm-thick, which contain large intraclasts, interfere with pelagic wackestones containing calcified radiolarians scattered in a muddy matrix (Pl. 5, Fig. 5).

Laminated bindstone (geopetal infilling) [S5] (Pl. 5, Fig. 2; Pl. 6, Fig. 6) consists of fine-grained laminated peloidal grainstone grading into peloidal packstone. The facies exhibits distinct alternations of thicker and thinner peloidal layers separated by irregular, probably microbial, micrite laminae (m).

Crinoidal floatstone [S6] (Pl. 5, Fig. 7; Pl. 6, Figs 1–3) is intercalated within bioclastic rudstone and consists of a 10-m thick sequence with abundant crinoid stem fragments and arm plates, as well as subordinate brachiopods, gastropods and bivalves, embedded in an intensively dolomitized muddy matrix. Juvenile ammonoids are also present (Pl. 6, Fig. 1). Irregular micrite rims around crinoid columns and stem plates or bivalve fragments (Pl. 5, Fig. 7; Pl. 6, Fig. 2) are common. The matrix consists of LMC microparticle and small idiomorphic dolomite crystals, isolated or in aggregates (Pl. 5, Fig. 7, inset stained detail). Large fibrous cement crusts and stylolites (Pl. 6, Figs 1, 3) are characteristic of this facies.

Intraclast breccia [S7] (Pl. 6, Fig. 5) show a tectonic (faulted) contact with the adjacent bioclastic rudstone (Pl. 6, Fig. 4). Locally, m-thick intervals of finer grained (pelagic) carbonates, the S4 burrowed pelagic wackestone facies and S5 peloidal grainstones with uneven bedding-parallel laminae, are intercalated between breccia tongues. The breccias are composed of mud-supported calcareous clasts with diameters ranging between 1 mm and 10 cm, embedded in a dark-coloured pelagic microbioclastic wackestone. The clasts contain calcified radiolarians, sessile foraminifera, sponge spicles and thin-shelled bivalves, some of them being bordered by a thin cement rim (Pl. 6, Fig. 5).

Burrowed pelagic wackestone [S8] (Pl. 6, Figs 4, 6) with abundant fine pelagic and benthic bioturritus is c. 10 m thick. The microfossils, commonly sponge spicles, shell debris (thin-shelled bivalves), ostracods, uniserial foraminifera and calcified radiolarians, are sparsely distributed within a densely mottled matrix due to intensive burrowing (Pl. 6, Fig. 6). Locally, dense concentrations of sponge spicles occur, although no fossilized sponge body was ever found. Dolomitization affected especially the bioturbated and more porous layers, and did not affect the impermeable mud between the burrows.

Depositional environment

The eight facies recognised within the carbonate sequence of the studied section define a complex depositional environment. Based on facies associations and sedimentological processes that controlled carbonate production, the carbonate sequence can be divided into the following sub-environments.

Upper slope - microbial buildup. This part is almost exclusively represented by S1 and sporadically by S2 and S3 lithofacies. The homogeneous distribution of microbial limestones indicates their in situ origin, without sedimentological contribution from other parts of the platform.

The key component of the microbial buildup in the Middle Anisian Mahmudia section is the Tubiphytes micro-encruster, described previously as Shamovella (Riding and Guo 1992), a microproblematic with still debated affinities. While in the past it was considered an alga, a sponge or a bryozoan, recent studies showed this micro-organism to be a cyanobacterial-foraminiferal association. The central cores of Tubiphytes consist of foraminiferal tubes (Pl. 2, Fig. 1, inset detail), belonging to Fischerinidae and Nubeculariidae or Nodobaculinarinei (sessile species). The encrustations are variably dense tangles of clotted micrite considered to be microbiomedi-ated (Pratt 1995) and the laminated walls resulted from successive microbial mat encrustations (Pl. 2, Figs 1, 4, 5). It is unclear if the foraminifera were encrusted
in micrite while still alive or after death (Senowbari-Daryan et al. 2008). However, it is now considered as a *Tubiphytes*-like organism, attributed to the family Nigrigorellidae Rigby, 1958 (Senowbari-Daryan 2013).

The *Tubiphytes* micro-encruster (“opportunistic communities” of Rollins and Donahue 1975; able to adapt to unstable environmental conditions; see Flügel 2002), did not contribute to reefs before the Permian, because the erect sessile foraminifera had not yet evolved (Pratt 1995; Senowbari-Daryan 2013), nor after the Jurassic, probably because of substrate competition. Environmentally, these reefs are regarded either as shallow (Senowbari-Daryan 2013) or deep-water (Pratt 1995). The lack of dasycladacean algae and other similar facies indicators suggest that the *Tubiphytes*-buildup described herein is rather deep-water.

Although *Tubiphytes* is claimed to be a secondary reef-builder (e.g. Emmerich et al. 2005), the prominent *Tubiphytes* occurrence is the most important feature in the lower Middle Anisian buildup in the Mahmudia Quarry. It is stated that the *Tubiphytes* micro-encruster enabled the stabilisation of carbonate sediments in the upper slope and allowed cement-rich reefs to flourish in the early Middle Anisian (Senowbari-Daryan et al. 1993; Enos et al. 2006). *Tubiphytes*-microbial buildups characterized mostly high relief depositional systems during the crisis periods of large skeletal-metazoans buildups. Examples are recorded from the Upper Devonian (Playford et al. 1989; Shen and Bao 1997), Lower Carboniferous (Mundy 1994), Upper Carboniferous (Della Porta et al. 2003), Permian (Bebout and Kerans 1993; Saller et al. 1999) and Middle Triassic...
(Keim and Schlager 2001; Marangon et al. 2011). The automicrite, the other major component of the buildup, is very common in many ancient reefs, particularly in those older than the Cretaceous (Wood 2001). Generally, automicrite formation ranged from the outer part of the platform downslope to over 200 m depth (Keim and Schlager 1999; Della Porta et al. 2004).

A higher cementation rate characterizes reefs with higher rates of water agitation and a lower sedimentation rate (Lighty 1985). This is well confirmed by the studied low-growing Tubiphytes micro-encrusters. Thin micritic films, ‘dust lines’, intercalated between cement generations (Pl. 2, Fig. 1), suggest that cementation occurred while the voids were still open to shallow marine waters (Payne et al. 2006).

Molluscs shell beds caught in large masses of fibrous cement (S2 lithofacies) are usually found in reefs and slopes due to current concentrations, storm wave and tempestite concentrations, or they represent transgressive lags or condensed horizons (Flügel 2010). A high abundance and taxonomic diversity of molluscs, especially bivalves, coiled nautiloids and other invertebrates, such as in the studied section, suggest high nutrient availability within the microbial reef. The molluscs shells and the cementation contributed together to the high-relief and rigid framework of the Tubiphytes-microbial buildup.

Large cement crusts (S3), up to 5 cm thick, are often found through the reef (Pl. 1, Figs 2, 3). They are associated with stromatactis structures (Pl. 7, Fig. 4), muddy sediment characterised by plastic texture, alternation of dark and light coloured lamina and dewatering structures (Pl. 7, Fig. 3). These structures, together with the lack of fossils, indicate an environment hostile to life, at few tens or even hundred metres depth.

Lower slope. It consists of lithofacies S4, S5 and S6. Microbial limestone is spotted through bioclastic rudstone, as rare Tubiphytes (Pl. 4, Figs 1, 2, 5; Pl. 5, Fig. 3), through laminated bindstone, as ‘black and white peloids’ (Pl. 3, Figs 7, 8; Pl. 4, Fig. 6), common in cryptic cavities of the Triassic reefs (Flügel 2010), and through crinoidal floatstone as micritic encrustations (Pl. 5, Fig. 7; Pl. 6, Fig. 2). The abundance of biotic encrustations, Tubiphytes, bryozoans, crinoids, and of amalgamated stromatolites, reveal a framework bioc- construction, resembling an initial reef, drowned either by rising sea-level or suffocated by overlying basinal sediments. Basinal influence may be inferred from interbedded laminated mudstones (Pl. 4, Fig 1), containing darker laminae with organic matter concentrations. Original topography is indicated by plasticity of the muddy sediment. The instability of the environment is suggested by large intraclasts incorporated into large cement crusts (Pl. 5, Fig. 5; Pl. 6, Fig. 3). Recrystallized and reworked dasycladacean algae, spotted in rudstone facies, were originally formed in the shallower-water platform top, an environment not identified in the study area. The crinoidal floatstone facies contributes to the stabilization of slopes and is common during the aggradational phase (Della Porta et al. 2004).

Toe of slope and basinal facies. The massive upper slope passes gradually into pelagic wackestone and intraclast breccia (lithofacies S7 and S8), with interspersed laminated bindstones. Compared with the other two facies, this one is very thin (c. 20 m). Bioclastic content is reduced to microbioclastic detritus, occurring both in wackestones and in clasts of the breccia, suggesting its basinal provenance. This facies belt succeeded the lower slope facies. The facies recognised enabled the reconstruction of the depositional architecture of a carbonate slope located in the eastern part of the Tulcea Unit, in North Dobrogea (Text-fig. 5). The facies architecture seems to have been influenced by sea-level changes and tectonic tilting.

During the early Middle Anisian (Bithynian), the carbonate platform underwent a change from toe-of-slope to lower slope, culminating in the upper slope. The entire stratigraphic succession ended with pelagic limestone. The observed facies changes suggest an initial transgressive trend (platform retrogradation), followed by progradation and platform drowning. The depositional geometry of the upper slope built by microbial carbonates could not be determined in the field. It is inferred, however, that it was analogue to known examples, such as the Latemar platform in the Italian Dolomites (Marangon et al. 2011), the Siera del Cuera, in Spain, and some recent flat-topped systems (Della Porta et al. 2003). By analogy, the microbialites from the Middle Triassic of North Dobrogea could have extended on a steep slope to depths of ~200–300 m (Kenter et al. 2005).

DIAGENETIC HISTORY

The major diagenetic imprint on the slope and platform-margin Middle Triassic carbonates in the Mahmudia Quarry is their massive early marine cementation. Some carbonate platforms show this feature determined by the following factors: accommodation space, slow rates, low carbonate production, margin topography and effective fluid flow (Seeling et al. 2005). Brown fibrous cement, often appearing as thick isopachous crust, volumetrically dominates the coarser facies and as it...
Lithology

<table>
<thead>
<tr>
<th>Samples</th>
<th>Texture/Lithology</th>
<th>δ^{13}C (‰)</th>
<th>δ^{18}O (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Micrite</td>
<td>3.58</td>
<td>-2.54</td>
</tr>
<tr>
<td>81</td>
<td>Micrite</td>
<td>2.80</td>
<td>-2.31</td>
</tr>
<tr>
<td>83</td>
<td>Micrite</td>
<td>1.88</td>
<td>-3.23</td>
</tr>
<tr>
<td>83</td>
<td>RFC</td>
<td>1.99</td>
<td>-5.45</td>
</tr>
<tr>
<td>87</td>
<td>Micrite</td>
<td>2.16</td>
<td>-4.19</td>
</tr>
<tr>
<td>94A</td>
<td>Micrite</td>
<td>3.06</td>
<td>-2.31</td>
</tr>
<tr>
<td>94A</td>
<td>Micrite</td>
<td>2.90</td>
<td>-2.69</td>
</tr>
<tr>
<td>113A</td>
<td>Micrite</td>
<td>3.61</td>
<td>-3.49</td>
</tr>
<tr>
<td>113A</td>
<td>Fibrous cement</td>
<td>3.40</td>
<td>-3.76</td>
</tr>
<tr>
<td>113A</td>
<td>Fibrous cement</td>
<td>3.70</td>
<td>-3.53</td>
</tr>
<tr>
<td>114D</td>
<td>Micrite</td>
<td>3.22</td>
<td>-3.50</td>
</tr>
<tr>
<td>114D</td>
<td>Late blocky calcite</td>
<td>2.45</td>
<td>-10.66</td>
</tr>
<tr>
<td>127A</td>
<td>Fibrous cement</td>
<td>3.59</td>
<td>-3.78</td>
</tr>
<tr>
<td>127A</td>
<td>Tubiphytes</td>
<td>3.78</td>
<td>-2.08</td>
</tr>
<tr>
<td>142B</td>
<td>Late blocky calcite</td>
<td>3.12</td>
<td>-3.79</td>
</tr>
<tr>
<td>142B</td>
<td>Micrite</td>
<td>3.72</td>
<td>-3.75</td>
</tr>
</tbody>
</table>

Table 2. Carbon and oxygen isotope composition of the lower Middle Anisian carbonates of the Caerace Formation in the Mahmudia Quarry, North Dobrogea

As the paragenetic sequence (Text-fig. 7) reveals, carbonate diagenesis operated both in marine and burial environments, with a small meteoric vadose influence related to weathering surfaces. The time involved in diagenetic processes varies significantly in different diagenetic zones. Early diagenetic processes in shallow marine phreatic environments need less time than late diagenetic deeper burial diagenesis. Synsedimentary marine cements on platform slopes may grow over several tens of years resulting in synsedimentary stabilization of steep carbonate slope deposits (Grammer et al. 1993), while processes related to compaction during burial diagenesis can last millions of years.

Marine diagenesis dominates the slope sediments, expressed by massive marine cementation (Pl. 7, Figs 1–3, 5; Pl. 8, Figs 1, 6), incrustation/micritization of the clasts and selective dolomitization of the micritic clasts (Pl. 7, Fig. 6; Pl. 8, Fig. 7). Pelagic wackestones are also affected by matrix-selective dolomitization (Pl. 7, Figs 7, 8; Pl. 8, Fig. 5). Within the slope sediments pervasive replacement dolomite occurs mostly as a medium-crystalline, subhedral to euhedral planar mosaic, even the drusy cement being superimposed by dolomitization fronts (Pl. 8, Fig. 4). In some cases, the replacement of limestone by dolomite may generate an additional interparticle/intercrystal porosity, which, when saturated with respect to dolomite, will tend to form dolomite cements as overgrowths, so called ‘dog-dooth cement’ (DTC, Pl. 7, Fig. 1; Pl. 8, Figs 1, 2). Penecontemporaneous dolomites form almost syndepositionally as a nor-
mal consequence of the geochemical conditions prevailing in the sedimentary environment (Machel 2004). The volumetrically large replacive dolostones associated with crinoidal floatstone facies (S6) (Pl. 5, Fig. 7; Pl. 6, Figs 1-3) are post-depositional and formed during burial. From various models of dolomitization, both reflux dolomitization and seawater dolomitization models are accepted herein. In the reflux model (Machel 2004), dolomitization is most commonly caused by mesohaline brines that originated from seawater evaporation during sea-level fluctuations, whereas seawater dolomitization is associated with post-depositional dolomites and diagenetic settings ranging in depth from shallow to intermediate burial. Beside other models having seawater in

Paragenetic sequence of North Dobrogea studied section

<table>
<thead>
<tr>
<th>Diagenetic feature</th>
<th>Marine</th>
<th>Early Burial</th>
<th>Late Burial</th>
<th>Meteoric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micrite/ microbial crusts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal (peloidal) sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiolaxial fibrous calcite (RFC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite 1 (non-luminescent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overgrowth syntaxial calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouldic pores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aragonite recrystallization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine blocky calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylolites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright luminescent bladed calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite 2 (luminescent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equant coarse calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dedolomitization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text-fig. 6. Hypothetic trend of changing stable isotope composition in carbonate cement, micrite and dolomite, in the lower Middle Anisian section of the Caerace Formation. Isotopic composition of Triassic seawater based on data from brachiopod shells (Veizer et al. 1999; Korte et al. 2005) is indicated by the grey field. Text-fig. 7. Schematic representation of the diagenetic history of the lower Middle Anisian section of the Caerace Formation in the Mahmudia Quarry. Note the difference between porosity-destructing and porosity-enhancing factors.
common as the main source of Mg, the seawater dolomitization model we adopted here comprises various possibilities of dolomitization by seawater.

Mouldic pores (Pl. 5, Figs 4, 7; Pl. 6, Figs 2, 3) and aragonite recrystallization (Pl. 6, Fig. 2), stylolites (Pl. 5, Fig. 6; Pl. 6, Figs 1, 3; Pl. 7, Fig. 7) and blocky calcite are common in the early burial stage. Dolomites cross-cut by stylolites (Pl. 6, Figs 1, 3; Pl. 7, Fig. 7) suggest burial of at least 600 m as stated by Machel (2004). The most common effect of late burial diagenesis is the appearance of microfractures filled by bright luminescent blocky calcite (Pl. 8, Fig. 3), the texture given by reducing fluids, and the second stage of dolomitization leading to an overgrowth of luminescent dolomite crystals over non-luminescent dolomite rims from pelagic facies, as revealed by cathodoluminescence (Pl. 8, Fig. 5). The meteoric diagenesis includes de-dolomitization processes (Pl. 8, Fig. 8) caused by subaerial exposure of rocks and action of acid fluids.

COMPARISON WITH OTHER TUBIPHYTES-BUILDUPS KNOWN IN THE GEOLOGICAL RECORD

The Anisian represents the time of recovery of biogenic carbonate production after the crisis at the Permian/Triassic boundary (Gaetani et al. 1981; Senowbari-Daryan et al. 1993; Berra et al. 2005). In this context, the lower Middle Anisian section in Mahmudia Quarry is of particular importance in revealing the recovery of carbonate production during the Early Mesozoic. It documents the first record of a Tubiphytes-buildup in the North Dobrogean Orogen, similar to those known from Western and Eastern Tethys, characterized by the absence of metazoan reef communities and the dominance of micro-encrusters, automicrite and synsedimentary cements. As in other parts of the Tethys (Stanley 1988; Gaetani and Gorza 1989; Payne et al. 2006), the development of large, metazoan framework reefs in North Dobrogea started after the Anisian (Upper Ladinian–Carnian Wetterstein-type carbonate facies; see e.g. Gràdinaru 1995, 2000).

The North Dobrogean Tubiphytes-dominated framework, with a high volume (30–50%) of penecontemporaneous and early-diagenetic cements and a considerable amount of automicrite, corresponds well to other Tubiphytes-dominated reefs, known from the Late Palaeozoic to Mesozoic: the Permian reefs of the Urals in Russia (Chuvashov 1983; Antoshkina 1998), the Permian Capitan Reef in the United States (Tinker 1998; Saller et al. 1999; Weidlich 2002), and the Middle Triassic (Anisian–Ladinian) reefs, such as the Great Bank of Guizhou, in south China (Enos et al. 1997, 2006; Lehrmann 1999; Payne et al. 2006, 2011; Lehrmann et al. 2007), the Camorelli Bank and Concarena platform in the Italian Lombardic Alps (Gaetani and Gorza 1989; Berra et al. 2005; Seeling et al. 2005), the Latemar platform in the Italian Dolomites (Harris 1993, 1994; Emmerich et al. 2005; Marangon et al. 2011; Preto et al. 2011), and the Aggtelek reef in Hungary (Velleldits et al. 2011, 2012). Microbial boundstones, as Tubiphytes-dominated facies, are also the main constituents of the Carboniferous upper slopes in the Cantabrian Mountains in northern Spain (Della Porta et al. 2003; 2004; Kenter et al. 2005; Bahamonde et al. 2007).

Small Lower Triassic microbial reefs are known from the Caucasus, southern Germany, Iran and southern China (Flügel 2002). The Triassic recovery of the ‘carbonate factory’ is illustrated by the carbonate buildups that arose slowly during Anisian time and diversified considerably during the Ladinian. Most of the known Anisian reefs were located in the western part of the Tethys, between 10° and 20° N of the palaeo-equator, and are rare in its northern part (Text-fig. 8). Therefore the North Dobrogea location brings a new contribution to the Triassic reefs database. Alongside microbial-Tubiphytes boundstones in the Camorelli platform from Lombardy in northern Italy (Gaetani and Gorza 1989), small mounds in the Dont Formation of the Italian Dolomites (Blendinger 1983; Fois and Gaetani 1984), the carbonate mounds of Nákhlak in central Iran (Berra et al. 2012) and the Aggtelek reef in north-east Hungary (Velleldits et al. 2011; 2012), the North Dobrogea Tubiphytes-buildup is probably among the oldest Tethyan Triassic biocarbons.

Contrasting with other Anisian buildups, the amount of micritic sediment is not very high and a major role was played by synsedimentary marine cements. From this point of view, the lower Middle Anisian section in the Mahmudia Quarry resembles the shelf-edge frame-stones of the Anisian Chinese reefs (Enos et al. 1997, 2006; Payne et al. 2006) and the Middle Anisian to Lower Ladinian boundstone facies of Latemar (Harris 1993; Emmerich et al. 2005; Marangon et al. 2011) and Marmolada (Russo et al. 2000), both in the Italian Dolomites, and the Middle Anisian carbonate mounds in central Iran (Berra et al. 2012).

CONCLUDING REMARKS

The Middle Triassic carbonate platform in the eastern part of the Tulcea Unit, of the North Dobro-
The carbonate sequence from North Dobrogea compares well with other Carboniferous to Ladinian reefs, bringing better understanding of the Triassic reefs and widens the knowledge of early Middle Triassic reefs throughout the Northern Tethys realm, which was considered a reef-free area during that time. The studied *Tubiphytes*-buildup from North Dobrogea is among the few lower Middle Anisian (Bithynian) reefs known from the Tethys, and represents the last “pure” M-type Triassic carbonate factory, before the transition toward a T-type factory, induced by the appearance of scleractinian corals.

Although after the Permian–Triassic extinction there was a crisis of reef building metazoans, it was not accompanied by a crisis in carbonate production. As the harsh climatic conditions that caused the extinction ameliorated, the early Anisian microbe-dominated buildups were replaced at the beginning of the Ladinian by sponge and scleractinian true reefs.

Acknowledgements

The first author would like to address special thanks to Prof. Jörn Peckmann and Dr. Tobias Himmler for generously providing stable isotope and SEM analysis, for valuable discussions and encouragements, during the guest-research period at MARUM Center (University of Bremen). We are indebted to the staff of Mahmudia Quarry SC-MIN-EST SA for...
access and support, through the persons of Director-General Lorin Poiani, Eng. Geol. Adrian Tertiş and Eng. Valentin Pavel. Dr. Daniela Popescu and Dr. Liviu Popescu (University of Suceava) are kindly thanked for foraminiferal study, guidance in the manufacture of thin sections and for their hospitality. We kindly thank Mirea Vişan and Liviu Popa for their company during fieldwork. We are indebted to Dr. Nereo Preto (Università di Padova) and Dr. Jonathan Payne (Stanford University) for discussions, useful comments and reviews that significantly improved the first version of the manuscript. Prof. Baba Senowbari-Daryan (Universität Erlangen-Nürnberg) is gratefully acknowledged for constructive comments and suggestions by Prof. Maurizio Gaetani (Università degli Studi di Milano), Prof. Stanisław Skompski (University of Warsaw) and an anonymous referee that greatly contributed to the improvement of our paper are highly appreciated. Lastly, we are extremely grateful to the Editors, Prof. Ireneusz Walaszczyk and Christopher J. Wood, for their insightful reviewing and linguistic corrections.

The research was financially supported by POSDRU European Social Fund through the contract POSDRU/1.5/S/24, and by CNCSIS PNCDI-II-ID-1960/2009-2010.

REFERENCES

Fois, E. and Gaetani, M. 1984. The recovery of reef-building

PLATES 1–8
PLATE 1

1 – Outcrop of massive *Tubiphytes* boundstone (S1); the person in the left lower corner of the photo, the first author of this paper, as a scale.

2 – Hand specimen revealing early marine cement crusts (RFC) and *Tubiphytes* (T) micro-encrusters (S1).

3 – Detail of cm-sized cement crusts consisting of RFC and blocky calcite (bc) covering *Tubiphytes* boundstone (S1). [Photo taken under binocular lens and polarizing microscope]

4 – ‘Grass-like’ aggregate of branching individuals of *Tubiphytes* (T) reinforced by marine cement (S1).

5 – *Tubiphytes* (T) encrusted by foraminifers, forming an organic framework that also acted as a baffler; constructional cavities filled with internal sediment (is) that contains ostracods (o) and peloids (p), and fibrous cement (F). Inset, detail of internal sediment (is) with bacterial/microbial filaments (arrow) (S1, 125).

Note: Symbols S1 to S8, written under brackets in all 8 plates, refer to the lithofacies types listed in Table 1 (S1 – *Tubiphytes* boundstone; S2 – Bivalve coquina with automicrite; S3 – Cement-dominated boundstone; S4 – Bioclastic rudstone; S5 – Laminated bindstone; S6 – Crinoidal floatstone; S7 – Intraclast breccia; S8 – Pelagic wackestone), followed by the sample numbers in the lithostratigraphic log from Text-fig. 4.
PLATE 2

1 – *Tubiphytes* (T) as digitate, micritic, vaguely laminated skeletons; three generations of cements (fibrous-F, RFC and blocky-bc) and internal sediment (is) fill voids generated by growth of *Tubiphytes*; black arrows indicate the biotic gravity-defying crusts and red arrows, foraminiferal tubes encrusting *Tubiphytes*; Inset, cross section through a *Tubiphytes* clast with a sessile foraminifer (f) test inside (S1, 127).

2 – *Tubiphytes* boundstone with high frequency of bioclasts: brachiopod (br), gastropod (g), bivalve (b) and *Tubiphytes* (T) (S1, 110A).

3 – Detail of boundstone facies: *Tubiphytes* clasts (T), ostracods (o) and foraminifera (f, *Textularia* sp.) embedded in fibrous calcite (F) and blocky calcite (bc); patches of automicrite (am) below to the right (S1, 138B).

4 – Longitudinal section through a *Tubiphytes* (T) specimen with the central sparitic tube (white arrows) embedded in a clotted micrite mass; foraminiferal encrustation below to the left left (black arrow); bivalve fragment (b) and automicrite (am); fibrous calcite (S1; 138B).

5 – Longitudinal-oblique section through a *Tubiphytes* (T) specimen with the sparitic tube surrounded by a thick laminated cortex with distinct growth stages of differing contrast and structure; encrusting foraminiferal tube (red arrow); irregular peloids (p) included in automicrite (am) patches; ostracod bioclasts (o) (S1, 127).
PLATE 3

1 – Geopetal structure infilling a bioturbation (bt) with a small brachiopod (br) caught in micritic sediment while the top of the cavity is blocky-cemented (bc); automicrite (am) patches and thin-shelled bivalves (b) embedded in fibrous cement (S1, 130.1).

2 – Boundstone with *Tubiphytes* specimens (T) caught in fibrous cement (F); porous spaces occluded by blocky calcite (bc) during burial; automicrite (am) (S1, 135B).

3 – Coquinite thin laminae (up to 5 cm thick) of recrystallized bivalve (b), gastropod (g), brachiopod (br) and ammonoid (A) shells filled by internal sediment and cemented by fibrous calcite; patches of automicrite (am) (S2, 104).

4 – Bivalve coquina with recrystallized shells (b) embedded in fibrous cement (F); automicrite (am), ostracods (o) and foraminifera (f) (S2, 115).

5 – Bivalve coquina with shells (b) intensively encrusted (arrows) and fibrous cement (F); T – *Tubiphytes* clast (S2, 139D).

6 – Bivalve coquina with geopetal structure (arrow) due to the infill of the bivalve shells (b); automicrite (am) with ostracods (o) (S2, 112).

7 – Cement boundstone dominated by microbial textures, with ‘black and white’ peloids (b&w p), *Muranella* spongiostromate micropoblematic products (M?), and fibrous cementation (F) occluding the intraparticle porosity (S3, 113A).

8 – Detail for the peloids in Fig. 7 (black quadrant), with LMC centres and dolomitized rims (black arrows).
PLATE 4

1 – Microphotograph collage over a stained thin section in a bioclastic rudstone dominated by bioclast fragments (echinoderm, e; Tubiphytes, T) interfingering with laminated mudstones of thick peloid layers (p) that alternate with thin micrite films (m); patches of automicrite (am) intermingled with Tubiphytes (T) appearances. Several veins, crossing both textures, are penecontemporaneous with sedimentation, micrite laminae and intraclasts (i) being incorporated by the RFC that fill the veins (S4, 69).

2 – Inset 1 in Fig. 1, with Tubiphytes (T) clasts embedded in fibrous cement (F), large crinoid columnal (e), ostracod (o), peloids (p) and a fissure filled by RFC and micrite (m).

3 – Inset 2 in Fig. 1, with bioclasts (foraminifers, f, Tubiphytes, T), fibrous cement (F) and micrite lamina (m).

4 – Inset 3 in Fig. 1, with large fragments of echinoderms (e) and bivalves (b) surrounded by microbial encrustations (red arrows); a Tubiphytes (T) fragment with clearly visible sparite centre and RFC.

5 – Crinoid columnal (e) with honeycomb microtexture encrusted by Tubiphytes (T), in their turn with foraminiferal encrustations on peripheral areas (arrows) (S4, 69).

6 – Bioclastic rudstone transition (arrow) to laminated, fine-grained agglutinated stromatolite texture shown by alternation of irregular peloid (p) and micrite (m) laminae; Tubiphytes clasts (T), echinoderm (e), foraminifer (f), dasycladacean algae (a) and intraclasts (i) are cemented by fibrous calcite (S4 to S5 transition, 82).
PLATE 5

1 – Bioclastic rudstone with bryozoan (bz), algae (a), echinoderm (e) and bivalve (b) fragments embedded in fibrous cement and blocky calcite (bc); soft dolomitized intraclasts (i) suggesting instability of the environment (S4, 83).

2 – Microphotograph with gastropod (g), echinoderm (e), bivalve (b), Tubiphytes (T) fragments, intraclasts (i), foraminifers (f) and bryozoans (bz); interparticle porosity occluded by fibrous and late blocky cement; most of the bioclasts are encrusted (arrow) (S4, 83).

3 – Bioclastic rudstone with foraminiferal encrustations of Tolypamina gregaria Wendt (black arrows), attached to a gastropod shell (g) and to Tubiphytes (T) (S4, 84).

4 – Gastropod shell with a mouldic porosity caused by aragonite dissolution and occluded by fibrous (F) and blocky calcite (bc) cement; foraminifers (Geinitzina tchernoyevi Miklukho-Maklay) (red arrow), and clasts of Tubiphytes (T) (S4, 84).

5 – Interfingering of pelagic wackestone, with radiolarians (r) and micrite (m), and large isopachous cement crusts that incorporate large intraclasts, I (S6, S7, 87A).

6 – Laminated bindstone (geopetal infilling?) of fine-grained laminated peloidal grainstone grading into peloidal packstone; alternations of thicker peloid (p) and thin micrite (m) layers separated by irregular, probably microbial, micrite lamina (S5, 98C).

7 – Crinoidal floatstone with crinoid stem plates (e) and a large columnal, recrystallised brachiopod (br) and gastropods (g) in a dolomitized matrix (inset, detail by staining); microbial (?) encrustation of echinoderms (arrows), geopetal infilling of a gastropod shell in the left part of the photo (S6, 87).
PLATE 6

1 – Scanned peel for the S2 - bivalve coquina microfacies with juvenile ammonoid shells (A) into a dolo-matrix together with echinoderm (e) fragments, thin-shelled bivalves and brachiopod (br); staining evidences the transformation of ammonoid aragonitic shell into LMC, respectively dolomite (arrow); a planar stylolite seen on the left-hand side (S6, 87).

2 – Crinoidal floatstone microfacies dominated by biogenic overgrowths created probably by foraminifera and microbes; crinoids columnals (e) with “honeycomb” microtexture and bivalve fragments (b) coated by microbial crusts; foraminiferal oncoids (arrows) made by long-lasting encrustations; saucer-shaped bivalve shells displaying a geopetal feature; ammonoid fragment (A) with partly recrystallised shell, and partly filled by sediment. (S6, 87).

3 – Composite photomicrograph in a crinoidal floatstone; echinoderm fragments (e), gastropod shells (g), fragments of punctate brachiopods (br) embedded in a muddy matrix crossed by numerous peloid bands (p); dolomitized intraclast (i) rimmed by fibrous calcite showing a soft texture (S6, 86).

4 – Detail of the outcrop showing the irregular (erosional?) contact between bioclastic rudstone (S4), intraclast breccia (S7) and burrowed pelagic wackestone (S8).

5 – Intraclast breccia with clasts and matrix (m) of pelagic microbioclastic wackestone; calcified radiolarians (r), sessile foraminifers (f), sponge spicules (s) and thin-shelled bivalves (b) suggesting a deeper-water environment, within a slope setting (S7, 91).

6 – Burrowed pelagic wackestone microfacies with pelagic detritus, recrystallized radiolarians (r), thin-shelled bivalves (b), uniserial foraminifers (f) and sponge spicules (s) embedded in muddy matrix; bioturbations (bt) as dark patches (S8, 94).
1 – Composite photomicrograph of cement-dominated boundstone; fibrous cement (F) and ‘dog-tooth’ dolomite cement – DTC (stained white) rimming pore walls and late blocky calcite (bc) cannibalizing previous phases. Patches of automicrite (am) detailed in the next photo (S3, 114D).

2 – Thrombolitic fabric of automicrite (am) with peloidal aggregates within fibrous cement (F); wavy cement layers shown by a distinct growth structure probably of organic mats (S3, 114D).

3 – Dewatering structures (arrows) and soft sediment of dark- and light-coloured micritic laminae (m), indicating slope conditions. Large amounts of fibrous cement (F) proving that good water circulation favoured the cementation (S3, 142A).

4 – Stromatactis structures (black arrow) showing a flat floor garnished with peloids and digitate roof; RFC lines the walls of cavities, while blocky calcite (bc) fills the remaining space; another pore filled by blocky calcite; dolomitized clasts of Tubiphytes (T) and patches of automicrite (am). The red arrow indicates the top of the sediment (S3, 142B).

5 – Contemporaneous veins filled by several generations of carbonate cement: fibrous isopachous crust (ic), RFC and late blocky calcite (bc); thin layers of micrite (m) and intraclasts (i) suggesting Neptunian origin (S4, 69).

6 – Syntaxial overgrowths (so) on crinoidal plates (e), with a single-crystal appearance; soft dolomitized intraclasts (i) and blocky calcite (bc) fill the remaining space (S4, 81).

7 – Stylolite rimmed by clay residue (dark coloured) separates poorly dolomitized micritic matrix (m) from dolomitized sediment (dol), as revealed by staining. (S8, 93A).

8 – Dolomite rhombic crystals (dol) enclosed in a matrix of equigranular microcrystallized calcite (SEM image) (S8, 94).
PLATE 8

1 – Diagenetic sequence through a pore: the host is micritic sediment (m), the walls are lined in the upper part by white rhombic crystals of dolomite (dog tooth cement, DTC, remained unstained) and in the lower by fibrous brown cement (F), all cannibalized by large crystals of blocky calcite (bc), lower magnesium after staining (S3, 114D).

2 – The interfingering of the dog tooth cement (DTC) and blocky calcite crystals (bc). SEM photomicrograph (S3, 114D).

3 – The infilling of a pore with drusy cement (bc); non-luminescent micritic matrix (m) and cement crystals showing luminescent overgrowths due to the anoxic fluids from which they precipitated during burial. Cathodoluminescence image (S3, 113A).

4 – Dolomitization front (dol) through a micritic matrix (m) which is crossed by a drusy cement infilling (bc); the dolomite crystals are still not well defined, suggesting an incipient process. SEM photomicrograph (S3, 142B).

5 – Euhedral and subhedral dolomite crystals formed in two stages: non-luminescent nucleus in syndiagenesis and oxygenated environment, and bright-luminescent rims under late diagenesis reducing conditions; a visible transition from dolomitized bands (dol) to muddy matrix (m), poorly dolomitized and nonluminescent. Cathodoluminescence image (S8, 94).

6 – Alternations of bright-fluorescent (macroscopically dark) and non-fluorescent bands through a RFC-filled pore which indicate the organic matter presence which may contributed to the syndepositional cementation. UV fluorescence image (S1, 113B).

7 – Selective dolomitization (dol) affecting only Tubiphytes specimens, T (S1, 133).

8 – Intra-granular porosity due by de-dolomitization of dolomite crystals, in first instance affecting the Tubiphytes (T) fragment; automicrite (am) patches, fibrous calcite (F) and blocky calcite (bc). Inset, detail showing ghosts of idiomorphic dolomite crystals (S1, 130.13).