Petrological studies of Neoproterozoic serpentinized ultramafics of the Nubian Shield: spinel compositions as evidence of the tectonic evolution of Egyptian ophiolites

MOKHLES K. AZER
Geology Department, National Research Centre, 12622-Dokki, Cairo, Egypt.
Email: mokhles72@yahoo.com

ABSTRACT:

The mafic-ultramafic rocks of the Gabal El-Degheimi area, Central Eastern Desert of Egypt, are parts of an ophiolitic section. The ophiolitic rocks are dismembered and tectonically enclosed within, or thrust over, island arc assemblages. Serpentinites, altered slices of the upper mantle, represent a distinctive lithology of the dismembered ophiolites. Some portions of the serpentinized rocks contain fresh relics of primary minerals such as chromian spinel and olivine. The abundance of bastite and mesh textures suggests harzburgite and dunite protoliths, respectively, for these serpentinites. Some fresh cores of chromian spinel are rimmed by ferritchromite and Cr-magnetite. The development of alteration rims around chromian spinel cores indicates their formation during prograde alteration and under oxidizing conditions during lower amphibolite facies metamorphism. Fresh chromian spinels are characterized by high contents of Cr₂O₃ (48.92–56.74 wt. %), Al₂O₃ (10.29–20.08 wt. %), FeO (16.24–28.46 wt. %) and MgO (4.89–14.02 wt. %), and very low TiO₂ contents (<0.16 wt. %). The analyzed fresh chromian spinels have high Cr# (0.62–0.79) characteristic of spinels in mantle peridotite that has undergone some degree of partial melting. The data presented here suggest that the mantle peridotites of the Gabal El-Degheimi area are similar to fore-arc peridotites of suprasubduction zone environments.

Keywords: Neoproterozoic; Serpentinite; Arabian-Nubian Shield; Chromian spinel; Fore-arc.
the same age and formed over wide period of time (e.g. Kröner et al. 1992; Shackleton 1994; Zimmer et al. 1995; Loizenbauer et al. 2001; Ali et al. 2010). They have isotopic ages range from 890 to 690 Ma, documenting a 200 Ma year period of oceanic magmatism. All ANS ophiolites are strongly deformed, metamorphosed, and altered by silicification and carbonitization. Serpentinitized ultramafics are a distinctive lithology of the dismembered ANS ophiolites and mélanges.

The ophiolites and ophiolitic mélanges are a distinctive part of the basement rocks of Egypt. They can provide important clues about the origin and evolution of the ANS. Nevertheless, the significance of the Egyptian ophiolites is controversial because they are variably dismembered, deformed, and altered. Serpentinitized ultramafic rocks are the most important and distinctive lithology. Geological studies of the Eastern Desert ophiolites vary in quality and quantity. In the past, studies of the Egyptian ophiolites have focused on volcanic rocks for evaluating their tectonic setting and petrogenesis. The ophiolitic peridotites have been largely ignored until recently (Azer and Khalil 2005; Azer and Stern 2007; Farahat 2008; Hamdy et al. 2013; Khedr and Arai 2013), although the mantle peridotites provide complementary information about the petrogenesis and tectonic setting of the ophiolitic rocks.

It is noteworthy that the ophiolitic peridotites in the Eastern Desert of Egypt are highly serpentinitized and their primary silicates and primary textures have been altered during serpentinitization. However, fresh relics of chromian spinels and olivines are present in the Gabal El-Degheimi serpentinites. The primary chromian spinels can be used to infer the origin and tectonic setting of the serpentinites due to their ability to survive alteration and metamorphism. Here, I provide the first description of the different textures and mineral compositions of chromian spinels, produced under mantle conditions, from serpentinites of the Neoproterozoic ophiolites in the Gabal El-Degheimi area. Also, the compositions of the primary chromian spinels are used to deduce the petrogenesis and tectonic environments for the serpentinites.

REGIONAL GEOLOGY

Neoproterozoic mafic-ultramafic complexes constitute one of the distinctive rock units in the Precambrian belt of Egypt. They have different ages and tectonomagmatic evolution and are differentiated into two main groups; thrust ophiolites and intrusions. The thrust ophiolites are generally dismembered, repre-
Text-fig. 1. Distribution of ophiolitic rocks in the Eastern Desert of Egypt (modified after Shackleton 1994). The location of Figure 2 is indicated.
Petrographic studies were carried out on both thin and polished sections of the serpentinites. The mineral contents were determined by X-ray powder diffraction (XRD) and optical microscopy. The powder diffraction patterns of the samples were obtained with Cu radiation with secondary monochrometer. The scanning speed was 20° = 1°/min at constant voltage 40kV and 40mA using a BRUKER D8 advanced X-ray diffractometer at the central Metallurgical and Development Institute in Cairo, Egypt. Mineral identification was carried out using the data given in the American Standard Test Materials (ASTM) cards by measuring the d-values of the different atomic planes and their relative intensities. Representative XRD charts are given in Text-fig. 3.

All investigated ultramafic samples are almost completely serpentinized peridotites. They consist of serpentine minerals (>90 of the rock), brucite, chlorite, tremolite, talc, opaque minerals and carbonates together with fresh relics of olivine and chromian spinel. Petrographic and x-ray diffractogram studies indicate that the serpentine minerals are represented mainly by antigorite (Text-fig. 3a, b) with lesser amounts of lizardite. Antigorite occurs as platy aggregates with characteristic plumose texture. Lizardite is rare and occurs as elongated crystals forming a bundle-like form. The presence of bastite and mesh textures can be used to indicate harzburgite and dunite protoliths, respectively. Fresh olivine crystals are rare and form anhedral cracked crystals dissected by network veins of serpentine, forming interlocking textures. Carbonates occur as sparse crystals, patches and fine aggregates. Brucite appears as platy or fibrous crystals intermixed with serpentines as well as veinlets. A few chlorite flakes are commonly found around altered chromian spinel grains. Near the contact with monzogranite, an-
Text-fig. 3. a – Chart of X-ray diffraction analysis in the serpentinized harzburgite, and b – Chart of X-ray diffraction analysis in the serpentinized dunite
Anthophyllite and tremolite are observed within the serpentinites. Anthophyllite occurs as long thin needles (Text-fig. 4a), while tremolite exists as acicular bundles within antigorite serpentine groundmass.

Ore microscopy revealed that the serpentinites of Gabal El-Degheimi are poor in opaque minerals (4–5 % modally). They are mainly chromian spinels and magnetite as well as minor specks of pyrite. Chromian spinel occurs as disseminated subhedral crystals (Text-fig. 4b) and/or irregular grains of reddish brown colour in thin section, whilst in reflected light it is rimmed by magnetite with numerous interstices filled with serpentine minerals. Some chromian spinel crystals are zoned, or sometimes completely replaced by ferritchromite and/or Cr- magnetite. Magnetite occurs as disseminated crystals or veins cutting chromian spinel and to a lesser extent as very thin magnetite streaks and striations along cleavage planes in original orthopyroxene (Text-fig. 4c) or as fine opaque clusters surrounding olivine crystals (Text-fig. 4d). A few disseminated specks of pyrite are observed within the serpentinites, especially along shear zones.

MINERAL CHEMISTRY

The chemical compositions of chromian spinels were determined using an electron microprobe under operating conditions of 15 kV and 20 nA. Suitable synthetic and natural mineral standards were applied. The analyses were carried out at the Geology and Metallogeny Laboratory, Orléans, France. Chromites were
analyzed in three samples (2 harzburgites and 1 dunite). Representative analyses of chromian spinels and its alteration products are presented in Table 1. Some chromian spinels display zoning from fresh chromian spinel cores to ferritchromite and Cr-magnetite rims, especially in the harzburgite. In the present study, only the unaltered chromian spinels of harzburgite and dunite have been used as petrogenetic indicators.

The fresh chromian spinels in the harzburgite have high contents of Cr$_2$O$_3$ (48.92–52.79 wt.%) and very low TiO$_2$ contents (<0.16 wt.%). They exhibit wide ranges of Al$_2$O$_3$ (14.69–20.08 wt.%), FeO (16.24–23.73 wt.%) and MgO (8.30–14.02 wt.%). In contrast, the chromian spinels in the dunite show limited compositional variation and are rich in Cr$_2$O$_3$ (54.92–56.74 wt.%) and FeO (23.03–28.46 wt.%) and depleted in Al$_2$O$_3$ (10.29–11.12 wt.%) compared to the chromian spinels in harzburgite. The harzburgite chromian spinels show either a continuous transition from Al- and Cr-rich cores towards rims enriched in Fe and Cr, or display an abrupt compositional change from chromian spinel cores to ferritchromite and Cr-magnetite (Table 1). Fresh chromian spinels in the harzburgite have lower Cr# (0.62 to 0.71) than the chromian spinels of dunite (Cr#: 0.77–0.79). On the other hand, the chromian spinels of harzburgite have high Mg# (0.41–0.66) than the chromian spinels of dunite (Mg#: 0.25–0.39). Ferritchromite is enriched in total iron and strongly depleted in Al$_2$O$_3$ and MgO. Furthermore, it is richer in MnO (1.0–1.46 wt.%) than chromian spinel (0.29–0.77 wt.%) and Cr-magnetite (0.07–0.09 wt.%).

The variability in chromite compositions from both fresh and altered rims is clearly shown on an Al–Cr–Fe$^{3+}$ triangular plot (Text-fig. 5a). The altered phases (ferritchromite and Cr-magnetite) in the harzburgite plot along the Cr–Fe$^{3+}$ join, reflecting the loss in Al$_2$O$_3$ and Cr$_2$O$_3$ and increase in Fe$_2$O$_3$ due to alteration and metamorphism. Meanwhile, the fresh chromian spinels in harzburgite and dunite lie along the Cr–Al join. All the fresh chromian spinels have Cr# and Mg# similar to those of mantle peridotites, while rims are similar to metamorphic spinel (Text-fig. 5b).

DISCUSSION

Ophiolitic rocks of Egypt have long been the subject of research because they represent important elements in the reconstruction of the geodynamic evolution of the Pan-African belt. Assessments of the tectonic setting of the Egyptian ophiolites have focussed mostly on the trace element composition of lavas and have rarely considered the abundant serpentinites. However, interpreting the tectonic setting of Neoproterozoic ophiolitic rocks on the basis of the bulk composition of metavolcanic rocks encounters difficulties due to the effects of fractional crystalliza-
<table>
<thead>
<tr>
<th>Spot No.</th>
<th>Single crystals</th>
<th>C1</th>
<th>R1a</th>
<th>R1b</th>
<th>C3</th>
<th>R3a</th>
<th>R3b</th>
<th>C4</th>
<th>R4a</th>
<th>R4b</th>
<th>C5</th>
<th>R5</th>
<th>C6</th>
<th>R6a</th>
<th>R6b</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>0.012</td>
<td>0.023</td>
<td>0.025</td>
<td>0.020</td>
<td>0.020</td>
<td>0.018</td>
<td>0.044</td>
<td>0.076</td>
<td>0.067</td>
<td>0.067</td>
<td>0.015</td>
<td>0.024</td>
<td>0.016</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>#3</td>
<td>0.011</td>
<td>0.002</td>
<td>0.001</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
<td>0.007</td>
<td>0.005</td>
<td>0.006</td>
<td>0.006</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>#4</td>
<td>0.050</td>
<td>0.004</td>
<td>0.001</td>
<td>0.005</td>
<td>0.005</td>
<td>0.007</td>
<td>0.006</td>
<td>0.005</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>#5</td>
<td>0.064</td>
</tr>
<tr>
<td>#6</td>
<td>0.064</td>
</tr>
<tr>
<td>#7</td>
<td>0.064</td>
</tr>
<tr>
<td>#8</td>
<td>0.064</td>
</tr>
<tr>
<td>#9</td>
<td>0.064</td>
</tr>
<tr>
<td>#10</td>
<td>0.064</td>
</tr>
<tr>
<td>#11</td>
<td>0.064</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe<sup>3+</sup></th>
<th>Fe<sup>2+</sup></th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Crie</th>
<th>Mgrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>0.455</td>
<td>1.97</td>
<td>0.19</td>
<td>2.05</td>
<td>15.14</td>
<td>15.64</td>
<td>0.94</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#3</td>
<td>0.94</td>
<td>3.97</td>
<td>0.27</td>
<td>3.02</td>
<td>15.46</td>
<td>15.46</td>
<td>1.00</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#4</td>
<td>0.455</td>
<td>1.97</td>
<td>0.19</td>
<td>2.05</td>
<td>15.14</td>
<td>15.64</td>
<td>0.94</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#5</td>
<td>0.94</td>
<td>3.97</td>
<td>0.27</td>
<td>3.02</td>
<td>15.46</td>
<td>15.46</td>
<td>1.00</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#6</td>
<td>0.455</td>
<td>1.97</td>
<td>0.19</td>
<td>2.05</td>
<td>15.14</td>
<td>15.64</td>
<td>0.94</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#7</td>
<td>0.94</td>
<td>3.97</td>
<td>0.27</td>
<td>3.02</td>
<td>15.46</td>
<td>15.46</td>
<td>1.00</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#8</td>
<td>0.455</td>
<td>1.97</td>
<td>0.19</td>
<td>2.05</td>
<td>15.14</td>
<td>15.64</td>
<td>0.94</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#9</td>
<td>0.94</td>
<td>3.97</td>
<td>0.27</td>
<td>3.02</td>
<td>15.46</td>
<td>15.46</td>
<td>1.00</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#10</td>
<td>0.455</td>
<td>1.97</td>
<td>0.19</td>
<td>2.05</td>
<td>15.14</td>
<td>15.64</td>
<td>0.94</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>#11</td>
<td>0.94</td>
<td>3.97</td>
<td>0.27</td>
<td>3.02</td>
<td>15.46</td>
<td>15.46</td>
<td>1.00</td>
<td>3.65</td>
<td>0.54</td>
<td>0.67</td>
<td>0.54</td>
</tr>
<tr>
<td>Rock Type</td>
<td>Sample No.</td>
<td>Spot No.</td>
<td>Single crystals</td>
<td>C</td>
<td>R1</td>
<td>R2a</td>
<td>R2b</td>
<td>C3</td>
<td>R3a</td>
<td>R3b</td>
<td>C4</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Harzburgite</td>
<td>Si</td>
<td>0.006</td>
<td>0.002</td>
<td>0.052</td>
<td>0.010</td>
<td>0.047</td>
<td>0.022</td>
<td>0.016</td>
<td>0.006</td>
<td>0.019</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>0.020</td>
<td>0.021</td>
<td>0.017</td>
<td>0.019</td>
<td>0.007</td>
<td>0.028</td>
<td>0.036</td>
<td>0.009</td>
<td>0.029</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>0.058</td>
<td>0.057</td>
<td>0.076</td>
<td>0.083</td>
<td>0.021</td>
<td>0.050</td>
<td>0.030</td>
<td>0.015</td>
<td>0.022</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>0.034</td>
<td>0.034</td>
<td>0.030</td>
<td>0.033</td>
<td>0.011</td>
<td>0.023</td>
<td>0.029</td>
<td>0.013</td>
<td>0.020</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.056</td>
<td>0.056</td>
<td>0.067</td>
<td>0.067</td>
<td>0.024</td>
<td>0.058</td>
<td>0.036</td>
<td>0.020</td>
<td>0.027</td>
<td>0.018</td>
</tr>
<tr>
<td>Dunite</td>
<td>Sr</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.010</td>
<td>0.006</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Fe2+</td>
<td>0.009</td>
<td>0.010</td>
<td>0.012</td>
<td>0.013</td>
<td>0.007</td>
<td>0.008</td>
<td>0.007</td>
<td>0.006</td>
<td>0.007</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0.013</td>
<td>0.014</td>
<td>0.016</td>
<td>0.017</td>
<td>0.010</td>
<td>0.012</td>
<td>0.012</td>
<td>0.011</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Table 1. Cont.
tion and alteration. Also, it is difficult to distinguish fore-arc and back-arc lavas on the basis of chemical composition alone.

The whole-rock composition of the highly serpentinized peridotite is of limited geochemical use but the chemistry of the preserved magmatic minerals, particularly olivine, spinel and pyroxene, reflects the crystallization conditions and the tectonic environment of the ultramafic parent rocks. In the completely serpentinized ultramafic rocks containing no relics of primary silicate minerals, chromite is the only igneous mineral that retains most of its original composition. Therefore, the compositions of the primary chromian spinels are here used to deduce the petrogenesis and tectonic environment of the serpentinites in the Gabal El-Degheimi area.

Tectonic setting and petrogenesis

The ophiolites of Egypt are generally interpreted to have been generated in suprasubduction zone tectonic settings (e.g. El Sayed et al. 1999; Farahat et al. 2004; Azer and Stern 2007; Basta et al. 2011; Ahmed et al. 2012). In contrast, a MOR tectonic setting has been inferred for the origin of Gerf ophiolites in Egypt (Zimmer et al. 1995). Most researchers recognize the transitional geochemical character of the lavas, between those of island arcs and MORB, and on this basis, a back-arc environment of formation for the ophiolites is often inferred (e.g. El Sayed et al. 1999; Farahat et al. 2004; Abd El-Rahman et al. 2009; Basta et al. 2011). A fore-arc setting has rarely been considered for the ophiolites (Azer and Stern 2007; Khalil and Azer 2007; Abd El-Rahman et al. 2009; Hamdy et al. 2013; Khedr and Arai 2013; Azer et al. 2013).

Controversy continues concerning the tectonic environment in which the Egyptian ophiolites formed. The abundance of immature and volcaniclastic sediments deposited on top of the ophiolites suggests formation at an intraoceanic convergent margin, either in a back-arc basin or a fore-arc during subduction initiation. Boninitic affinities of some Egyptian ophiolites have recently been recognized by some authors (e.g. El Sayed et al. 1999; Abdel Aal et al. 2003; Saleh 2006), and these authors inferred a back-arc or an inter-arc basin origin based on the chemical compositions of the ophiolitic rocks. However, this interpretation conflicts with the observation that most boninites are found in the fore-arc of intraoceanic arcs (e.g. Murton 1989; Johnson and Fryer 1990; Bédard 1999; Beccaluva et al. 2004).

The chemical composition of accessory chromian spinel can be used to deduce the different tectonic settings of different igneous rocks (e.g. Barnes and Roeder 2001; Sobolev and Logvinova 2005; Arif and Jan 2006). Spinels from MOR and back-arc basin peridotites generally have Cr# < 50 (Barnes and Roeder 2001; Ohara et al. 2002), whereas spinels in fore-arc peridotites generally have higher Cr# (up to 80) and those from boninites typically have Cr# of 70–90. Fresh chromian spinels in the serpentinites at Gabal El-Degheimi have chemical compositions that lie at the upper range of the mantle array (Text-fig. 6a). On the Al2O3 vs. Fe2+/Fe3+ diagram (Text-fig. 6b), the compositions of fresh chromian spinels are akin to the supra-subduction zone (SSZ) peridotite field. The analyzed primary chromian spinels have low TiO2 contents ranging from 0.04 to 0.16 wt.% with an average 0.09, which indicates a depleted mantle peridotite. The depleted nature of the studied serpentinites is further deduced by using the Cr# vs. TiO2 diagram for the fresh chromian spinels (Text-fig. 6c). Overall, the high Cr# and low TiO2 spinel as well as their depleted nature suggest an origin from a mantle wedge or a sub-arc mantle. The Cr# of Gabal El-Degheimi serpentinites is mostly >60 and similar to those of modern fore-arc peridotites and Egyptian serpentinites (Text-fig. 6d). Such a setting for the ophiolitic rocks in the Eastern Desert is supported by the fact that clinopyroxene and olivine compositions of most Egyptian ophiolites plot in the field characteristic of intraoceanic fore-arc regions (Abdel Aal et al. 2003; Khalil and Azer 2007). Also, the boninitic affinities of some Eastern Desert ophiolitic rocks support a fore-arc setting (e.g. El Sayed et al. 1999; Abdel Aal et al. 2003; Saleh 2006).

On the Cr# vs. Mg# plot, the fresh chromian spinels show a negative trend (Text-fig. 6d), reflecting a partial melting trend from harzburgite to dunite. Based on spinel compositions, the Gabal El-Degheimi serpentinitized peridotites were formed by large amounts of melt extraction (~ 34–44%; Text-fig. 6d). The high degree of partial melting is consistent with fore-arc peridotites (Bonatti and Michael 1989) which have formed by 30% partial melting. On the basis of the data presented here, the fresh chromian spinels from the serpentinitized ultramafics of Gabal El-Degheimi area are similar to those of spinel of mantle peridotites that have gone some degree of partial melting in a fore-arc environment. The present results are comparable with those of ANS ophiolites which represent a fragment of oceanic lithosphere that formed in a fore-arc environment (Text-fig. 7).

Alteration of chromian spinel

All the Egyptian ophiolites are strongly deformed and metamorphosed to low-grade greenschist facies, but in some places they reach amphibolite grade (e.g. El-
Text-fig. 6. (a -) Plot of fresh chromian spinels on Al$_2$O$_3$ vs. Cr$_2$O$_3$ diagram (after Franz and Wirth 2000), (b -) Al$_2$O$_3$ vs. Fe$^{2+}$/Fe$^{3+}$ diagram showing the fields of supra-subduction zone (SSZ) and mid oceanic ridge (MOR) peridotite (after Kamenetsky et al. 2001), (c -) Cr# vs. TiO$_2$ diagram for the analyzed fresh chrome spinels (fields after Dick and Bullen 1984; Arai 1992; Jan and Windley 1990), and (d -) Cr# vs. Mg# diagram for fresh chromian spinels (after Stern et al. 2004); the field boundaries are from Dick and Bullen (1984), Bloomer et al. (1995) and Ohara et al. (2002). The melting trend of experimental equilibrium (melting %) is from Hirose and Kawamoto (1995). Field for chromites in the Egyptian serpentinites of the Eastern Desert is adopted from Farahat et al. (2011).

Text-fig. 7. Cartoons showing the tectonic setting of Egyptian ophiolites in the fore-arc environment above subduction zones (after Azer and Stern 2007).
The ultramafic rocks associated with the Egyptian ophiolites are largely converted to serpentinite or to mixtures of serpentine, talc, tremolite, magnesite, chlorite, magnetite, and carbonate. Under the effects of post-magmatic and/or metamorphic processes, the primary chromian spinels start to develop alteration products such as ferritchromite and Cr-magnetite (e.g., Barnes 2000; Mellini et al. 2005). These two secondary phases are usually attributed to the effects of low to medium grade metamorphism up to lower amphibolite facies (Thalhammer et al. 1990; McElhuff and Stumpfl 1991). In Egyptian ophiolites, the alteration of chromian spinel to ferritchromite may have started during the late magmatic stage and it is mainly due to the much later serpentinization and tectonism (Khudeir et al. 1992; Khalil and Azer 2007). Farahat (2008) attributed the formation of chromian spinel cores followed by ferritchromite and Cr-magnetite rims to formation at transitional greenschist-amphibolite to lower amphibolite facies.

The ferritchromite in the serpentinites is enriched in total iron and strongly depleted in Al₂O₃ and MgO (Text-fig. 5a), reflecting the loss in Al₂O₃ and Cr₂O₃ and increase in Fe₂O₃ due to alteration and metamorphism. Very low Fe³⁺ contents in the fresh chromian spinels indicate relatively low oxygen fugacity conditions at their primary source (Murck and Campbell 1986), while high Fe⁴⁺ in the ferritchromite and Cr-magnetite rims suggesting an oxidative state during metamorphism (Anzil et al. 2012). Highly oxidizing conditions favour the reaction of chromian spinel with serpentine to produce chlorite, ferritchromite and Cr-magnetite (Mellini et al. 2005; González-Jiménez et al. 2009). Therefore, the development of ferritchromite rims around chromian spinel cores indicates their formation during prograde alteration and under oxidizing conditions (González-Jiménez et al. 2009). This alteration should have taken place during lower temperature amphibolite facies metamorphism (Suits and Streider 1996). The minimum temperature of formation of ferritchromite is ~500°C (Mellini et al. 2005). The abundance of antigorite as the serpentine mineral, in the Gabal El-Degheimi serpentinites, suggests that it formed at 400–600 °C (Evans 2010) during an early stage of serpentinization at great depth.

Correlations with other late Neoproterozoic ultramafic rocks of the ANS

In this section, we aim to compare the serpentinized ultramafics of Gabal El-Degheimi with the ultramafic rocks of ANS (ophiolites and mafic-ultramafic intrusions) through comparing their petrological and mineralogical characteristics. The ultramafic rocks of the ANS ophiolites are essentially represented by harzburgites and dunites (e.g., Farahat et al. 2011; Azer et al. 2013). On the other hand, the ultramafic rocks of layered mafic-ultramafic intrusions show a wide variation in rock types, including wehrlite, dunitite, lherzolite and pyroxenites with minor harzburgite. (Khudeir 1995; Helmy and El-Mahallawi 2003; Farahat and Helmy 2006; Helmy et al. 2008; Azer and El-Gharabawy 2011). The present study suggests harzburgite and dunitic protoliths for the serpentinites of Gabal El-Degheimi due to the abundance of bastite and mesh textures, similar in this regard to the ophiolitic serpentinites of the ANS. The harzburgite in the mafic-ultramafic intrusions are characterized by the presence of green spinel (pleonaste) and primary intercumulus amphiboles (Khudeir 1995; Helmy et al. 2008) which have not been recorded in the present study.

Similar to those of the Gabal El-Degheimi serpentinites, spinels in the serpentinized peridotites of ANS ophiolites are mainly represented by chromian spinels (e.g., Azer and Stern 2007; Farahat 2008; Ahmed et al. 2012; Khedr and Arai 2013), whereas peridotites of the layered intrusions contain chromian spinels and green spinel (Khudeir 1995; Azer and El-Gharabawy 2011). The chromian spinels of ANS ophiolite ultramafic rocks display zoning from fresh chromian spinel cores to ferritchromite and Cr-magnetite rims (e.g. Khalil and Azer 2007; Farahat 2008; Ahmed et al. 2012; Khedr and Arai 2013). On the other hand, the chromian spinels of ultramafics in the mafic-ultramafic layered intrusions are not zoned (e.g. Ahmed et al. 2008; Azer and El-Gharabawy 2011). The chromian spinels of Gabal El-Degheimi ultramafic rocks are zoned with ferritchromite and Cr-magnetite rims. Also, they are not accompanied by green spinel and have high Cr#. The mineral composition of fresh chromian spinel in Gabal El-Degheimi is analogous to the fore-arc peridotites and serpentinized peridotites in the Eastern Desert of Egypt (Text-fig. 6d). This is consistent with the high Cr# (mostly >0.6) for spinels in ANS harzburgites, which are comparable to the forearc peridotites (Stern et al. 2004). Accordingly, the chromian spinels of the studied serpentinites are similar to the ophiolitic ultramafic rocks of the ANS rather than to ultramafics of layered mafic-ultramafic intrusions.

CONCLUSIONS

- The mafic-ultramafic rocks of the Gabal El-Degheimi area, Central Eastern Desert of Egypt, are dismembered ophiolites and tectonically enclosed within, or thrust over, island arc assemblages.
• Some portions of the serpentinitized rocks contain fresh relicts of primary chromian spinel and olivine and others are extremely altered along thrusts and shear zones. The abundance of bastite and mesh textures suggests harzburgite and dunite protoliths.
• The primary chromian spinels are rimmed by ferri-chromite and Cr-magnetite. The development of ferri-chromite rims around chromian spinel cores points to formation during prograde alteration, under oxidizing conditions, at lower amphibolite facies metamorphism.
• The compositions of primary chromian spinels from the serpentinites of Gabal El-Degheimi have the characteristics of those derived from mantle that has experienced some degree of partial melting in a fore-arc tectonic environment.

Acknowledgements

The author would like to express deep gratitude to Dr. Peter R. Johnson and Dr. Ayman Maurice for their critical reading and valuable comments that improved this contribution. Also, the author would like to thank Dr. Saleh Gameel for helping in performing the microprobe analyses in France. Also, the author highly appreciates thoughtful review by Prof. Ray Macdonald, which improved the manuscript.

REFERENCES

Manuscript submitted: 21st July 2013
Revised version accepted: 17th October 2013