SHORT COMMUNICATION

New species and first record of Helotrephes from India, and a check-list of Indian Helotrephidae (Hemiptera: Heteroptera)

E. Eyarin JEHAMALAR¹,*), Kailash CHANDRA¹) & Herbert ZETTEL²)

¹) Zoological Survey of India, New Alipore, Kolkata 700 053, West Bengal, India; e-mails: jehamalar@gmail.com, kailash611@rediffmail.com
²) Zoological Department, Natural History Museum Vienna, Burggring 7, A-1010 Vienna, Austria; e-mail: herbert.zettel@nhm-wien.ac.at
* Corresponding author

Abstract. Helotrephes nainamalaii sp. nov. from Meghalaya, India is described. Representatives of Helotrephes are so far known from southern China, Southeast Asia and Sundaland. The unexpected first record of Helotrephes from India expands their distribution more than 1,000 kilometres westward. The new species belongs to the H. australis species-group which is widespread in southern China and Southeast Asia. Helotrephes nainamalaii sp. nov. can be identified by the presence of a sub-basal protrusion on the genital plate, a characteristic apical hook on the aedeagus, and peculiarly shaped ventromedian carinae. The description is supplemented by a key to the species of the Helotrephes australis species-group. Tiphotrephes indicus (Distant, 1910) is recorded from Meghalaya for the first time. A check-list of Helotrephidae in India is given.

Key words. Heteroptera, Helotrephidae, Helotrephini, Helotrephes australis species-group, key, Meghalaya, India, Oriental Region

ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:66F5BF07-F271-4CE7-A40F-DFAFAF6076A2
© 2018 The Authors. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Licence.

Introduction

Fifteen species of Helotrephidae in six genera are so far known from India (see check-list, Tab. 1). The majority of the species (9) are distributed in south India (THIRUMALAI 2007, PAPÁČEK & ZETTEL 2008). There is no previous record of Helotrephes from India. Like most other Helotrephidae, Helotrephes usually inhabit shallow streams and rivers with low current. Their size may reach up to 3.8 mm, which is relatively large compared to most other members of the family. As usual in Helotrephidae, populations of its species are pterygopolymorphic. The brachypterous form can be differentiated from the macropterous form by the absence of claval and embolar sutures of the hemielytron (ZETTEL 2000b).

Helotrephes and Hydrotrephe China, 1935 are the two most speciose genera of the tribe Helotrephini (Helotrephidae: Helotrephinae) in Asia. They can be easily distinguished by the presence (Helotrephes) or absence (Hydrotrephe), respectively, of median carinae on abdominal sterna 4–6 (ZETTEL & POLHEMUS 1998). Helotrephes reaches its greatest diversity on the Southeast Asian mainland and in the subtropical parts of China. Relatively few species are known from Sundaland (Sumatra, Java, Borneo). Helotrephes is unknown from the Malay Archipelago east of Wallace Line. In that area, its niches are occupied by species of Hydrotrephe, which – in contrary – is rare on the Asian mainland and has an unusual outpost on Sri Lanka. This paper records and describes a new species of the Helotrephes australis group from Meghalaya, northeast India. This record expands the known distribution of the genus considerably to the west.

So far thirty species and three subspecies have been recognized in the genus Helotrephes under seven species groups: H. otoeis group, H. jendeki group, H. semiglobosus group, H. papaceki group, H. sausai group, H.
Material and methods

Specimens of new species were collected by using a D-frame aquatic insect net and preserved in 75% ethanol. Specimens and their dissected genitalia were examined, and photographs and measurements were acquired via a Leica stereo zoom microscope (Leica M205A), using the software Leica application suite (LAS V3.8). All measurements are given in millimetres. The holotype specimen was card-mounted and the genitalia were mounted between cover glasses and kept under the specimen. The distribution map was prepared by DIVA-GIS (Figs 3A–B). Terminology follows Zettel & Polhemus (1998).

Taxonomy

Helotrephes Stål, 1860

Helotrephes australis species group

Diagnosis (modified from Zettel & Polhemus 1998): Small species, body length 2.4–2.8 mm. Cephalonotum with dense, medium sized punctuation, matt. Hind margin of cephalonotum laterally without tubercles. Pronotal plate posteriorly not dilated, in most species with a deep and broad incision. Prosternal carina with acute posterior angle, emarginated posteriorly. Male genitalia: aedeagus slender, without apical plate; right paramere very slender; left paramere relatively broad. Female with rounded or truncate (never stalked) middle lobe of subgenital plate.

Key to the species of _Helotrephes australis_ group (only for males)

Note. _Helotrephes kantonensis_ Zettel, 2004 is not included in the key applicable only for male adults, since it is known only from a single female. It can be identified by a deep and wide incision of the pronotal plate, an angular anterior projection of the prosternal carina, and slightly angular carinae of metasternum and abdominal sternum 2.

1. Apex of aedeagus hook-shaped and facing backward (Fig. 1A). Incision of pronotal plate deep and wide (Fig. 1F), or narrow and angular (Fig. 1G). 2
 – Apex of aedeagus facing forward (Figs 1B–E, 2G). Incision on pronotal plate round (Figs 1H–I, 2C). 3

2. Incision of pronotal plate narrow and angular (Fig. 1G). Anterior projection of prosternal carina blunt (Fig. 1L). China (Guangdong). ... _H. globulus_ Zettel, 2004

 – Incision of pronotal plate deep and wide (Fig. 1F). Anterior projection of prosternal carina angulated (Fig. 1N). Borneo. _H. recurvatus_ Zettel, 2000

3. Incision of pronotal plate constricted at mesal margin of plate (Fig. 1H). In apical view, aedeagus with apical lamina (Figs 1B–C, inserts). 4
 – Incision on the pronotal plate not constricted at mesal margin of plate (Figs 1I, 2C). In apical view, aedeagus sharp, without apical lamina (Figs 1D–E, inserts, 2G). .. 5

4. Anterior projection of prosternal carina spiny, pointed (Fig. 1M). Aedeagus as in Fig. 1B. China (Yunnan), Thailand, Laos, West Malaysia. _H. australis_ Zettel & Polhemus, 1998
 – Anterior projection of prosternal carina weakly acute, not pointed (cf. Fig. 1O). Aedeagus as in Fig. 1C. China (Yunnan), Thailand, Laos. _H. nieserianus_ Zettel & Polhemus, 1998

5. Apex of aedeagus hook-shaped (Fig. 2G). Anterior corner of prosternal carina strongly protruding (Fig. 2D). Metasternal carina with blunt apex (Fig. 2D). India (Meghalaya). _H. nainamalaii_ sp. nov.
 – Apex of aedeagus beak-shaped (Figs 1D–E). Anterior corner of prosternal carina weakly protruding (Fig. 1O). Metasternal carina with pointed apex (Fig. 1O). 6

6. Carina of sternum 2 with small apical incision (Fig. 1O). Carina of sternum 3 with long setae (Figs 1O), China (Yunnan), Thailand. _H. incisus_ Zettel & Polhemus, 1998
 – Carina of sternum 2 without apical incision. Carina of sternum 3 with short setae (cf. Fig. 1M). Vietnam. _H. vietnamensis_ Zettel, 2005

Helotrephes nainamalaii sp. nov.

(Figs 2A–I)

Description of brachypterous male (Figs 2A–I). Size (holotype is a smaller specimen). Body length: 2.28 / 2.45. Maximum body width at posterolateral angle of cephalonotum: 1.71 / 1.81.

Colour. Dark brown to black. Anteromedian region of pronotum pale brown (Fig. 2A). Head yelllowish brown with irregular black mark (Fig. 2B), near eyes yellowish. Legs yellowish brown.

Structural characters. Head: vertex near posterior margin of eye rugulose; anterior part without distinct punctures. Cephalonotum suture sinuate and distinct (Fig. 2B). Eye length 0.59, width 0.28. Fourth rostral segment almost 3.0 times as long as third. Pronotal plate with a very large, almost squared incision (Fig. 2C). Genal plate narrow, sub-basally with a small protrusion.

Punctures on entire dorsum bearing yellowish brown setae; pronotum with dense, small and shallow punctures; scutellum and hemelytra with sparse, large, deep punctures; corium sub-laterally reticulated. Mesoscutellum, length 1.09, basal width 0.94.

Ventral carinae (Fig. 2D): Prosternal carina deeply notched posteriorly, strongly protruding anterior corner and blunt posterior corner. Mesosternal carina anteriorly knob-like, posteriorly rounded. Metasternal carina almost squared, anteriorly elevated, posteriorly with blunt corner. Carina of sternum 2 large and almost sigmoid. Carina of sternum 3 with apical part almost reniform, with sparse long thin setae. Carineae of abdominal sterna 4 to 6 small and basally with thick setae.

Genitalia. Genital capsule as in Fig. 2E. Aedeagus (Fig. 2G) medium-sized, stout, with slightly convex posterior margin; apex of characteristic hook-like shape. Right paramere (Fig. 2H) slightly shorter than left paramere, slender and curved, posteriorly with 13 long setae evenly distributed in distal two thirds; apex round, but in a more posterior view (Fig. 2F) angularly produced. Left paramere (Fig. 2I) broad, abruptly narrowed distally, with blunt tip, with some setae posteriorly and on medial face.

Differential diagnosis. _Helotrephes nainamalaii_ sp. nov. belongs to the _H. australis_ group sensu Zettel & Polhemus (1998). It can easily be distinguished from all the other known species of the _H. australis_ group by the presence of a sub-basal tubercle on the genal plate (Fig. 2C), by a
strongly protruding anterior corner of the prosternal carina (Fig. 2D), and by the apical hook of the aedeagus basally bent backward and then forward (Fig. 2G). The first two characters should probably easily facilitate the recognition of the hitherto unknown female. Although the hook-shaped apex of the aedeagus resembles that of *H. australis*, a common and widespread species in Southeast Asia, *H. nainamalaii* differs from *H. australis* by the apical hook of the aedeagus being bent backward and then curved forward (Fig. 2G), while in *H. australis* it is simply curved forward (Fig. 1B). Moreover in *H. australis* the right paramere is very slender, and the left paramere has a curved apex (Figs 1J–K).

Etymology. *Helotrephes nainamalaii* is named after Mr. R. Nainamalai, Divisional Forest Officer, Jaintia Hills, Meghalaya, for arranging the field trip in the East Khasi Hills District.

Type locality and habitat (Figs 3A–C): Meghalaya is located between 25°01′N and 26°05′N latitude and 85°49′E and 92°52′E longitude. The East Khasi Hills district experiences an average annual rainfall of about 12,000 mm and is considered as one of the wettest regions on earth.
Figs 3A–C. Type locality of *Helotrephes nainamalaii* sp. nov. A – map of India; B – map of Meghalaya; triangle denotes the distribution of the new species; C – photograph of the type locality, Phudjynniaw Stream in Janiaw Village.

About 39% of the district’s total area is forested (1067.52 km² out of 2748 km²). The district is dissected by plenty of streams; the streams and rivers in the north flow toward the Brahmaputra River and those in the south toward the Surma River of Bangladesh. Phudjynniaw Stream located in East Khasi Hills District, is the tributary of Umngi River, which flows into Bangladesh and meets with Surma River. It is a limestone-bedded slow flowing shallow stream with an open canopy (Fig. 3C).

Distribution. Known only from the type locality, Phudjynniaw Stream in Janiaw Village, Mawsynram Block, East Khasi Hills District, Meghalaya, India.

New faunistic record

Tiphotrephes indicus (Distant, 1910)

Helotrephes indicus Distant, 1910: 338 (original description).

Material examined. **INDIA:** **MEGHALAYA:** West Jaintia Hills, Nartiang Village, Umitsong Pond, 1183 m a.s.l., 25.57194° N, 92.21458° E 14.iii.2016, 3 ♀♀, Coll. E. E. Jehamalar. The specimens are deposited in National Zoological Collection, Hemiptera Section, ZSI-HQ, Kolkata. Reg. No. 6485/H15.

Distribution. India: Maharashtra, Uttar Pradesh (Thirumalai 2007), West Bengal (Distant 1910), Meghalaya (this paper), Assam (senior author’s pers. observ.); Myanmar (Distant 1910); Thailand, Malaysia (Selangor, Perak), Singapore, Indonesia (Borneo) (Papaček & Zettel 2005). First record from Meghalaya.

Check-list of Indian Helotrephidae

Check-lists of the Helotrephidae of the world were published by Polhemus (1990) and Papaček & Zettel (2005). The updated checklist of Helotrephidae known from India is presented in Table 1.

Table 1. Checklist of Helotrephidae known from India

<table>
<thead>
<tr>
<th>Species</th>
<th>States of India</th>
<th>Other country records</th>
<th>References of Indian records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfamily Fischerotrephinae Zettel, 1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily Helotrephinae Esaki & China, 1927</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helotrephes nainamalaii Jehamalar, Chandra & Zettel, 2018</td>
<td>Meghalaya</td>
<td>this study</td>
<td></td>
</tr>
<tr>
<td>Subfamily Helotrephinae Esaki & China, 1927</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnotrephes campbelli Jehamalar, 1997</td>
<td>Karnataka</td>
<td>Esaki & China (1928)</td>
<td></td>
</tr>
<tr>
<td>Subfamily incertae sedis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

The authors are thankful to the Zoological Survey of India, Kolkata, for providing research facilities. The first author thanks the Science and Engineering Research Board, New Delhi for the grants, File No. YSS/2014/000951. We thank the Additional Principal Chief Conservator of Forests (Wildlife) and Chief Wildlife Warden, Meghalaya Forest department, for the permission to make a field survey. We are thankful to the Divisional Forest Officers, Mr. Arul G. Mathuram, Khasi Hills Wildlife Division, Shillong and Mr. R. Nainamalai, Jaintia Hills Territorial Division, Jowai, Meghalaya, for their support. We thank Dr. S. Isias, Principal, St. Alphonsa College of Arts and Science, Karungal, Tamil Nadu, for arranging the field trips in Meghalaya. The first author thanks her brother, E. Issac Vijaya Singh, for accompanying her in the field. We also thank Dr. Pingping Chen (Netherlands Biodiversity Centre Naturalis, Leiden, The Netherlands), Dr. Nico Nieser (Tiel, The Netherlands), Dr. Pingping Chen (Netherlands Biodiversity Centre Naturalis, Leiden, The Netherlands), Dr. Nico Nieser (Tiel, The Netherlands), an anonymous reviewer, and the editors for their critical review on this manuscript. We are thankful to Dr. Petr Kment and Dr. Martin Fikáček, editors of AEMNP, for linguistic corrections and editing the manuscript.

References

