Renefouqueosis peruviensis, a new genus and species of Stenosini (Coleoptera: Tenebrionidae) from Peru with a key to the Stenosini of the World and notes on the genera Anchomma and Fitzsimonsium

Abstract. Renefouqueosis peruviensis gen. et sp. nov., a new tenebrionid genus and species of the tribe Stenosini (subtribe Stenosina) is described from the arid mountains of Northern Peru. Including the new genus Renefouqueosis gen. nov., the tribe Stenosini now includes 40 valid genera of which nine are from the New World. The genera are placed in six subtribes (two worldwide, two New World and two Old World). Type species and subtribal assignment for each genus is presented. Notes on the placement of the genera Anchomma LeConte, 1858 and Fitzsimonsium Koch, 1962 are given. The proper placement of these genera is uncertain. Because of numerous morphological similarities to the Stenosini, we have decided to place these in a key to the world genera of Stenosini, which we provide.

Key words. Coleoptera, Tenebrionidae, Stenosini, new genus, new species, key to genera of world, Peru, Neotropical Region

Introduction

When René Fouqué, expert on the tribe Stenosini, visited the first author’s collection, along with other tenebrionid colleagues, before the Third International Tenebrionoidea Symposium in Tempe, Arizona, USA in 2013, he confirmed that a small series, identified by the first author in 1995 as a new genus of Stenosini: Stenosina, was indeed
undescribed. Tentative plans were made to describe this new genus and species with René in the near future. This was not to be. This new genus and species is described here and dedicated to his memory.

Two major keys have been published for the Stenosini. The first by REITTER (1916) for the Palearctic fauna. Included were three subtribes and 12 genera which composed the then known genera of Stenosini of Europe, Middle East and Central Asia. He did not include tropical Asian, African or New World fauna known at that time. MEDVEDEV (1994) was the first to provide a key to the world Stenosini genera and subgenera composed of 30 genera and 129 subgenera. He did not include five, at that time existing genera of Stenosini, two of which (TYPHLOUSECHUS Linell, 1897 and HEXAGONOCHILUS Solier, 1851) he excluded based on the position of apices of setae on the upper surface of the head which are directed posteriorly, not anteriorly as all other known Stenosini, a character he believed was important in distinguishing Stenosini. Subtribes were not included. Since 1994, five new genera and numerous species have been described. Additional keys to groups of genera were provided by FOUQUÉ (2008, 2013, 2015). Three then existing genera have also been re-diagnosed, and three new subgenera were added, by FOUQUÉ (2015). In the hopes that future researchers will continue his work on the Stenosini, a generic key to the tribe is also provided in his honor.

**Materials and methods**

Images of specimens or characters were taken using a Passport Imaging system (R. Larimer, www.visionarydigital.com). Montaged images were assembled using Zerene Stacker (zerenesystems.com/stacker/) and backgrounds were cleaned up in Adobe Photoshop CS. The spelling and authorship of family-group names follows data presented in BOUCHARD et al. (2011).

Material for this study was borrowed from the following individuals and institutions. These persons (in parentheses) are gratefully acknowledged for loan of their materials:

CASC California Academy of Sciences, San Francisco, California, USA (Dave Kavanaugh).

RLAC Rolf L. Aalbu collection, El Dorado Hills, California, USA.

**Description of a new genus and species**

*Renefouqueosis* gen. nov.

**Type species.** *Renefouqueosis peruviensis* sp. nov. by present designation.

**Composition.** The genus includes only the type species, *Renefouqueosis peruviensis* sp. nov.

**Description.** Body relatively small (around 3 mm). Head without dorsal keels, with antennomeres completely separated; eyes positioned above and anterior to an antero-lateral extended genal keel, composed of an elongate series of facets. Pronotum widest at anterior third, 1.125 times wider than long, cordate, anterior margin concave, posterior margin truncate, with two keels. Scutellum small, triangular. Elytra with keels on intervals 3, 5 and 7.
Comparative diagnosis. *Renefouqueosis* gen. nov. (Stenosini: Stenosina) can be distinguished from all other genera of New World Stenosini (subtribe Stenosina) by the following characters: (1) the antennomeres are completely separated (*Ecnomoderes* Gebien, 1928 as well as *Grammicus* Waterhouse, 1845, which also occurs in Southern Peru has the antennomere XI embedded in the X apically); (2) pronotum with coarsely serrate lateral margins and (3) the presence of two keels on the central aspect of the

![Fig. 1. *Renefouqueosis peruviensis* gen. et sp. nov., habitus female. Dorsal (A) lateral (B) and ventral (C) views.](image-url)
pronotum (*Caribanosis* Nabozenko et al., 2016 has a single keel centrally positioned on the pronotum while, *Schizaraeus* Kulzer, 1955, lacks keels). In Old World Stenosini (subtribe Stenosina), of the genera which have both pronotal and elytral keels, but not head keels, which includes *Anethas* Jakobson, 1924, *Gebieniella* Koch, 1940, *Stenosini*...
Acta Entomologica Musei Nationalis Pragae, 57(2), 2017 317

oethas Kaszab, 1975, and Tetranosis Medvedev, 1995, all have the pronotum clearly longer than wide, sometimes much longer than wide. In Caribanosis the pronotum is slightly wider than long (1.05 : 1.00). Ethas Pascoe, 1862 and Perdicus Fairmaire, 1899 have pronotal elevations but in these the elevations are rounded, not keeled. In Renefouqueosis gen. nov., the pronotum is clearly wider than long (ratio 1.125 : 1.000). The wide pronotum with serrate margins and of the eye which is composed of an elongate series of facets positioned above an antero-lateral extended genal keel, rounded anteriorly, visible from above only at posterior, rest of eye facets, not separated by a furrow, facing anteriorly, not visible from above due to genal extension above antennal insertion and not visible from below due to lateral genal extension is also unique.

Renefouqueosis peruviensis sp. nov.
(Figs 1a–c, 2)

Type locality. Peru, Lambayeque Region, 98 mi E of Olmos.


Description. Holotype, male: length 3.0 mm, width 1.6 mm. Integument matt, glabrous, heavily punctate, dark reddish brown.

Head broadened from base to genae laterally to eyes, widest at level lateral to eyes. Surface covered with broad, shallow punctures, each bearing a short seta, setae becoming slightly longer at apex. Eyes composed of an elongate series of facets positioned above an antero-lateral extended genal keel, rounded anteriorly, visible from above only at posterior, rest of eye facets facing anteriorly, not visible from above due to genal extension above antennal insertion. Antennae 11-segmented, antennomeres I–III longer than wide, IV–X wider than long, XI longer than wide. Antennomere (refer to Fig. 1) X larger than IX, antennomere XI subequal in width to antennomere IX but longer in length, width. Antennomere XI smaller than X, completely separated from antennomere X. Mentum trapezoidal, weakly transverse, apex wider than base, anteriorly concave, with sparse elongate setae; ligula visible, small. Maxillary palps with stipes, palpifer visible, apical segments elongate oval. Labial palps small. Gular region strongly produced anteriorly around mentum, anterior angles acute, apex between angles arcuate, convex. Gular sides (temples) with antero-lateral plates which covers eyes from below. Lower surface of head covered with yellow setae, longer medially.

Pronotum 1.125 times wider than long, about equally as long as head, cordate, sharply reflexed at posterior lateral angles, forming a triangular shaped spike, with longitudinal keels at about 1/5 distance to lateral margin at broadest point. Antero-lateral margins expanded, with anterior angles protruding slightly. Anterior margin rounded, posterior margin nearly truncate. Lateral margins serrate. Surface covered with broad, shallow punctures, each bearing a short seta. Lateral sides of disc clearly flattened. Lower surface strongly punctate with few short setae laterally, longer medially.

Scutellum very small, triangular.
Elytra broadly rounded, with weakly expressed rounded humeral angles, base concave before scutellum, surface deeply serially punctate, punctures with small short seta. Intervals 3, 5, and 7 forming a sharp keel; keels 3 and 7 terminate before apex; keel 5 reaching and meeting at apex of abdomen. Elytral suture also slightly elevated.

Ventral surface (Fig. 1C) with prosternal process narrowing behind coxae, strongly punctate, each puncture bearing moderately long yellow setae. Abdomen as in Fig. 1C, with intercoxal process of abdomen nearly parallel, truncate at apex. Surface strongly punctate bearing short setae laterally, longer medially.

Legs relatively short. Tibiae and femora straight, setose. Femora broader than tibiae. Tibia expanded gradually to apex. Abdomen punctured as elytra.

Male genitalia not dissected but genitalia partly exposed externally. Aedeagus inverted with parameres narrowing at apex, split apically.

Female genitalia not dissected but genitalia partly exposed externally (see Fig. 1) with coxites total length approximately equal to length of last visible abdominal segment. Gonostyli small, sub-apical with setae at apex.

Distribution. Peru: Lambayeque.

Remarks. The area mentioned on the label puts this collecting area in the dry, rain shadow areas in the mountains of Northern Peru, probably at a mid-elevation.

Discussion on the genera Anchomma and Fitzsimonsium

Anchomma costatum LeConte, 1858 (Fig. 3) was described by LeConte (1858) and placed in various tribes of Colydiinae (Zopheridae) based on its 4 : 4 : 4 tarsal count and lack of visible membranes between abdominal ventrites. Doyen & Lawrence (1979) transferred this genus to Stenosini based on the following characters: ‘antennae thick, moniliform; eyes divided by epistomal canthus; mandibles with mola transversely narrow, lunate; labrum rectangular, with medial tormal processes directed posterad; tentorium with sides long, subparallel or gradually converging anteriorly, with simple transverse bridge located anterad of middle; mesendosternite with long, anterior arms terminating in muscle discs and long, slender dorsal arms; and metendosternite with short, thick stalk and long, slender, tapering arms’. They suggested a close relationship to Grammicus, noting that in both genera ‘the mesocoxal cavities are almost closed by the sterna, which are separated by a very narrow groove. In Stenosis and Araeoschizus the mesocoxal closure by the sterna is complete’. Later Doyen (1993) moved Anchomma to the tribe Anepsiini without suggesting close relationship with other members of that tribe. Doyen analyzed pimeliine beetles using three different outgroups (Belopus Gebien, 1911 (a lagriine); Zolodinus Blanchard, 1853 (a zolodinine) and what he considered to be all ‘primitive’ character states for the family. Characters used to separate these tribes were mainly those of internal and external reproductive structures. In light of the molecular analyses in Kanda (2017), Anchomma should be excluded from Anepsiini, but its taxonomic affinities are still uncertain. Because of its morphological similarities to Stenosini (see above), Anchomma (Fig. 3) is included in the key to the world genera.
of Stenosini, but at present should be considered as *incertae sedis* within Pimeliinae.

**ENDRÖDY-YOUNGA** (1996) transferred the monotypic genus *Fitzsimonsium* Koch, 1962, from Caenocrypticini to Stenosini based on (1) moniliform antenna; (2) apically split parameres with fine setae; (3) very broad scutellum (three times broader than long); and (4) simply truncate apex of protibia. Both the first and fourth of these are generally considered plesiomorphic. Apically split parameres are found in some Stenosini but a very broad scutellum is not. However, besides a very broad scutellum (not mentioned in the redescription by **ENDRÖDY-YOUNGA** (1996: 45), *Fitzsimonsium* has the following character states not found in any Stenosini: (1) a stridulatory gula; and (2) a dilated anterior tibia, both common in Coenocrypticini. In **ENDRÖDY-YOUNGA**’s (1996: 11) cladogram, *Fitzsimonsium* is placed apically to *Boromorphus* Wollaston, 1854, currently in its own subtribe. It does have a similar body shape and antenna to members of the Stenosini subtribe Platamodina so it is here included in the key. However, the authors would like to emphasize that the tribal placement of *Fitzsimonsium* is in need of further study.

Including the new genus *Renefouqueosis* gen. nov., the tribe Stenosini now includes 40 valid genera of which nine are from the New World. A key to the known subtribes and genera is presented, and includes the unplaced genera *Anchomma* and *Fitzsimonsium*. The genera are placed in six subtribes (two worldwide, two New World and two Old World; see Table 1). Type species and subtribal assignments for each genus are also included (Table 2). A few of the genera, due to their varied morphology, key out in more than one couplet. Including images or photos of each of these genera would be difficult, as many are very rare in collections. Instead readers are referred to a footnote in the key for images, photos, and/or additional diagnostic information. Also refer to **LÖBL** et al. (2008) for Palearctic species. Subgenera have not been included here unless the specific subgenus distinguishes this group from other subgenera which may be grouped together in the key, separated in another couplet. For further subgeneric separations, see **MEDVEDEV** (1994) and **FOUQUÉ** (2008, 2013, 2015).

Table 1. Subtribes of the Stenosini.

<table>
<thead>
<tr>
<th>Subtribe</th>
<th>Author, year</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenosina</td>
<td>Schaum, 1859: 66 (1834)</td>
<td>proposed as a subtribe by <strong>REITTER</strong> (1916: 137)</td>
</tr>
<tr>
<td>Dichillina</td>
<td>Reitter, 1916: 137</td>
<td></td>
</tr>
<tr>
<td>Araeoschizina</td>
<td>Casey, 1907: 484</td>
<td>proposed as a subtribe by <strong>DOYEN &amp; LAWRENCE</strong> (1979: 351)</td>
</tr>
<tr>
<td>Typhlusechina</td>
<td>Casey, 1907: 494</td>
<td>proposed as a subtribe by <strong>AALBU &amp; ANDREWS</strong> (1985: 1)</td>
</tr>
<tr>
<td>Platamodina</td>
<td>Reitter, 1900: 137</td>
<td></td>
</tr>
<tr>
<td>Harvenciina</td>
<td>Ferrer, 2004: 370</td>
<td></td>
</tr>
</tbody>
</table>
Key to subtribes and genera of world Stenosini (plus *Anchomma*)

1. Antennae short, slender, almost compact, the antennomeres scarcely separated; legs short, all femora not or barely exceeding lateral margin of body. 
   - Antennae with normal articulation; legs longer, all femora as long as or exceeding lateral margin of body.
   - **2 (Platamodina)**

2. Body longer; pronotum with basal angles rounded, convex, not closely joined to elytra.
   - Body wider; pronotum not or barely smaller than elytra, not exceeding margin of body.
   - **Microblemma** Semenow, 1890
     - Six species in Afghanistan, Turkmenistan.
   - **Microblemma** Semenow, 1890
     - Microblemma Semenow, 1890
     - Six species in Afghanistan, Turkmenistan.
   - **Microblemma** Semenow, 1890
     - Microblemma Semenow, 1890
     - Six species in Afghanistan, Turkmenistan.

3. Pronotum with basal angles angulate, concave, closely joined to elytra; femora untoothed.
   - Pronotum with basal angles rounded not closely joined to elytra; all femora with a tooth.
   - **Fitzsimonius** Koch, 1962
     - One species and two subspecies in Central Asia, Transcaucasia.
   - **Fitzsimonius** Koch, 1962

4. Eyes completely absent, size very small, less than 1.4 mm.
   - Eyes with at least four facets present, size usually much larger but at least larger than 1.6 mm.
   - **Harvengiina: Harvengia** Ferrer, 2004

5. Eyes entirely divided by lateral margin of head into upper and lower sections, sections not connected by a connecting furrow.
   - Eyes whole or not entirely divided, reduced medially, sometimes upper and lower regions appearing divided but connected by a connecting furrow.
   - **22 (Stenosina)**

6. Upper and lower eyes further divided but connected by a connecting furrow.
   - Upper and lower eyes not further divided.
   - **Typhlusechina: Typhlusechus** Linell, 1897
     - Five species in U.S. and Mexico.
   - **Araeoschizina: Araeoschizus** LeConte, 1861
     - Fifty-two species in U.S. and Mexico.

   - Body bare or with simple setae only.
   - **Dichillina and Anchomma**

8. Pronotum and elytra sharply costate (keeled).
   - Pronotum and elytra not sharply costate, at most with rounded elevations.
   - **14**

9. Head sharply costate.
   - Head not costate.
   - **10**

10. Body small, less than 3 mm long.
    - Body larger, length greater than 3 mm.
    - **Discopleurus** Lacordaire, 1859
      - Six species in the Neotropics.
    - **Discopleurus** Lacordaire, 1859
      - Microtelus Solier, 1838
        - Seventeen species and subspecies, in the Mediterranean Region, the Middle East and Central Asia.
    - **Microtelus** Solier, 1838
      - Microtelus Solier, 1838
      - Seventeen species and subspecies, in the Mediterranean Region, the Middle East and Central Asia.

11. Both pronotum and elytra costate (Fig. 3).
    - Pronotum not costate.
    - **Anchomma** LeConte 1858
      - Monotypic: *A. costatum* LeConte, 1858 in U.S.A.: California, Nevada.
    - **Anchomma** LeConte 1858
      - Monotypic: *A. costatum* LeConte, 1858 in U.S.A.: California, Nevada.
12 Elytral base equal in width to pronotal base. ................... Pseudochillus Fouquè, 2015
Seven species in India, Andaman Islands, Myanmar, Thailand, Vietnam, Laos, and Philippines.
– Elytral base wider than pronotal base.  ................................. 13
13 Tempora concave; occiput with sharply bordered triangular impression with mid-longitudinal keel.  .......................................................... Indochillus Koch, 1941
Monotypic: Indochillus cristatus Koch, 1941 in India.
– Tempora convex; occiput without sharply bordered triangular impression and mid-longitudinal keel.  ................................. Pseudethas Fairmaire, 1896
Twenty-one species in Afghanistan, Pakistan, India, Nepal, Tibet, and Thailand.
14 Sides of the pronotum and elytra distinctly crenate. .......................... 15
– Sides of the pronotum and elytra smooth.  ................................. 16
15 Lateral margins of pronotum distinctly serrate; elytra broadest near midpoint, tapering arc-wise to apex.  ......................... Oogaster Falderman, 1837
Two species in the Central Asia and Transcaucasia.
– Lateral margins of pronotum not serrate; elytra broadest at basal 1/3, tapering as a straight line to apex.  ................................. Afghanillus Kaszab, 1960
16 Body broad, pronotum quadrate, sides reflexed, elytral intervals with serially rounded tubercles.  ..................... Hexagonochilus Solier, 1851
Two species in Chile.
– Pronotum without lateral margins reflexed; elytra without serially rounded tubercles. ......................................................... 17
17 Abdomen broadest before 1/3 from base, evenly tapering toward apex; body smooth and shiny, tear shaped head, pronotum and abdomen, setae, punctures not apparent, very small.  .......................................................... Reitterella Semenov, 1891
Three species in Turkmenistan and Uzbekistan.
– Abdomen broadest at or around midpoint, elytra often strongly punctate and setose.  ......................................................... 18
18 Suborbital keels prominent. .......................................................... 19
– Suborbital keels reduced or absent. ................................................... 20
19 Pronotum quadrate, sides rounded, pronotum wider than head.  .......................................................... Aspidocephalus Motschulsky, 1839
Monotypic: A. desertus Motschulsky, 1839 from Central Asia, Transcaucasia and south of European part of Russia.
– Pronotum elongate, head wider than pronotum.  .......... Dichillus Jacquelin du Val, 1861
Eighty two species in eight subgenera in the western and central Palearctic Region.
20 Suborbital keels reduced. .......................................................... Herbertfranzia Kaszab, 1973
– Suborbital keels completely absent. ............................................... 21
21 Base of elytra wider than base of pronotum (sometimes only slightly); elytral interval 9 forming humeral corner.  .......................................................... Herbertfranzia Kaszab, 1973
Eight species in Nepal, Tajikistan, Pakistan, and India.
– Base of elytra as wide as base of pronotum; elytral interval 9 not forming humeral corner.  ........................................... Nepalofranziella Fouquè, 2013
Two species in Nepal.
22 Head with keels (costae) on top of head. .............................................................. 23
   – Head without keels on top. .................................................................................. 25
23 Head with a central and lateral keels. ................................................................. Tetraniillus Wasmann, 1899
   Four species in Iran, China and Oriental Region.
   – Head with lateral keels only. ................................................................. 24
24 Pronotum with keels; eyes large, positioned near front of keel. ....................... Stenoethas Kaszab, 1975
   Monotypic: S. carinipennis Kaszab, 1975 from India.
   – Pronotum without keels; eyes very small, positioned near back of keel. ........ Tinosmithus Ardoi, 1974
   Monotypic: T. basilewskyi Ardoi, 1974 from South Africa.
25 Pronotum with keels. .......................................................................................... 26
   – Pronotum without keels. .................................................................................... 34
26 Pronotum with single central keel. .................................................. Caribanosis Nabozhenko et al., 2016
   Monotypic: C. quisqueyanus (Garrido & Varela, 2011) from Hispaniola.
   – Pronotum with two keels. ................................................................................ 27
27 Antennomere I as long as II and III combined. ........ Anethas Jakobson, 1924 (partim)
   Eleven species in Madagascar and South Africa.
   – Antennomere I not longer than II and III. .................................................. 28
28 Antennomere X larger than IX, XI very small positioned inside apex of X. ....... 29
   – Antennomere XI equal in size to IX, not positioned inside apex of X. .............. 30
29 Base of pronotum and apex of elytra with dense pads of yellow setae. .............
   .......................................................................................................................... Ecnomoderes Gebien, 1928
   Two species in Argentina.
   – Base of pronotum and apex of elytra without dense pads of yellow setae. ........ Grammycus Waterhouse, 1845
   Six species and subspecies in Chile and Peru.
30 Antennomere III equal to next four segments combined. .... Schizaraeus Kulzer, 1955
   Monotypic: S. acuticosta Kulzer, 1955 from Argentina.
   – Antennomere III not equal to next four segments combined. ....................... 31
31 Pronotum wider than long. .................................................................................. 32
   – Pronotum longer than wide. ............................................................................ Gebieniella Koch, 1940
   Four species and one subspecies in Myanmar, Thailand, Philippines, China (Hainan Is.), Vietnam, and Indonesia (Java).
   – Elytra with at least four partial or whole keels. ........................................... 33
33 Head with apex inflated and strongly grooved in middle. ... Ethas Pascoe, 1862 (partim)
   Eleven species in India, Indochina, and Sri Lanka.
   – Head with apex simple or slightly inflated, not strongly grooved in middle. .......... Tetranosis Medvedev, 1995
   Ten species in five subgenera in North India, Pakistan, Nepal, and China (Xizang).
34 Elytra with keels, head, pronotum rugose, with rounded elevations. ............. Perdicus Fairmaire, 1899
   Monotypic: P. anthropilus Fairmaire, 1899 from Madagascar.
Elytra usually without keels; head and pronotum not rugose, or with rounded elevations. ................................................................. 35

Prnotum and elytra with rounded elevations. ................................................................. 36

Prnotum and elytra without rounded elevations. ................................................................. 38

Head with apex inflated and grooved in middle. .......... *Ethas* Pascoe, 1862 (partim) 
Eleven species in India, Indochina, and Sri Lanka.

Head with apex simple or slightly inflated, not strongly grooved in middle. .......... 37

Head with anterior margin distinctly asymmetric, with left half slightly concave, right half slightly convex, with groove behind eyes; lower aspect of eyes truncated by lateral angulate expansion of genae behind eyes, reduced to few ocelli arranged in strip. ........

Stenosis subgen. *Burmanosis* Medvedev, 1995

Eleven species in India, Indochina, and Sri Lanka.

Head with anterior margin not asymmetric, without groove behind eyes, rounded; lower aspect of eyes not truncated by lateral angulate expansion of genae. ................................................................. *Anethas* Jakobson, 1924 (partim)

Anethas Jakobson, 1924 (partim)

Eleven species in Madagascar and South Africa.

Antennomere I as long as II and III combined; pronotum U-shaped with base round and apex truncate. ................................................................. *Itampolis* Koch, 1962


Antennomere I shorter than II and III combined; pronotum not U-shaped. ........ 40

Elytra at humeral base abruptly expanded forming angle at humerus; eyes not visible from above. ................................................................. *Tagenostola* Reitter, 1916

Four species in Transcaucasia, south of European part of Russia, Central Asia, North Africa, the Middle East, Laos, and Myanmar.

Elytra at humeral base gradually expanded, not forming angle at humerus; eyes visible from above. ................................................................. 40

Lower aspect of eyes truncated by lateral angulate expansion of genae, reduced to few ocelli arranged in strip. ................................................................. 41

Genae not expanded laterally behind eyes, not truncating lower aspect of eyes to a few ocelli arranged in a strip. ................................................................. 42

Apical antennomere (XI) almost always smaller than X. .......... *Stenosis* Herbst, 1799

Hundred-and-twenty-one species and subspecies in four other subgenera in Africa, Central Asia, Mediterranean.

Apical antennomere (XI) as wide, longer than X. .......... *Eutagenia* Reitter, 1886

Eleven species and subspecies in the Mediterranean area and Central Asia.

Head large, as broad as elytra, wider than pronotum. .......... *Mitotagenia* Reitter, 1916

Ten species and subspecies in Africa (Afrotropical Region), the Middle East and Afghanistan.

Head not as wide as elytra. ................................................................. 43

Pronotum broad with lateral apical angles produced, rounded. ................................................................. *Schusteriella* Koch, 1940

Monotypic: *S. ruicornis* (Reitter 1886) from Ethiopia.

Pronotum narrow, with lateral apical angles not produced, angulate. ................................................................. *Indostola* Medvedev, 1991

Two species in India and Thailand.
Table 2. Genera, type species and subtribal assignments of Stenosini.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Type Species</th>
<th>Fixed by</th>
<th>Subtribe</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Afghanillus</em></td>
<td><em>Afghanillus klapperichi</em></td>
<td>Kaszab, 1960</td>
<td>original</td>
<td>Dichillina see Kaszab (1960: Fig. 18; 1969b: pl. 6, Fig. 7)</td>
</tr>
<tr>
<td><em>Anethas</em></td>
<td><em>Pseudethas longiceps</em></td>
<td>Fairmaire, 1898</td>
<td>monotypy</td>
<td>Stenosina see Ferreira (1950, 1952); Koch (1962)</td>
</tr>
<tr>
<td><em>Araeoschizus</em></td>
<td><em>Araeoschizus costipennis</em></td>
<td>LeConte, 1851</td>
<td>monotypy</td>
<td>Araeoschizina see Papp (1981)</td>
</tr>
<tr>
<td><em>Aspidocephalus</em></td>
<td><em>Aspidocephalus desertus</em></td>
<td>Motschulsky, 1839</td>
<td>monotypy</td>
<td>Dichillina see Reitter (1916); Abdurakhmanov &amp; Nabozhenko (2011)</td>
</tr>
<tr>
<td><em>Caribanosis</em></td>
<td><em>Rhyapasma quisqueyanus</em></td>
<td>Garrido &amp; Varela, 2011</td>
<td>original</td>
<td>Stenosina see Nabozhenko et al. (2016)</td>
</tr>
<tr>
<td><em>Dichillus</em></td>
<td><em>Tagenia minuta</em></td>
<td>Solier, 1838</td>
<td>original</td>
<td>Dichillina see Reitter (1916); Kaszab (1960, 1969b, 1975, 1981); Fouque (2015: 240); Medvedev (1975, 1977, 2008); Medvedev &amp; Nepesova (1985); Abdurakhmanov &amp; Nabozhenko (2011)</td>
</tr>
<tr>
<td><em>Discopleurus</em></td>
<td><em>Pleurophorus quadricollis</em></td>
<td>Solier, 1851</td>
<td>monotypy</td>
<td>Dichillina see Aalbu &amp; Andrews (1996)</td>
</tr>
<tr>
<td><em>Ecnomoderes</em></td>
<td><em>Ecnomoderes barbatus</em></td>
<td>Gebien, 1928</td>
<td>subsequent</td>
<td>Stenosina see Gebien (1928: pl. II, Figs 2 &amp; 3)</td>
</tr>
<tr>
<td><em>Ethas</em></td>
<td><em>Ethas carbonarius</em></td>
<td>Pascoe, 1862</td>
<td>subsequent</td>
<td>Stenosina see Koch (1940: pl. XX, Fig. 1 &amp; 2); Kaszab (1981)</td>
</tr>
<tr>
<td><em>Eutagenia</em></td>
<td><em>Stenosis smyrnensis</em></td>
<td>Reitter, 1889 (= Eutagenis cribricollis Reitter, 1916)</td>
<td>subsequent</td>
<td>Stenosina see Reitter (1916); see internet for photo</td>
</tr>
<tr>
<td><em>Fitzsimonsium</em></td>
<td><em>Fitzsimonsia cymbium</em></td>
<td>Koch, 1955</td>
<td>original</td>
<td>Platamodina see Endrody-Younga (1996: Fig. 3D)</td>
</tr>
<tr>
<td><em>Gebieniella</em></td>
<td><em>Ethas stenosides</em></td>
<td>Pascoe, 1862</td>
<td>original</td>
<td>Stenosina see Koch (1940: pl. XIX, Fig. 5); Medvedev (2009)</td>
</tr>
<tr>
<td><em>Grammicus</em></td>
<td><em>Grammicus chilensis</em></td>
<td>Waterhouse, 1845</td>
<td>monotypy</td>
<td>Stenosina see Kaszab (1969a: p. 307, Figs 4 &amp; 5)</td>
</tr>
<tr>
<td><em>Harvengia</em></td>
<td><em>Harvengia vietnamita</em></td>
<td>Ferrer, 2004</td>
<td>original</td>
<td>Harvengina see Ferrer (2004: Figs 1 &amp; 2)</td>
</tr>
</tbody>
</table>

(continues on the next page)
<table>
<thead>
<tr>
<th>Genus</th>
<th>Type Species</th>
<th>Fixed by</th>
<th>Subtribe</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbertfranzia</td>
<td>Herbertfranzia nepalica Kaszab, 1973</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see Fouqué (2013: Fig. 11)</td>
</tr>
<tr>
<td>Herbertfranziella</td>
<td>Herbertfranzia eutagenoides Kaszab, 1973</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see Fouqué (2013)</td>
</tr>
<tr>
<td>Hexagonochilus</td>
<td>Hexagonochilus dilaticollis Solier, 1851</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see internet for photo</td>
</tr>
<tr>
<td>Indochillus</td>
<td>Indochillus cristatus Koch, 1941</td>
<td>monotypy</td>
<td>Dichillina</td>
<td>see Koch (1941: Fig. 3); Kaszab (1981: Figs 19–20); Fouqué (2015: Fig. 5)</td>
</tr>
<tr>
<td>Indostola</td>
<td>Indostola puchella Medvedev, 1991</td>
<td>original designation</td>
<td>Stenosina</td>
<td>see Fouqué (2015)</td>
</tr>
<tr>
<td>Itampolis</td>
<td>Itampolis oceanica Koch, 1962</td>
<td>original designation</td>
<td>Stenosina</td>
<td>see Koch (1962: Fig. 5).</td>
</tr>
<tr>
<td>Microlemma</td>
<td>Microlemma simplex Semenov, 1889</td>
<td>monotypy</td>
<td>Platamodina</td>
<td>see Reitter (1916); Kaszab (1960: pl. 2, Fig. 19); Medvedev (2008)</td>
</tr>
<tr>
<td>Microtelus</td>
<td>Microtelus asiaticus Solier, 1838</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see Carl (1992); Medvedev (2008)</td>
</tr>
<tr>
<td>Mitotagienia</td>
<td>Stenosis arabs Baudi di Selve, 1881</td>
<td>monotypy</td>
<td>Stenosina</td>
<td>see Ferriera (1950: Fig. 3; 1952)</td>
</tr>
<tr>
<td>Nepalofranziella</td>
<td>Nepalofranziella kaszabi Fouqué, 2013</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see Fouqué (2013)</td>
</tr>
<tr>
<td>Oogaster</td>
<td>Oogaster menetriesii Faldermann, 1837</td>
<td>monotypy</td>
<td>Dichillina</td>
<td>see Reitter (1916); Kaszab (1969b: pl. 6, Fig. 11); Abdurakhmanov &amp; Nabozhenko (2011)</td>
</tr>
<tr>
<td>Perdicus</td>
<td>Perdicus anthophilus Fairmaire, 1899</td>
<td>monotypy</td>
<td>Stenosina</td>
<td>see Koch (1943)</td>
</tr>
<tr>
<td>Platamodes</td>
<td>Platamodes dentipes Ménétris, 1849</td>
<td>monotypy</td>
<td>Platamodina</td>
<td>see Reitter (1916); Kaszab (1959: pl. 2, Fig. 20; 1969b: pl. 8)</td>
</tr>
<tr>
<td>Pseudethas</td>
<td>Pseudethas quadraticeps Fairmaire, 1896</td>
<td>monotypy</td>
<td>Dichillina</td>
<td>see Kaszab (1969b: pl. 5, Fig. 12); Fouqué (2008); Bä &amp; Ren (2014: Figs 7–12); Abdurakhmanov &amp; Nabozhenko (2011)</td>
</tr>
<tr>
<td>Pseudochillus</td>
<td>Indochillus bangaloreanus Kaszab, 1981</td>
<td>original designation</td>
<td>Dichillina</td>
<td>see Fouqué (2015: Figs 6–16)</td>
</tr>
</tbody>
</table>

(continues on the next page)
<table>
<thead>
<tr>
<th>Genus</th>
<th>Type Species</th>
<th>Fixed by</th>
<th>Subtribe</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Reitterella</em> Semenow, 1891: 362</td>
<td><em>Reitterella fusiformis</em> Semenow, 1891</td>
<td>monotypy</td>
<td>Dichillina</td>
<td>see Reitter (1916); see internet for photo</td>
</tr>
<tr>
<td><em>Renehouqueosis</em> gen. nov.</td>
<td><em>Renehouqueosis peruviensis</em> sp. nov.</td>
<td>present designation</td>
<td>Stenosina</td>
<td>present paper</td>
</tr>
<tr>
<td><em>Schizaraeus</em> Kulzer, 1955: 479</td>
<td><em>Schizaraeus acuticosta</em> Kulzer, 1955</td>
<td>original designation</td>
<td>Stenosina</td>
<td>see Kulzer (1955: Fig. 3)</td>
</tr>
<tr>
<td><em>Schusteriella</em> Koch, 1940: 746</td>
<td><em>Stenosis ruficornis</em> Reitter 1886</td>
<td>monotypy</td>
<td>Stenosina</td>
<td>see Koch (1940: pl. XX, Fig. 8; 1956: Fig. 4)</td>
</tr>
<tr>
<td><em>Stenoethas</em> Kaszab, 1975: 11</td>
<td><em>Stenoethas carinipennis</em> Kaszab, 1975</td>
<td>original designation</td>
<td>Stenosina</td>
<td>see Kaszab (1975: Fig. 3)</td>
</tr>
<tr>
<td><em>Stenosis</em> Herbst, 1799: 160</td>
<td><em>Stenosis angustata</em> Herbst, 1799 (= <em>Stenosis intermedia</em> Küster, 1848)</td>
<td>subsequent designation</td>
<td>Stenosina</td>
<td>see Reitter (1916); Antoine (1948, 1949); Koch (1940, 1941, 1956: Fig. 8); Kaszab (1979, 1980, 1981); Medvedev (1994, 2009)</td>
</tr>
<tr>
<td><em>Tagenostola</em> Reitter, 1916: 151</td>
<td><em>Stenosis turkestanica</em> Reitter, 1886</td>
<td>subsequent designation</td>
<td>Stenosina</td>
<td>see Koch (1956: Fig. 2); Fouqué (2015)</td>
</tr>
<tr>
<td><em>Tetranillus</em> Wasmann, 1899: 167</td>
<td><em>Tetranillus costatus</em> Wasmann, 1899</td>
<td>monotypy</td>
<td>Stenosina</td>
<td>see Koch (1940: pl. 19, Fig. 4); Ba &amp; Ren (2013: Fig. 1–6); Ren &amp; Shi (2006)</td>
</tr>
<tr>
<td><em>Tetranosis</em> Medvedev, 1994: 858*</td>
<td><em>Tetranosis clypeolobus</em> Koch, 1940</td>
<td>original designation</td>
<td>Stenosina</td>
<td>see Koch (1940: pl. XX, Figs 3 &amp; 4); Kaszab (1973: pl. 1, Figs 2 &amp; 3; 1975; 1981)</td>
</tr>
<tr>
<td><em>Timosmithus</em> Ardoin, 1974: 457</td>
<td><em>Timosmithus basilewskyi</em> Ardoin, 1974</td>
<td>monotypy</td>
<td>Stenosina</td>
<td>see Ardoin (1974: Fig. 1)</td>
</tr>
<tr>
<td><em>Typhlusechus</em> Linell, 1897: 154</td>
<td><em>Typhlusechus singularis</em> Linell, 1897</td>
<td>original designation</td>
<td>Typhlusechua</td>
<td>see Aalbu &amp; Andrews (1985)</td>
</tr>
</tbody>
</table>

* The genus name *Tetranosis* was first introduced by Koch (1940: 740). As pointed out by Löbl & Merkl (2003: 251) however Koch failed to designate a type species when he described his new genus. Medvedev (1994: 858) was the first author to provide a description of *Tetranosis* as well as fixing a type species for the genus, thereby making the name nomenclaturally available for the first time.
Acknowledgements

The authors are grateful to the late René Fouquè (Liberec, Czech Republic) for his valuable comments and publications over the years concerning Stenosini. Institutions lending specimens include the California Academy of Sciences, USA (David H. Kavanaugh). Nomenclatural information was provided by Yves Bousquet.

References


KOCH C. 1962: Analysis of the Madagascan components of the subfamily Tentyriinae (Tenebrionidae, Coleoptera) with revisions of the generic systematics of the Asidini from Africa south of the Sahara and the African, Asiatic
REITTER E. 1900: Bestimmungs-Tabelle der Tenebrioniden-Abteilungen: Tentyriini und Adelostomini aus Europa


