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ABSTRACT 

Gas Tungsten Arc butt welded joints of tubes of 7CrMoVTiB10-10 made using bainitic-martensitic P 24-IG 
filler metal were found to be susceptible to root cracking. This was avoided by using the CMS-IG filler metal 
and austenitic EPRI P87 filler metal. Detailed coefficient of thermal expansion analysis for both filler metals was 
performed. Unfortunately, CMS-IG filler metal is characterized by a lower creep rupture strength than P 24-IG. 
For this reason, the joints were produced by the 141 method with using two filler metals: P 24- IG and EPRI 
P87. All the welded joints was characterized by the B quality level. Macrostructural, microstructural and 
hardness data for both welded joints are presented. The standard requirement, < 350 HV10, was marginally not 
met and was achieved through post weld heat treatment. 
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INTRODUCTION 
 
 

7CrMoVTiB10-10 (T24) is a low-alloy steel, designed on the basis of ferritic  
10CrMo9-10 (T22) steel, developed to manufacture membrane walls of boilers in 
supercritical power plants. Its chemical composition is shown in Table 1.  

 
Table 1. Chemical compositions of relevant steels, mass fraction % 

Steel 10CrMo9-10 T22 7CrMoVTiB10-10 T24 

Standard EN 10216-2 ASTM 
A213 EN 10216-2 ASTM A213 

C 0.08-0.14 0.05-0.15 0.05-0.10 0.05-0.10 
Si 0.50 0.50 0.15-0.45 0.15-0.45 
Mn 0.30-0.70 0.30-0.60 0.30-0.70 0.30-0.70 
Cr 2.00-2.50 1.90-2.60 2.20-2.60 2.20-2.60 
Mo 0.90-1.10 0.87-1.13 0.90-1.10 0.90-1.10 
Ti - - 0.05-0.10 0.06-0.10 
V - - 0.20-0.30 0.20-0.30 
B - - 0.0015-0.0070 0.0015-0.0070 
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Heat treatment, defined in EN 10216-2 “Seamless steel tubes for pressure purposes. 
Technical delivery conditions. Non-alloy and alloy steel tubes with specified elevated 
temperature properties”, consists of normalizing and tempering at 750±20°C (NT) or 
quenching and tempering (QT) if the wall thickness is higher than 16 mm. These heat 
treatments result in a mixture of tempered bainitic-martensitic microstructure. T24 steel is 
characterized by good mechanical properties in delivery condition [1-3] and as-received [4-6].  

Modification of chemical composition, compared to the T22 steel, ensured good 
weldability [7-10], without pre-heat and post-weld heat treatments of thin-wall parts, i.e. 
below 10 mm [7]. Industrial practice showed that welded joints of T24 steel are low ductility 
[11-14] and susceptible to cracking [15-17], especially cracks in the root pass in butt welded 
joints of tubes or pipes [18-21]. Examples of such macro-cracks in the root pass are shown in 
Fig. 1a-c. The initiators of cracks are micro discontinuities in the crater (Fig. 1d), but, due to 
their small size, it is impossible to detect them with classical nondestructive testing methods. 

 
 

a) b) 

 
c) 

 
d) 

 

root pass surface fracture 

Fig. 1. End crater crack at the root pass in butt weld joint of T24 steel:  
a-c) macro-cracks, d) micro-crack (A) and in root pass at a depth below 0.15 mm [18-21] 

 
A possible solution, in a root pass, is the use of filler metal with a lower susceptibility to 

cracking, for example W CrMo2 Si, designated to 10CrMo9-10. Unfortunately, this material 
is characterized by a lower creep rupture strength than W ZCrMo2VTi/Nb, designated as 
7CrMoVTiB10-10. Other possible solutions are to use a more expensive nickel base filler 
metal (i.e. NiCr20Mn3Nb) with high plasticity and good creep rupture strength, or a new 
filler metal EPRI P87 with an austenitic microstructure. 
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MATERIALS AND EXPERIMENTAL PROCEDURES 
 

Weld metal from classic filler metal for 7CrMoVTiB10-10 steel, 10CrMo9-10 steel and 
nickel base filler metals were investigated by the dilatometry. Interpretation of dilatometric 
diagrams can assist studies of CCT diagrams [22-25], CHT diagrams [26-27] and CTE 
(coefficient of thermal expansion) [28]. In this investigation coefficients of thermal expansion 
of P 24-IG (designated to 7CrMoVTiB10-10 steel), CMS-IG (designated to 10CrMo9-10 
steel) and EPRI P87 weld metals were investigated. Specimens were taken from padding 
welds, where the filler metal was not mixed with the base material.  

Next, experiments were carried out on butt weld joints of tubes of 7CrMoVTiB10-10 
(T24) with these dimensions: outside diameter 48.3 mm and wall thickness 11.2 mm The 
joints were produced by the 141 method, in accord with the EN ISO 4063 “Welding and 
allied processes. Nomenclature of processes and reference numbers” standard, in two 
configurations, using two filler metals. Welding was performed in the horizontal position 
(PC) in accord with EN ISO 6947 “Welding and allied processes. Welding positions“ 
standard, characterized by the smallest amount of heat input. The welds were made with  
a direct current electrode negative at a speed of 100 mm/min, welding current of 120 A, and 
arc length of 3 mm. Gas shielding (argon) was kept in a flowing rate of 10 l/min. Scheme of 
weld joints preparation and welding technology configurations are shown in Fig. 2. Chemical 
compositions of EPRI P87 and P 24-IG filler metals are given in Table 2.  
 

 
 

Fig. 2. Scheme of weld joint and welding technology configurations 
 

Table 2. Chemical compositions of filler metals, mass fraction % 

Filler metal EPRI P87 (Metrode) P 24-IG (Böhler) 

Standards Lack of standard, material covered 
by U.S.Patent 7,562,807 

EN ISO 21952-A:2009 
W ZCrMo2VTi/Nb 

C 0.10 0.10 
Si 0.30 0.25 
Mn 1.50 0.55 
Cr 9.00 2.50 
Mo 2.00 1.00 
Nb 1.00 0.05 
V - 0.24 
Ni Balance - 
Fe 38.00 Balance 

 
After welding, non-destructive (visual) and destructive (macroscopic and microscopic 

examinations and hardness) tests were performed. Visual test was carried out in accordance 
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with EN ISO 17637 “Non-destructive testing of welds - Visual testing of fusion-welded 
joints” and macro- and microscopic examinations in accordance with EN ISO 17639 
“Destructive tests on welds in metallic materials - Macroscopic and microscopic examination 
of welds” standards. The macrostructure was examined on ground and Nital etched 
specimens. Preparation of specimens for microscopic examination consisted of grinding, 
polishing with Al2O3 and Nital etching. Additionally, a second specimen with EPRI P87 weld 
metal was electro-etched in 10% CrO3 solution. Hardness testing was performed on transverse 
sections of welded joints by the Vickers method with intender loading of 98.07 N, in 
accordance with EN ISO 9015-1 “Destructive tests on welds in metallic materials - Hardness 
testing - Part 1: Hardness test on arc welded joints” standard. Hardness was measured along 
two lines, approximately 2 mm from the face and root of specimen surface. Additionally, in 
the second specimen, hardness was measured in the mixed zone of EPRI P87 and P 24-IG 
weld metal. 
 

RESULTS 
 
Dilatometric diagrams of heating of samples of P 24-IG, EPRI P87 and CMS-IG weld 

metal are presented in Figs. 3-5 and the coefficient of thermal expansion in Fig. 6a, with the 
relative comparison to P 24-IG weld metal in Fig. 6b. It is seen that EPRI P87 weld metal has 
the lowest difference of coefficient of thermal expansion to P 24-IG weld metal.  

 

 
Fig. 3. Dilatometric diagram of heating, at a rate of 0.05°C/s, of P 24-IG weld metal specimens 

 

 
Fig. 4. Dilatometric diagram of heating, at a rate of 0.05°C/s, of EPRI P87 weld metal specimens 
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Fig. 5. Dilatometric diagram of heating, at a rate of 0.05°C/s, of CMS-IG weld metal specimens 

 
 

a) 

 
b) 

 
Fig. 6. Results of dilatometry tests: a) coefficients of thermal expansion of selected filler metals,  

b) relative comparison of coefficients of thermal expansion of selected filler metals to the P 24-IG weld metal 
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All the welded joints covered by the analysis complied with the requirements for the B 
quality level (highest level), in accordance with EN ISO 5817 “Welding - Fusion-welded 
joints in steel, nickel, titanium and their alloys (beam welding excluded) - Quality levels for 
imperfections”. Fig. 7 show the macrographs of the joints. The shape of a weld is correct and 
without any welding imperfections.  

 
a) b) 

  
Fig. 7. Macrostructure of joint welded by: a) P 24-IG filler metal b) EPRI P87 and P 24-IG filler metals, Nital 

etching 
 

a) b) 

  
c) d) 

  
e)  

 
Fig. 8. Microstructures of welded joints in T24 steel: a) base metal, b) intercritical HAZ, c) fine-grained HAZ,  

d) coarse-grained HAZ, e) P 24-IG weld metal. Nital etching 
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Microstructural examinations were performed in all zones of the welded joints. Fig. 8a is 
an light micrograph of the parent material – T24 steel. Presence of a mixture of tempered 
bainite and martensite structure is in accordance with the CTT diagram [2] and requirements 
of EN 10216-2 “Seamless steel tubes for pressure purposes - Technical delivery conditions - 
Part 2: Non-alloy and alloy steel tubes with specified elevated temperature properties”.  

Regular grain structure of cold deformed tubes indicates that the heat treatment before 
welding was carried out at a temperature above the recrystallization temperature. Fig. 8b 
shows a region of heat affected zone (HAZ), so-called intercritical HAZ (ICHAZ), which was 
heated while welding to the temperature corresponding to the A1-A3 range. In this range, the 
partial of mixture of prior bainite and martensite transform to austenite, which results in  
a mixture of tempered and “fresh” bainite-martensite microstructures.  

 
 

a) b) 

  
c) d) 

  
e)  

 
Fig. 9. Microstructures of welded joints in T24 steel: a) and b) EPRI P87 weld metal, c) mixed zone of EPRI P87 
and P 24-IG weld metal, d and e) the unmixed zone on the border of root pass (light) and parent material (dark 

region). Nital and CrO3 solution etching 
 

In fine grain HAZ (FGHAZ) a normalized microstructure was observed, while in the 
coarse-grained HAZ (CGHAZ) a mixture of bainite and martensite with coarse grain primary 
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austenite, as shown in Fig. 8c - d. The weld metal (WM), using P 24-IG filler metal, has  
a bainitic-martensitic microstructure with columnar grains (Fig. 8e).  

EPRI P87 weld metal has an austenitic microstructure with carbides on column 
boundaries (Figs. 9a-b). On the border of the root pass, made by EPRI P87, and second part of 
filling, mixed and unmixed zones (Fig. 9c) were observed. Probably the mixed zone, with 
dark etching, is composed of a martensitic structure. Fig. 9d and e show an unmixed zone on 
the border of the root pass and the parent material. Occurrence of an unmixed zone is due to 
the presence a stationary layer of liquid metal in the bottom of the weld pool. Local fluid flow 
is not strong enough for thorough mixing, but strong enough to move parts of the liquid base 
metal [29]. 
 

Hardness measurements of homogenous welded joint are show in Fig. 10, and of 
EPRI P87 and P 24-IG welded joints in Fig. 11. In both cases, hardness of the parent metal is 
170-230 HV10. In the homogenous welded joints hardness of HAZ and weld metal are in the 
range 280-360 HV10, similar hardness to these zones in face layers of the second weld joint. 
The maximum hardness of EPRI P87 weld metal is as high as 170 HV10. 

 

 
Fig. 10. Hardness results of a joint welded by P 24-IG filler metal 

 

 
Fig. 11. Hardness results of a joint welded by EPRI P87 and P 24-IG filler metals 

 
Qualification of welding procedure standard ISO 15614-1 “Specification and 

qualification of welding procedures for metallic materials - Welding procedure test - Part 1: 
Arc and gas welding of steels and arc welding of nickel and nickel alloys” for materials of 
group 6.2, acc. to ISO/TR 15608 “Welding - Guidelines for a metallic materials grouping 
system”, does not provide for weld joints without heat treatment. The maximum value of 
350 HV10, provided for weld joints after post-weld heat treatment, was marginally exceeded 
in both the welded joints. This could be possibly associated with the occurrence of cold 
cracking. Hardness measurements of welded joints, performed by P 24-IG filler metal, are 
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comparable with literature data [30-32], not from manufacturers of steel or filler metals. 
Additionally, mixed zones of P 24-IG and EPRI P87 filler metals are characterized by a high 
hardness level of 366±10 HV10. Post weld heat treatment 740°C/30 min results in maximum 
hardness of 250 HV10 in weld metal and HAZ, but as much as 6 h at 740°C is required to 
reduce the hardness to less than 350 HV10 in the mixed zone. 

 
 

SUMMARY 
 
 
Studies of microstructure of welded joints, performed by 141 method, showed a mixture 

of lower bainite and tempered martensite in the 7CrMoVTiB10-10 base metal. Each zone of 
heat affected zone is characterized by standard structures for bainitic-martensitic steels. 
ICHAZ has a tempered and “fresh” bainite-martensite microstructure, FGHAZ is 
characterized by a normalized microstructure and CGHAZ has a mixture of bainite and 
martensite with coarse-grained primary austenite. P 24-IG weld metal showed a bainitic-
martensitic microstructure, EPRI P87 weld metal has an austenitic microstructure with 
carbides on column boundaries. In joints welded with EPRI P87 and P 24-IG filler metals 
mixed and unmixed zones were observed. Hardness, without post weld heat treatment, was 
marginally above that required, 350 HV10, for welded joints after heat treatment. High 
hardness could be a cause of cold cracks. Post weld heat treatment 740°C/6 h reduced  
a hardness level of less than 350 HV10 in each zone of the welded joint. 
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