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Anthelmintics are some of  the most widely used drugs in veterinary medicine. Here 
we review the mechanism of  action of  these compounds on nematode parasites. 
Included are the older classes of  compounds; the benzimidazoles, cholinergic agonists 
and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, 
derquantel and tribendimidine.  In the absence of  vaccines for most parasite species, 
control of  nematode parasites will continue to rely on anthelmintic drugs. As a 
consequence, vigilance in detecting drug resistance in parasite populations is required. 
Since resistance development appears almost inevitable, there is a continued and 
pressing need to fully understand the mode of  action of  these compounds. It is also 
necessary to identify new drug targets and drugs for the continued effective control of  
nematode parasites.

Key words: anthelmintic, parasite, benzimidazoles, avermectins, cholinergic, 
emodepside, derquantel

INTRODUCTION

Anthelmintics are drugs that are used to treat infections caused by parasitic worms 
(helminths) [1]. There are three major groups of  helminths namely: nematodes 
(roundworms), trematodes (fl ukes) and cestodes (tapeworms). These groups of  
helminths are divided into two phyla; nematodes (roundworms) and platyhelminths 
(trematodes and cestodes) [2]. Anthelmintics either kill worms or cause their expulsion 
from the body, without causing any signifi cant damage to the host [3]. Although there 
is a high prevalence of  parasitic worms, the progress of  anthelmintic drug discovery 
and development by pharmaceutical companies has been slow over the years. One 
contributing factor is that the majority of  those suffering from helminth infections 
live in developing nations who lack the resources to support a profi table drug market 
[4]. Development of  new anthelmintics is limited by high costs and modest global 
markets for antiparasitic drugs and chemicals. The cost of  development of  a new 
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drug is estimated at US $400 million for livestock use, and more than US $800 
million for human use. The global market for antiparasitic drugs and chemicals 
are estimated at US $12 billion for plant pathogens, $11 billion for livestock and 
companion animals, and $0.5 for human health [5-8]. Many anthelmintic drugs used 
to treat humans were fi rst developed and marketed as veterinary drugs [9-11]. There 
are only a few classes of  anthelmintics including; benzimidazoles, imidazothiazoles, 
tetrahydopyrimidines, macrocyclic lactones, amino-acetonitrile derivatives, spiroindoles 
and cyclooctadepsipeptides. Here we review the mode of  action of  several classes of  
drug used to treat infections with parasitic nematodes.

Benzimidazoles (BZs)

Thiabendazole was the fi rst benzimidazole anthelmintic agent produced. Since the 
introduction of  thiabendazole in 1961, a number of  benzimidazoles with improved 
effi cacy and extended spectrum of  action have been developed [12]. These include 
mebendazole, albendazole and fl ubendazole (Figure 1). The initial mode of  action of  
benzimidazoles was thought to be inhibition of  various parasite metabolic enzymes 
including fumarate reductase and malate dehydrogenase [13,14]. However, it is now 
established that benzimidazoles selectively bind with high affi nity to parasite -tubulin 
and inhibit microtubule polymerization. This results in the destruction of  cell structure 
and consequent death of  the parasite [15].

Imidazothiazoles

Imidazothiazoles act as nicotinic acetylcholine receptor (nAChR) agonists. They bind 
to nAChRs on body wall muscles, causing spastic paralysis of  the worm, and hence, 
its expulsion from the host [16]. Tetramisole (Figure 2), an aminothiazol derivative, 
was the fi rst member of  this class of  anthelmintics, and constitutes a racemic mixture 
of  50% L- or S- and D- or R-isomers [17-19]. The L-isomer was later demonstrated 
to be more potent than the racemic mixture or the D-isomer [20,21]. Consequently, 
the D-isomer was removed from the racemic mixture and this led to the development 
of  the L-isomer as levamisole. The detailed mode of  action of  levamisole, the only 
existing drug in this class, has been carefully studied at the single-channel level in 
nematode body wall muscles [22-24]. Robertson and Martin [24], showed using the 

Figure 1. Chemical structures of  thiabendazole (A), mebendazole (B), albendazole (C) and 
fl ubendazole (D). From [12]. 
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patch-clamp technique that at the single-channel level in A. suum muscles, levamisole 
(1 – 90 M concentrations) causes activation of  cation-selective channels, in addition 
to voltage-sensitive open channel-block and desensitization. The mean open-times 
for single-channel currents activated by levamisole were 0.80 – 2.85 ms and the 
conductance levels were 19 – 46 pS, with a mean of  32.9  1.23 pS. This corresponded 
to the levamisole-sensitive, L-subtype nAChR with a channel conductance of  35 pS, as 
revealed by Qian et al. [22]. Robertson et al. [23], later revealed the presence of  a similar 
nAChR subtype in levamisole-sensitive O. dentatum muscle patches which was absent in 
the levamisole-resistant muscle patches. In subsequent oocyte expression studies, the 
reconstituted O. dentatum L-subtype nAChR (UNC-29, UNC-38, UNC-63 and ACR-8) 
was preferentially sensitive to levamisole and also had a single-channel conductance 
of  35 pS [25]. Levamisole not only causes spastic paralysis but it also stimulates egg-
laying in wild-type C. elegans [26].

Tetrahydropyrimidines

Tetrahydropyrimidines share a similar mode of  action to imidazothiazoles and 
are commonly grouped together as nicotinic agonists [27,28]. Examples of  this 
anthelmintic drug class include pyrantel, oxantel and morantel (Figure 3). Pyrantel is 
an imidazothiazole-derived tetrahydropyrimidine that was discovered in 1966 as an 
anthelmintic agent with broad spectrum activity against roundworms and hookworms 
in domestic animals [29,30]. Pyrantel however lacks activity against whipworms [31]. 
Studies on the mode of  action of  pyrantel at the single-channel level identifi ed the 
L-subtype nAChR in A. suum as also preferentially activated by pyrantel [32]. Pyrantel, 
like levamisole, also causes open channel-block [33]. Although not characterized at 
the single-channel level, the O. dentatum nAChR receptor subunits UNC-29, UNC-
38 and UNC-63 reconstitute a pyrantel/tribendimidine- but not levamisole-sensitive 
nAChR subtype in X. laevis oocytes [25]. The search for an agent with activity against 
whipworms led to the development of  oxantel, an m-oxyphenol derivative of  pyrantel 
[31]. Contrary to pyrantel, oxantel preferentially activates the N-subtype nAChRs in 
A. suum [34]. Oxantel, like levamisole and pyrantel, also causes open channel-block 
in A. suum [35]. Morantel is a methyl ester analog of  pyrantel which also targets the 
L-subtype nAChR in A. suum [36,37]. At the single-channel level, morantel causes the 
activation and block of  this receptor subtype [38]. Recently, morantel was shown to act 

Figure 2. Chemical structures of  R (+)-tetramisole (A) and S (-)-tetramisole (levamisole) (B). 
From [21].
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as an agonist of  the nAChR subtype comprising ACR-26/ACR-27 subunits from H. 
contortus or Parascaris equorum expressed in X. laevis oocytes [39]. In oocyte expression 
studies, morantel was seen to cause a non-competitive voltage-sensitive open channel 
block of  the newly characterized A. suum ACR-16 receptor [40].

Macrocyclic lactones (MLs)

Macrocyclic lactones (avermectins and milbemycins) are a group of  chemical 
compounds derived from soil microorganisms of  the genus Streptomyces [41-43]. MLs 
were introduced in the 1980s as antiparasitic agents with broad spectrum activity against 
nematodes and arthropods [44,45]. Examples of  commercially available avermectins 
are ivermectin, abamectin, doramectin and selamectin, while milbemycin oxime and 
moxidectin, are examples of  commercially available milbemycins (Figure 4). MLs are 
selective agonists of  glutamate-gated chloride channels (GluCls) which are present in 
neurons and pharyngeal muscles of  nematodes and arthropods, but absent in humans. 
ML activation of  GluCls inhibits movement and pharyngeal pumping [46,47]. In 
addition to GluCl effects, the avermectins also act as antagonists of  4-aminobutyric 
acid (GABA) and nicotinic receptors expressed on somatic muscle cells of  parasitic 
nematodes [48-50]. Ivermectin, the fi rst member of  the avermectins, although 
originally developed as a veterinary drug, was later approved for use in humans for 
the control of  onchocerciasis and lymphatic fi lariasis [9-11,51]. Also, ivermectin was 
shown to act as an irreversible agonist of  recombinant human glycine receptors at 
higher concentrations (>0.3 M), but at lower concentrations (30 nM), it acted as 
a positive allosteric modulator [52]. Ivermectin showed a similar positive allosteric 
modulation effect on the vertebrate neuronal 7 nicotinic acetycholine receptor [53].   

Figure 3. Chemical structures of  pyrantel (A), morantel (B) and oxantel (C). From [28]. 

Figure 4. Chemical structures of  ivermectin (A), abamectin (B), milbemycin D (C) and 
moxidectin (D). From [28].
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Amino-acetonitrile derivatives (AADs)

The AADs are a new class of  synthetic anthelmintics with broad spectrum activity 
against nematodes that are resistant to the benzimidazoles, imidazothiazoles and 
macrocyclic lactones [54-56]. Monepantel, also known as AAD 1556, is the fi rst 
member of  this class to be developed for the control of  a broad range of  parasitic 
nemtaodes in sheep (Figure 5) [56]. Genetic screens of  C. elegans identifi ed ACR-23, 
which belongs to the nematode-specifi c DEG-3 subfamily of  nAChRs, as the target 
of  AADs [55]. Further studies on the mode of  action of  the AADs have led to the 
confi rmation of  ACR-23 as the principal target for monepantel in C. elegans, as well as 
the identifi cation of  other DEG-3-like nAChR target genes; H. contortus monepantel-1 
(Hco-mptl-1, formerly Hc-acr-23), Hco-des-2, Hco-deg-3 and C. elegans acr-20 [57-60]. Baur 
et al., [57], also demonstrated that at low concentrations (<1 nM), monepantel acts as a 
positive allosteric modulator of  H. contortus MPTL-1 and C. elegans ACR-20 receptors, 
and at high concentrations (>0.1 M), it acts as a direct agonist of  these receptors. 
In a different study, monepantel by itself  did not activate H. contortus DEG-3/DES-2 
receptors expressed in X. laevis oocytes, but did cause a potentiation in the receptors’ 
current responses when co-applied with choline [61]. 

Spiroindoles

Derquantel (2-deoxy-paraherquamide or PNU-141962) is the fi rst semi-synthetic 
member of  this new class of  anthelmintics (Figure 6) [62,63]. Derquantel which is 
also the fi rst commercial member of  the spiroindoles, was introduced in 2010 for 
use in combination with the macrocyclic lactone, abamectin, under the trade name 
STARTECT®, for the control of  parasitic nematodes in sheep. Derquantel acts as 
an antagonist of  nAChRs to cause fl accid paralysis which results in the expulsion of  
parasites from the host [64]. The combination of  derquantel and abamectin has an 
excellent broad spectrum effi cacy against several parasitic nematodes in sheep, including 
those resistant to benzimidazoles, levamisole and macrocyclic lactones [63,65]. The 
effi cacy of  the derquantel and abamectin combination has also been shown in muscle 
contraction and electrophysiological studies on A. suum muscle fl aps. Derquantel or 
abamectin alone inhibited responses to acetylcholine, and the inhibition was greater 
when a combination of  derquantel and abamectin was used, producing a synergistic 
(greater than additive) effect [50]. Also, the derquantel and abamectin combination was 
shown to produce a greater inhibition of  acetylcholine- or pyantel-induced current 
responses from expressed pyrantel/tribendimidine O. dentatum receptors compared to 

Figure 5. Chemical structure of  monepantel. From [56].



Acta Veterinaria-Beograd 2017, 67 (2), 137-152

142

derquantel or abamectin alone [48]. The introduction of  combination anthelmintics 
provides a useful tool to increase anthelmintic drug effi cacy, overcome resistance to 
other anthelmintic classes and delay resistance development [66,67]. 

Cyclooctadepsipeptides

Cyclooctadepsipeptides were discovered in the early 1990s. In 1992, PF1022A, the 
parent compound, was isolated from the fungus, Mycelia sterilia, which grows on the 
leaves of  the plant, Camellia japonica [68]. PF1022A is made up of  four N-methyl-L-
leucine, two D-lactate and two D-phenyllactate residues that are arranged as a cyclic 
octadepsipeptide with an alternating L-D-L confi guration (Figure 7) [69]. Emodepside, 
formerly PF1022-221 and BAY 44-4400, is a semisynthetic derivative of  PF1022A, 
produced by attaching a morpholine ring at the para position of  the two D-phenyllactic 
acids [70]. This modifi cation resulted in improved pharmacokinetic properties. The 
anthelmintic potential of  PF1022A and emodepside has been reported in numerous 
in vitro and in vivo studies [71-76]. Interestingly, PF1022A and emodepside have a broad 
spectrum of  activity against several nematode species including those that are resistant 
to benzimidazoles, levamisole and ivermectin [77]. This indicated that the mode of  
action of  the cyclooctadepsipeptides is different and that this class of  anthelmintics 
possess ‘resistance-busting’ properties.

Studies on the mode of  action suggest that emodepside targets the calcium-activated 
potassium channel (SLO-1), there is also evidence for the involvement of  the 
latrophilin (LAT-1) receptor [78-80]. Mutagenesis screens in C. elegans revealed a lack 
of  sensitivity of  slo-1 null mutants to emodepside’s inhibitory effects on locomotion 

Figure 6. Chemical structure of  derquantel. From [63]. 

Figure 7. Chemical structures of  PF1022A (A) and emodepside (B). From [69].
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and feeding. Inhibition of  locomotion was achieved via the action of  emodepside 
on SLO-1 expressed in body wall muscles or neurons, whereas inhibition of  feeding 
was achieved via the action of  emodepside on SLO-1 expressed in neurons but not 
muscle [81]. RNAi studies implicated a role for LAT-1 in mediating emodepside’s 
inhibitory effect on pharyngeal pumping in the pharynx [81,82]. Guest et al. [81], 
showed C. elegans lat-1 null mutants had an estimated fi ve-fold reduction in sensitivity 
to emodepside. These studies suggest that the inhibitory effect of  emodepside on 
feeding is both SLO-1 and latrophilin-dependent. However, emodepside treatment 
inhibited locomotion in both wild type and lat-1:lat-2 null C. elegans, implying that the 
inhibitory effect of  emodepside on locomotion is latrophilin-independent [81]. The 
sensitivity of  nematode SLO-1 channels to calcium is different from that of  insects 
and humans [83].

Tribendimidine

Tribendimidine is a symmetrical diamidine derivative of  amidantel (Figure 8) [84]. 
It was developed in the mid 1980s by the National Institute of  Parasitic diseases in 
Shanghai, China, as a broad spectrum anthelmintic drug [85]. In 2004, tribendimidine 
was approved by the Chinese Food and Drug Administration for treatment of  helminth 
infections in humans [86]. It is the only new anthelmintic drug that has been approved 
for human use within the past 3 decades [87]. Tribendimidine has been shown in 
laboratory and clinical studies to have a broad spectrum of  activity against several 
nematode, trematode and cestode species [84,88-92] . The activity of  tribendimidine 
against 20 helminth parasites has been documented [93]. Earlier studies on the mode 
of  action of  tribendimidine in the nematode model C. elegans demonstrated that 
tribendimidine acts as an agonist of  the L-subtype nAChR in this species, similar to 
levamisole and pyrantel [94]. Parasitic nematodes however, show different nAChR 
subtype selectivity from C. elegans, and this varies across nematode species. Buxton et al. 
[25], showed in oocyte expression studies that tribendimidine, just like pyrantel, is more 
selective for the reconstituted pyrantel/tribendimidine nAChR subtype comprising 
of  UNC-29, UNC-38 and UNC-63 subunits from O. dentatum and had little or no 
effect on the levamisole-sensitive subtype. In A. suum, the action of  tribendimidine is 
pharmacologically similar to that of  bephenium rather than levamisole, leading to the 
conclusion that tribendimidine selectively acts on the bephenium-sensitive, B-nAChR 

Figure 8. Chemical structures of  amidantel (A) and tribendimidine (B). From [84].
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subtype, not the L-subtype nAChR in Ascaris [95]. Robertson et al. (2015), further 
showed tribendimidine to cause a more potent inhibition of  migration of  O. dentatum 
levamisole-resistant larvae (LEVR) than levamisole-sensitive larvae (SENS). Thus, 
confi rming their hypothesis that unlike in C. elegans, tribendimidine does not act on the 
L-subtype nAChR in parasitic nematodes.  

Anthelmintic resistance

In broad terms, anthelmintic resistance is referred to as the decline in the effi cacy 
of  an anthelmintic drug in a population of  parasites that were once susceptible 
to the drug. The repeated and improper use of  currently available anthelmintics 
has led to the development of  resistance in numerous veterinary parasite species 
worldwide, with increasing concerns that this may extend to human parasites [96-
98]. Since anthelmintics within each drug class act in a similar manner, resistance to 
one anthelmintic in a given drug class is likely to be accompanied by resistance to 
other anthelmintics of  that same class (side resistance). There is also the likelihood 
for the development of  cross resistance from anthelmintics of  one drug class to those 
of  another, if  the two drug classes share similar targets [99]. Hence, the widespread 
occurrence of  resistance across the majority of  anthelmintic drug classes (Table 1). 
Sadly, the onset of  anthelmintic resistance development can be rapid, thiabendazole 
resistance occurred 3 years after its introduction to the market [100].

Table 1. Anthelmintic resistance and mechanisms of  resistance to the major anthelmintic drug 
classes. Modifi ed from [101,107,108] . 

Anthelmintic class Host
Year of
initial 

approval

Year of  fi rst 
published report 

of  resistance

Potential mechanism
of  resistance

Benzimidazoles Mutations in β-tubulin;
Phe200Try, Phe167Try
or Glu198Ala

Thiabendazole Sheep 1961 1964

Horse 1962 1965

Imidothiazoles-tetrahydropyrimidines
Changes in nicotinic
acetylcholine receptorsLevamisole Sheep 1970 1979

Pyrantel Horse 1974 1996

Avermectin-mylbemicins

Reduced sensitivity of
GluCl/GABA receptors

Ivermectin Sheep 1981 1988

Horse 1983 2002

Moxidectin Sheep 1991 1995

Horse 1995 2003

Reports of  resistance to anthelmintics in various parts of  the world have been well-
documented [101-103]. In spite of  the numerous reports of  anthelmintic resistance, 
the mechanisms by which resistance occurs remain to be fully elucidated (Table 1). 
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Resistance mechanisms include: (i) mutation or deletion of  one or more amino acids 
in the target genes, (ii) reduction in the number of  receptors, (iii) decreased affi nity of  
receptors for drugs, and (iv) absence of  bioactivating enzymes [104-108]. Management 
practices can also delay or overcome anthelmintic resistance. Anthelmintic resistance 
can be delayed or overcome by: (i) identifying new drug targets with different 
pharmacological profi les from those of  existing drugs, (ii) introducing new 
anthelmintics with different modes of  action from those of  existing anthelmintics, (iii) 
combination therapy, with members of  the combination from different drug classes, 
(iv) rotating drugs with different modes of  action between dosing seasons, and (v) 
keeping some parasites in untreated refugia [109-111]. A detailed understanding of  
the biochemical and genetic basis of  anthelmintic action is therefore imperative as this 
will allow for the development of  sensitive assays for early detection, and hence more 
effi cient management of  anthelmintic resistance.

DISCUSSION

It is interesting to note, that with the exception of  the benzimidazoles, the majority 
of  antinematodal drugs act on ion channel proteins in the parasite. Given the number 
and diversity of  predicted channel types in the parasite, it would seem reasonable to 
focus on these proteins as new drug targets. The success of  the macrocyclic lactones 
led to a hiatus in new drug development to treat nematode infections. Fortunately, the 
arrival of  compounds such as emodepside and derquantel seems to indicate this hiatus 
is coming to an end. However, the well recognized phenomenon of  drug resistance 
remains a concern. Resistance can be slowed, for example by leaving a refugia of  
sensitive parasites or by using drug combinations with multiple mechanisms of  action. 
However, there remains a compelling need to discover new compounds with new 
modes of  action in timely manner. 
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KRATAK PRIKAZ NAČINA DELOVANJA   
ANTINEMATODALNIH LEKOVA

ABONGWA Melanie, MARTIN Richard J., ROBERTSON Alan P.

Anthelmintici su jedni od najčešće upotrebljavanih lekova u veterinarskoj medicini. 
U ovom radu su opisani mehanizmi delovanja nekih od ovih preparata na nematode. 
İspitivanjima su obuhvaćeni neki od starijih preparata: benzimidazoli, holinergični 
agonisti i makrociklični laktoni. Takođe, ispitivani su noviji preparati uključujući em-
odepside, derquantel i tribandimidin. U odsustvu vakcina, kontrola većine vrsta para-
zita nematoda, nastaviće da se obavlja primenom anthelmintika. Kao posledica, neo-
phodno je da se neprestano prati i uočava mogućnost stvaranja rezistentnih populacija 
parazita. Pošto je razvoj rezistencije skoro neizostavan, postoji stalna i jaka potreba da 
se u potpunosti razume način delovanja ovih preparata. Isto tako, neophodno je da se 
identifi kuju novi ciljevi lekova kao i novi lekovi, a sa ciljem stalne i efi kasne kontrole 
nematoda.

 


