Simulation of Pessimism Influence on Choice of Farming Strategy under Uncertainty

Yuri Merkuryev, Riga Technical University, Vladimir Bardachenko, Daugavpils University, Andrey Solomennikov, Daugavpils University

Abstract - Weather-related risks can substantially affect the crop volume depending on time and intensity of agricultural operations performed by the farmer. However, decisions under uncertainty are in some way also liable to another risk – that of excessively optimistic or pessimistic estimation of the decision maker. The paper presents results of optimistic and pessimistic farmer’s agricultural operations efficiency based on the analysis of the developed discrete-event stochastic simulation model. The aim of the model is to obtain quantitative estimation of optimistic and pessimistic farmer’s choice of agricultural operation strategy efficiency under fluctuation of weather conditions.

Keywords – farming strategy, uncertainty, crop, simulation, decision making, criterion

I. INTRODUCTION

Under the present global crisis media often uses expressions like ‘investors are pessimistic’ or ‘pessimistic’. The game of roulette where the number of red and black sectors which brings (in an unbiased situation) to an equal probability of scoring either colour, there are always some ‘optimists’ due to some reason believing that one of the colours appears more frequent. A classical example illustrating the difference in an optimist’s and a pessimist’s perceptions is the half-full glass of water paradigm; an optimist would describe the glass as being half-full whereas a pessimist would consider the glass half-empty. Taking into consideration dynamics of the process, in the eyes of a pessimist a glass is becoming empty whereas from the point of view of an optimist it is becoming full. Thus becomes obvious the difference in subjective estimation of the scope of probabilities of a certain event. The optimist tends to allocate a higher probability of favourable events, believing in stroke of good luck, unlike the pessimist who is more interested in securing his position rather than seeing additional gain.

Optimism and pessimism are important features of a person’s attitude towards uncertainty. The decision weight of an event, measured by the willingness to bet on this event, differs usually from the probability of the event. Tversky and Wakker [12] study the relationship between decision weights and attitudes towards risk and characterize the possibility and certainty effects. Wakker [13] defines optimism and pessimism in terms of decision weights. That article contains also a brief survey of the relevant experimental literature. Kilka and Weber [4] demonstrate how decision weights and subjective probabilistic beliefs can be distinguished in experiments.

Within the scope of the present paper, the variations of distribution of subjective probabilities of optimistic and pessimistic farming strategies will be assessed using the weight functions. Using weight functions allows a qualitative analysis of influence of the degree of pessimism or optimism on the choice of an optimal strategy under the risks of weather.

It may be considered that a pessimistic farmer assigns higher importance (weights) to values of the expected crop value lying below some c_{F_k} value, which shall be defined as the crop sensitivity threshold both for a pessimistic and an optimistic farmer.

Let the degree of attitude (pessimism vs optimism) be defined as a relation of weights of the weight function beyond the c_{F_k} threshold, whereas the weights will remain constant over the interval of $[0, c_{F_k}]$ as well as constant in the range of $[c_{F_k}, 1]$.

Two-dimensional histograms present a graphical representation of the frequency distribution of the selected variable of the crop in which the columns are drawn over the class intervals and the heights of the columns are proportional to the class frequencies (see Fig. 1).

![Fig. 1. Optimism and pessimism probability functions](image)

The influence of farmers attitude in terms of pessimistic or optimistic expectation of the crop formally represents that the initial distribution of possible crop values $H(Cr)$ is multiplied with the weight functions of attitude (degree of pessimism or optimism) $W(Cr)$. These weight functions are normalized so that the weights total one.

The function to consider is the step weight function defined by two parameters: the c_{F_k} (crop sensitivity threshold, in this study assumed $c_{F_k}=0.5=const$) and the value of the increment K (“degree of optimism”).
Fig. 1 portrays the probability functions obtained through integration of the respective weight functions. In the graph, the X-axis scale represents crop level expressed in relative units ranging from 0 to 1. The Y-axis defines subjective probability of obtaining respective crop level estimated by an ‘optimist’ and a ‘pessimist’ farmer with different K values (‘magnitude of optimism’) with cFk (‘crop sensitivity threshold’) being constant at cFk=0.5.

An ‘optimist’ farmer assigns smaller weights to lower crop values whereas the relative importance of the higher weights is higher for him, so the respective probability function lies below the 45-degree line. On the contrary, a ‘pessimist’ does not expect a high crop volume rather hoping for a somewhat average crop level, therefore his expectation curve lies above the 45-degree line meaning high importance for relatively low crop values. The break point is named cFk whereas the ratio of the tangents of the approximation line left of break point to the tangent right of the break point is referred to as K.

From here on we can describe the degree of optimism with two parameters. The first parameter is the location of the optimism point on the scale of crop value, we might refer to this as the “crop sensitivity threshold”. If this parameter lies around zero, it means that any crop value is taken with the same degree of optimism, whereas the closer this parameter lies to one, the farmer is optimistic only to the maximum crop. The second parameter of the degree of optimism is the “magnitude of optimism”, which is defined by the K value; the greater the K value, the more powerful is farmer’s reaction. Obviously, K=1 is the point of neutrality; there is neither pessimism nor optimism present. For K>1 range of values, the magnitude of optimism is proportionate to the K (the higher the K, the higher the optimism level). On the contrary, for K<1 range of values, the lower is the K value, the higher is the magnitude of pessimism.

The paper presents the results of optimistic and pessimistic decision makers’ agricultural operations efficiency based on the application and analysis of the developed discrete-event stochastic simulation model. The aim of the model is to obtain quantitative estimation of farmer’s choice of agricultural operation strategy efficiency under unanticipated fluctuation of weather conditions. According the model, farmer’s strategies are described by two main parameters: 1) agricultural operation start time and 2) intensity of the operation.

Should a crop model be realistic enough, such method can be used for the analysis of crop sensitivity to changes in nature parameters, and for choosing an optimal farming strategy. For the time being, however, such research has not been known to the authors of the present paper.

Recently there has been presented methodical approach for finding an optimal farming strategy under conditions of uncertainty [5, 6] which relies on the concept of agricultural functions [6, 7]. Agricultural function in its simple form stands for the dependence of crop volume on agricultural operation time. It reflects farming experience in cultivation of a specific crop under specific conditions [9].

Following this approach any deviation in weather conditions affecting the crop will be reflected in the space of parameters of agricultural function. This space has an essentially smaller number of variables, such as the parameters defining the function shape. The aggregate farming experience for various crops allows defining the typical agricultural function shape along a time scale, which is a trapezoid of unequal lateral sides and slightly oblique top which is mostly considered constant; this is the maximum efficiency area the farmer would be willing to achieve. It should be noted that the change of weather conditions might drastically affect duration of the highest efficiency area and its start time [1].

Thus, in the considered aggregated approach, the variety of randomly variable parameters of weather conditions is reflected as alteration of small number of essential function parameters. Such an approach allows quantitative estimation of influence of random fluctuations in functions’ basic parameters both on the average crop, and the histogram of crop distribution which gives essentially more information for decision-making when deciding for the best strategy [2, 3].

Therefore the present paper concentrates on the analysis of farmer’s decision-making when choosing the best-performing strategy under conditions of weather uncertainty.

The structure of the model for simulation runs of farmer strategy efficiency (meaning total harvest value of the area) is illustrated in Fig. 2.

II. BRIEF MODEL DESCRIPTION

The structure of the model graphically presented in Fig. 2 includes the following general sub-models and blocks:

- Sub-model of agricultural function AF, start time input block Taf, AF duration durAF input block and additional parameters Pa;
- Sub-model of farmer activity, operation intensity input block durFR, and farmer’s start time input block Ts;
- Convolution of agricultural function AF and farmer activity function FR, yielding the total crops from the given farmland plot;
- Random generators RGu of random values u1, u2, that deliver time uncertainty Taf of agricultural function start time Taf-U1min<=Taf<=Taf+U1max and randomly change duration of agricultural function durAF over value range durAF-U2min<=durAF<=durAF+U2max;
- Sub-model of farmer optimism with cFk and K parameters;
- Computation block H: calculation of values of histograms h of randomly distributed crop;
- Computation block W: calculation of weight functions W(cFk, K) weight values wt with the parameters of optimism cFk, K.
A. Agricultural trapezoidal function

Let us consider a trapezoidal function, relatively well describing most of the farming cultures. By changing the duration \(\text{dur1AF} \) of velocity of the front of agricultural function, we might affect the approach of the most favourable time for performing a specific operation. The duration \(\text{dur2AF} \) of the most favourable time span of performing the operation will be referred to as the duration of the agricultural function with start time \(\text{Taf} \) (see Fig. 3).

![Fig. 3. Typical agricultural trapezoidal function chosen for research, Taf=10](image)

First, three cases of uncertainty (or forecast errors) of agricultural operation start time for uniformly random distribution within intervals \(9<\text{Taf}<11 \), \(8<\text{Taf}<12 \) and \(7<\text{Taf}<13 \) are considered. The duration of the function remains unchanged: \(\text{AF duration} = 2 \) days.

![Fig. 4. Area of uncertainty of agricultural function at 9<\text{Taf}<11](image)

The area of uncertain values of agricultural trapezoidal function will be altered as intervals increase. The areas of uncertainty of the agricultural functions appear on Fig. 4 and Fig. 5 as shaded regions.

The area of the uncertainty of agricultural values at \(7<\text{Taf}<13 \) represents the shaded area from Fig. 4, expanded one day in both directions of x-axis.

![Fig. 5. Area of uncertainty of agricultural function at 8<\text{Taf}<12](image)
All of these agricultural functions have their maximum value of 1.

IV. METHODOLOGY OF RESEARCH

Uncertainty in agricultural function start time is modelled through time scale shifts of 1, 2, 3, etc. number of days. This shift however remains unknown to the farmer, and therefore the state of nature is modelled in this manner.

According to the conventional terminology, risks arise when probabilities of approach specific states of nature are known in advance. However, under circumstances when the probabilities of approach specific states of nature are unknown to the farmer, we have an uncertainty context.

Uncertainty of agricultural duration start time \(TAF\) is modelled as randomly distributed value \(u_l\) such as: \((-WTAF) \leq u_l \leq (WTAF)\). The beginning of agricultural function now is unified distributed within the flexible interval \((TAF-WTAF) \leq u_l \leq (TAF+WTAF)\). Thus, the higher value of \(WTAF\), the less definite is the beginning of agricultural function \(TAF\).

For instance, if \(TAF = 10\) and \(WTAF = +/-1\) day, the real start of AF might be equally expected at any moment of the time interval \(TAF \in [9, 11]\) with duration of 2 days with the average value of \(TAF = 10\). In case of \(TAF = 9\) and \(WTAF = +/-3\) days, the start of AF might eventually fall equally expected at any moment of \(TAF \in [6, 12]\) which is 6 days long.

The variables of simulation experiment comprise two groups of parameters: the first group is parameters of the states of nature \(TAF, WTAF, \) and \(wTAF\), where the notions stand for:

- \(TAF\) - agricultural function start time on the calendar scale
- \(WTAF\) - uncertainty of the date
- \(wTAF\) - variability of agrifunction duration

The second group includes farming strategy parameters \(Ts, durFR\) also determined in the calendar time units, where the notions stand for:

- \(Ts\) - operation calendar start time and
- \(durFR\) - duration of completing operation AF

V. CRITERIA AND CHOICE OF OPTIMAL STRATEGY

Decision criteria, or factors, are the specific measures that one uses to determine which alternative is the best choice. It is important to identify all the relevant factors to arrive at the most efficient solution. One should be careful about the number of factors as too many factors may make the decision process too cumbersome and inefficient. However, irrelevant factors have a way of exposing themselves pretty early in the process. They may not be truly measurable, or the information required may not be available [10].

Thus, the influence of farming strategies \(Xi\) (\(Tsi, durFRi\)) parameters on the average crop volume \(MCF\) calculated for weighted crop histograms (Fig. 2) with diverse combinations of parameters \((TAF, WTAF, wDAFI)\) states of nature \(S_j\) has been researched.

The higher the average value \(MCFij = MCF(Xi; S_j)\) the more efficient \(Xi\) strategy at the given state of nature \(S_j\). On conditions of probability risk \(P(S_j)>0\) the probabilities of states of nature \(j=1,..., Ns\) are known in advance. This information is used in order to pick the optimal strategy using probability-weighted criteria of efficiency. On uncertainty conditions we do not know anything on probability of either state of nature \(S_j\).

However, even on uncertainty conditions it might be assumed that if the probability of either state of nature is very low, such condition would not be considered as a state of nature \(S\). On contrary, should probabilities of other states of nature be high enough, these would be considered as a state of nature \(S\), since any analysis of hardly probable states would not be satisfactory even for a pessimistic farmer.

Consequently, even on conditions of complete uncertainty there is a probability proportion comprising variety of states of nature \(S\), namely, all states of nature are approximately equally probable at a rational level, i.e.,

\[
P(S_1) \sim P(S_2) \sim \ldots \sim P(S_j) \sim \ldots \sim P(SNs),
\]

\[
P(S_j)>0; j=1,...,Ns.
\]

Let us form the XS matrix, where rows \(Xi\) correspond to farmer strategies with specific combinations of parameters \((durFR, Ts)\) and columns \(S_j\) featuring states of nature with respective combinations of parameters \((wTAFi, wDAFi)\). Thus, if possible farmer strategy is arranged in the rows and parameters of the nature arranged in columns, the intersection of \(ith\) row and \(jth\) column will contain the average value of crop \(MCFij\), obtained through the application of \(ith\) strategy at \(jth\) state of nature.

Modelling included farmer strategies with agricultural operation durations \(durFR\) ranging 1 to 10 days with the step value of one day. The uncertainty of the beginning of agricultural operation \(Ts\) was modelled using normal probability distribution; \(Ts\) took values from \(7th\) to \(13th\) day of a month with one day increment. The states of nature were modelled through regular distribution within the boundaries of the parameters \(wTAF, wDAF\) for all the possible combinations of values \(wTAF=1,2,3,4,5;\) \(wDAF=0,1,2\). Thus, the dimension of the XS matrix is equal to 70\times15.

![Fig. 6. 2D contour graph of XS matrix](image)

Thus, for the range of values of the “magnitude of optimism” parameter we have a standard initial matrix ready for application of some techniques of decision-making theory and the theory of operations research. A part of the resulting
matrix is presented in a contour graph in Fig. 6. The shaded shapes mean greater crop values. Farming strategies are plotted along the X-axis while Y-axis reflects states of nature. The Z-scale corresponds to the average crop values plotted along the X-axis while Y-axis reflects states of nature. Shapes mean greater crop values. Farming strategies are presented in a contour graph in Fig. 6. The shaded probabilities of states of nature which are assumed being equal on the XS strategy-state of nature matrix and explicitly uses for the lack of empirical knowledge on real distribution of probabilities of states of nature, assumptions basing on the principle of the insufficient reason.

The optimisation algorithm might be formalised as follows:

1. Assign the constant probability $P(S_j)=1/\text{Ns}$ for each state of nature S_j in S, for $j=1,...,\text{Ns}$.

2. For each ith row of matrix MCFij, it is necessary to calculate the efficiency measure of ith strategy for all states of nature $E(X_i)=\sum P(S_j) \cdot \text{MCFij}$.

3. Choose an action yielding the maximum $E(X_i)$, i.e., choose strategy Kopt, for which $\text{maxi} E(X_i)$.

It would be worthwhile to consider strengths and weaknesses of the Laplace criterion. By assuming uniform distribution of states of nature S, under this criterion it is assumed that all the elements MCFij of the strategy-state of nature matrix XS have equal weights of $1/\text{Ns}$.

There is a chance for improper use of the Laplace criterion which lies in the fact that the states of nature are not equally probable in most cases.

The weaknesses of the principle of insufficient reason lies in an implicit assumption that all decision makers who had not assigned a probability distribution to S had not done so because there is no reason to assume states of nature equally probable. However, in the real world human eventually deviate from the idealised decision maker: in a practical real world situation they will be unable to quantitatively estimate probabilities. Fig. 8 illustrates the change of parameters of optimal farming strategies as per the Laplace criterion with growing values of ‘magnitude of optimism’ K from $\text{Kmin}=1/16$ to $\text{Kmax}=16$.

As it might be inferred from the Fig. 8b, farmer’s pessimism results in a blurred and prolonged area of the high values of the criterion (upper contour pane at $K=0.0625$). For $K=0.0625$ the contour area at 5% error level (of criterion’s maximum value) embraces ten strategies. This area also includes the maximum value of the criterion at $K=0.25$ which is marked by a circle in the middle contour graph. The higher the ‘magnitude of optimism’ value, the more concentrated becomes the area of efficient solutions (at $K=16$). Therefore, an ‘extreme’ optimist has less winning strategies than a ‘moderate’ optimist.

In accordance with the criterion, we might conclude that at 5% error level a pessimist’s choice problem is more complicated one than that of an optimist, which indeed resembles real-life setting.

As the level of pessimism increases, the Laplace criterion tends to result in decreasing operation start time and its duration. Thus, for a pessimistic decision-maker the criterion proposes operation start on the 14th day whereas the realistic scenario requires start to occur on the 10th day. This implies that a pessimistic farmer is suggested a 4-day delay and stretching of operation time to 8 days compared both to the

Fig. 8a. Nine best-performing strategies with ‘magnitude of optimism’ ranging from $\text{Kmin}=1/16$ to $\text{Kmax}=16$ considered optimal in accordance with the Laplace criterion.
realistic and the optimistic decision-makers who are suggested not to spend more than one day on carrying out the operation.

Due to the decision-maker’s inability to assess the probabilities, all states of nature are assumed equally probable. Thus, absence or ignorance of the reasons is enough to assume equal distribution of states of nature probabilities weighted in accordance with the chosen parameters of degree of optimism or pessimism, \(cFk = 0.5 = \text{constant}, K = \text{variable} \).

Let us consider different farmers’ expectations. An overly optimistic would be the maximax criterion when one expects a good situation and the obtained crop will be the highest. The maximax rule recommends to accept such a strategy, for which the condition \(\max [\max (MCF_{ij})] \) holds. Obviously, the maximax strategy is the most efficient at two equally probable states of nature, and as the number of states grows its average efficiency drops in direct proportion to the number of states of nature.

The maximax criterion completely ignores the subjective attitude proposing the same recommendation, namely to delimit the duration of agricultural operation with two days \(\text{durFR} <= 2 \) and start performing it at any day \(T_s \) starting with the 8th till 13th day of the month. Therefore, the area of maximum criterion values at any values of ‘magnitude of optimism’ is delimited only to farming strategies \(T_s = 8-13, \text{durFR} = 1,2 \) as it follows from Fig. 9a and Fig. 9b.

B. Optimal choice algorithm: Wald criterion

The Wald (or maximin) criterion, which might be considered as a criterion of an extreme degree of pessimism would be the next criterion to consider. According to the Wald criterion, the least risky strategy is chosen. Technically, this means that the farmer cannot end up in a situation worse than the one chosen as per the Wald criterion. This fundamental property of the criterion makes it attractive for cautious decision makers and is applied in situations allowing zero riskiness. However, in practical situations excessive pessimism of the criterion might appear unprofitable.

The step sequence for the Wald criterion-based optimisation would be as follows:

1) For each strategy (rows in strategy-state of nature XS matrix) determine the minimum possible crop value. This represents the worst possible outcome for the given strategy. Should this strategy be pursued, no worse result at any state of nature would be possible.

2) The crop volume for the given strategy will not lie below the minimum possible. The highest crop has to be chosen from among low-yield outcomes for each of the farming strategies. In order to arrive at such a
solution one additional column is needed, the one that would contain the minimum values across rows. The maximum element in this column would represent the required solution.

The maximin/Wald criterion cannot be considered a rational approach for many cases as it ignores most of the information available in the strategy-state of nature matrix. The solution is searched only among cells of XS matrix that have extreme values. Information contained in other cells of XS matrix is absolutely ignored.

\[H_r(X_i) = a \times \text{maximum of "i" row} + (1 - a) \times \text{minimum of "i" row}. \]

Introducing the weight of \(a \) in this context means that a complete maximax optimism of maximax (\(a=1 \)) is replaced by an altered optimism level decreased through the optimism coefficient \(a \), with a belonging to the interval of \(0 \leq a \leq 1 \). Thus, for \(a=1 \), there is complete optimism prevailing (turning to maximax), whereas \(a=0 \) would result in a risk-averse maximin. Under these notions, risk-averseness degree of the decision-maker would be expressed as \(1 - a \). Now, the weighted average of \(H \) for each strategy \(X_i \) might be calculated. A critical analysis of the Hurwicz criterion reveals that the choice of \(a \) has no sufficient logic argument. Besides that, the optimal strategy is searched only across extreme elements of the XS matrix, and information contained in other cells of the XS matrix is not considered.

Assumed no specific preferences (i.e. \(K=1 \)), the maximin criterion yields lower estimates: the beginning of the operations should be shifted to \(Ts=12^{th} \) day and decrease its duration to \(durFR=4 \) days. As the ‘magnitude of optimism’ increases, the criterion reverts to the pessimism solution, suggesting decreasing the estimates by one day for a pessimistic farmer. Basing on the optimist’s preferences it is recommended to start the operation on 13\(^{th} \) day, i.e. one day later than for an ‘extreme’ pessimist. It is also suggested that the duration of agricultural operations is decreased one day compared to the ‘extreme’ pessimist’s case.

From the contour graphs on Fig. 10b it can be noted that the maximum values of the criterion lie along the cone-shaped areas. Variations in ‘magnitude of optimism’ leads to shifts of local extreme located on the diagonal cone-sized areas in Fig. 10b. Such behaviour of the criterion surface causes the effect of non-monotonous sensitivity to the maximum values of criterion towards variations in the ‘magnitude of optimism’.

Fig. 10a and Fig. 10b reflect the specific reaction of criterion towards realism with minimal reaction toward the decision-maker’s optimism or pessimism.

C. Optimal choice algorithm: Hurwicz criterion

The Hurwicz criterion is trying to arrive at a rational compromise between the two above mentioned criteria of extreme optimism and pessimism. Instead of taking either side, the Hurwicz criterion assigns certain weight to the optimism/pessimism expectations. The calculable expression reads as follows:

\[H_r(X_i) = a \times \text{maximum of "i" row} + (1 - a) \times \text{minimum of "i" row}. \]

Fig. 10b. Wald criterion contour graphs for three values of ‘magnitude of optimism’ \(K \). The maximum criterion values are marked with circles.

Assumed no specific preferences (i.e. \(K=1 \)), the maximin criterion yields lower estimates: the beginning of the operations should be shifted to \(Ts=12^{th} \) day and decrease its duration to \(durFR=4 \) days. As the ‘magnitude of optimism’ increases, the criterion reverts to the pessimism solution, suggesting decreasing the estimates by one day for a pessimistic farmer. Basing on the optimist’s preferences it is recommended to start the operation on 13\(^{th} \) day, i.e. one day later than for an ‘extreme’ pessimist. It is also suggested that the duration of agricultural operations is decreased one day compared to the ‘extreme’ pessimist’s case.

From the contour graphs on Fig. 10b it can be noted that the maximum values of the criterion lie along the cone-shaped areas. Variations in ‘magnitude of optimism’ leads to shifts of local extreme located on the diagonal cone-sized areas in Fig. 10b. Such behaviour of the criterion surface causes the effect of non-monotonous sensitivity to the maximum values of criterion towards variations in the ‘magnitude of optimism’.

Fig. 10a and Fig. 10b reflect the specific reaction of criterion towards realism with minimal reaction toward the decision-maker’s optimism or pessimism.
Therefore, here we will present calculation results at \(a=0.5\), whereas other a values could be of interest and represent area for future research.

Both for pessimistic and optimistic decision-makers Hurwicz criterion (\(a=0.5\)) recommends one single strategy of one day’s duration starting on 10th day.

However, for optimists such a criterion adds one more optimal strategy with the parameters of \(Ts=11, \text{durFR}=2\) whereas the pessimist has the choice of only one strategy of \(Ts=10, \text{durFR}=1\).

D. Optimal choice algorithm: Savage criterion

The Savage criterion yields results such as to minimize possible regrets arising from making a non-optimal decision. Strictly speaking, a regret is a subjective emotional condition, whose proper estimation is a rather problematic issue [10]. Nevertheless, it is possible to assume that regret is measurable for all the elements of the strategy-state of nature matrix.

The regret \(R_{ij}\) is defined as a possible loss of a part of a crop when \(Xi\) strategy is chosen at a \(Sj\) state of nature. Possible loss is a deviation between the highest crop attainable in a state of nature \(Sj\) and the actual result following from choosing the \(Xi\) strategy.

This can be formalised as follows: \(R_{ij} = \text{MCF}_{ij} - (\text{maximum} \text{ } j\text{-th column of XS matrix})\), where \(R_{ij}\) - regret for row \(i\) and column \(j\) of regrets matrix \(R = \{R_{ij}\}\).

It should be noted that losses of opportunities are defined as negative numbers. The best outcome would be zero (absence of regrets), and the higher the absolute value of \(R_{ij}\), the higher is total regret.

A closer look at the Savage criterion reveals that regret linearly depends on the magnitude of the possible loss, whereas it is not the only one and not always a possible way of assessing regret. Nevertheless, the Savage criterion is considered to be a better criterion compared to maximax, maximin or, probably, Hurwicz since the Savage criterion relies on more information among available on the problem. However, the Savage criterion is not able to take advantage of all the available information and it does not provide the ultimate solution to the problem of choosing the best farming strategy.

At \(K=16\) the surface of the criterion is very similar to the one of the maximax criterion. As the ‘magnitude of optimism’ diminishes, the area of maximum values increases and grows in the direction of the increasing values of agricultural operation duration \(\text{durFR}\). For a pessimist with \(K=1/16\) the criterion allows a choice of strategies of operation durations of even 8 days and its start \(Ts\) from day 12 to day 14. Such criterion results allow additional strategies for the pessimists, which are, however, inefficient from the point of view of the ‘realists’.
E. Optimal choice algorithm: Hodges-Lehmann criterion

Under uncertainty, the Hodges-Lehmann criterion formally represents a combination of Laplace and Wald’s maximin with the weighted h parameter. At $h=0$ the Hodges-Lehmann criterion results in the solution according to Wald’s rule and at $h=1$ the criterion switches to the Laplace’s rule [11]. There will be presented results only for $h=0.5$, however other combinations might present interest for further research. The maximum value of the Hodges-Lehmann criterion corresponds to the farming strategies considered optimal as per the given criterion.

$$H(X_i) = h^* \frac{\sum j MCF_{ij}}{Ns} + (1-h)^* \min_j MCF_{ij},$$

(4)

where MCF_{ij} stands for the crop obtained through the application of ith strategy at jth state of nature.

F. Optimal choice algorithm: maximed criterion

According to the maximed criterion the values of the median of each strategy for the states of nature are weighted with the coefficient m whereas the values of the deviation of the median are weighted with the coefficient of $(1-m)$. The strategies with the maximum values of this composite criterion are considered optimal:

$$\text{maximed}(X_i) = m^* \text{median}(MCF_{ij}) + (1-m)^* \text{medianDeviation}(MCF_{ij})$$

(5)

In Fig. 14a and 14b we consider only results for $m=0.5$, whereas application of other values of the m parameter represents potential for future research.
VI. DISCUSSION AND CONCLUSIONS

The paper presents a simulation-based methodology of quantitative estimation and choice of optimal farming strategy on conditions of nature uncertainty. Uncertainty of nature states is modelled as alterations in values of respective parameters of the trapezoidal agricultural function. In the context of the research, a farming strategy is defined by two major parameters, namely, the time to start performing agricultural operation and its duration. In the current paper, the average crop values are presented in the form of a farming strategies-state of nature matrix which had undergone application of several methods of decision-making theory.

Some sets of optimal farming strategies have been assessed using various optimality criteria. The resulting sets of optimal farming strategies based on the maximax, Laplace, Wald, Hurwicz, Savage, Hodges-Lehmann, and maximed criteria are compared in the present paper.

Influence of pessimism on the choice of strategy is various for different criteria. Relying on the examples above, one may also discuss the results of the criteria considered using the farmer’s strategy under weather uncertainty. The most sensitive to pessimism are the Laplace, Hodges-Lehmann and maximed criteria followed by Wald and Savage criteria. Less sensitive to pessimism could be considered the maximax and Hurwicz criteria. Influence of pessimism results in notable discrepancies between the strategies compared to the choice of ‘realists’.

Hurwicz criterion has only one strategy to offer equally suitable for the three groups of decision-makers (‘optimists’, ‘pessimists’, ‘realists’), and one more strategy suitable for ‘realists’ and ‘optimists’. Among the criteria considered it is the Hurwicz criterion which has the best indicators of indifference toward farmers’ preferences and acts as the most objective and specific criterion in the research. The optimistic and realistic decision-makers for the majority of the considered criteria choose the same strategies and only Hurwicz criterion portrays a difference between the ‘optimist’s’ and ‘realist’s’ choice.

Unfortunately, the results of the research are limited by the specificity of the model and the form of the agricultural functions as well as modelling uncertainty nature through random distribution of parameters.

Measuring the pessimism or optimism degree of the decision maker can also be approximated by an S-shaped probability function or linear approximation by a parallel line to the straight line featured in Fig. 1 [8, 9]. At the time of writing this work no research on decision-maker’s subjective attitude influencing crop estimation was known to the authors. The present work aims at filling this gap. Let us note that the methodology illustrated above could possibly be applied in economic research for estimation of middle-term and long-term investment projects [12].

The present work illustrated the sensitivity of criteria to specific disturbance of the initial data. Interpretation of such disturbance as ‘magnitude’ of optimism of the decision-makers is conditioned by the specific crop model. Earlier, an analysis attempt of criteria sensitivity was undertaken in [13].

Concerning limitations of the present work, it may be argued if a farmer can numerically evaluate and compare a tremendous amount of histograms necessary for a complete crop analysis. The methodology presented above should be perceived as a conceptual approach to such type of problems. Should the optimism degree of the decision-maker remain unchanged while evaluating each histogram, it appears worthwhile to model such behaviour for a larger set of statistical data.

ACKNOWLEDGMENTS

The presented research was supported by the Latvian Council of Science within the project "Agricultural risk and crises management systems in Latvia".

REFERENCES

являются рассмотреваемых разработанной критерии Hurvica, Laplasa, maksimaksa, maksimeda, Sevidža un Hodžesa-L. DOI: 10.2478/v10143-010-0038-2

Yuri Merkurjev is professor, head of the department of Modelling and Simulation of Riga Technical University. He earned Dr.sc.ing. degree in 1984 in systems identification, and Dr.habil.sc.ing. degree in 1997 in systems simulation, both from Riga Technical University, Latvia. His professional interests include methodology of discrete-event simulation, supply chain simulation and management, as well as education in the areas of simulation and logistics management. Prof. Merkurjev is a corresponding member of the Latvian Academy of Sciences, president of Latvian Simulation Society, Board member of the Federation of European Simulation Societies (EUROSIM), senior member of the Society for Modeling and Simulation International (SCS), and Chartered Fellow of British Computer Society.

Vladimir Bardachenko earned the Dr.sc.ing. degree in 1975 in Systems Identification from Riga Technical University, Latvia. He has research experiences in simulation modelling and signal processing. Currently Dr. Bardachenko performs research on ecology of water areas at the Institute of Ecology of Daugavpils University. He is a member of the Society for Modeling and Simulation International (SCS).

Andrey Solomennikov gained his doctoral degree in Logistics and Telematics in 2007 from Transport and Telecommunication Institute (Riga, Latvia). His research areas include simulation modelling of container terminals, multi-modal transportation systems, as well as ecological systems. Currently Dr. Solomennikov is Research Fellow at the Institute of Ecology of Daugavpils University.

Juris Merkurjevs, Vladimirs Barđačenko, Andrejs Solomennikovs. Pesimisma ietekmes uz lauksaimniecibas stratēģijas izvēlēšanas modelēšanas nenotiekābas apstākļos

Juris Merkurjevs, Vladimir Barđačenko, Andrejs Solomennikovs. Pesimisma ietekmes uz lauksaimniecibas stratēģijas izvēlēšanas modelēšanas nenotiekābas apstākļos

Юрий Меркурьев, Владимир Бардаченко, Андрей Соломенников. Имитационное моделирование влияния пессимизма фермера на выбор стратегии в условиях неопределённости

Риски погоды могут оказывать существенное влияние на урожай в зависимости от времени и интенсивности проведения фермером необходимых агроопераций. Однако, принятие решений в условиях неопределенности так или иначе подвержено еще одному риску - риску чрезмерного оптимизма или пессимизма фермера, принимающего решение. Данная статья представляет результаты анализа эффективности проведения агрооперации фермером с помощью ряда используемых в теории принятия решений критериев оптимальности, основываясь при этом на использовании разработанной авторами дискретной стохастической имитационной модели. Целью создания модели является получение количественной оценки эффективности проведения агроопераций оптимистическим и пессимистическим фермером при колебаниях погодных условий. В качестве рассматриваемых критериев оптимальности принимаемых решений используются критерии Вальда, Гурвица, Лапласа, максимакса, максимеда, Сенвика и Ходжеса-Лемана. Как показали результаты проведенных численных экспериментов, наиболее чувствительными к характеру фермера являются критерии Лапласа, максимакса и Ходжеса-Лемана, за которыми следуют критерии Вальда и Сенвика, а наиболее чувствительными – критерии Гурвица и максимакса. При этом именно критерий Гурвица представляется в данном случае в качестве наиболее объективного критерия оптимальности.