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Abstract – The achievement of high-precision segmentation in 

medical image analysis has been an active direction of research 

over the past decade. Significant success in medical imaging tasks 

has been feasible due to the employment of deep learning methods, 

including convolutional neural networks (CNNs). Convolutional 

architectures have been mostly applied to homogeneous medical 

datasets with separate organs. Nevertheless, the segmentation of 

volumetric medical images of several organs remains an open 

question. In this paper, we investigate fully convolutional neural 

networks (FCNs) and propose a modified 3D U-Net architecture 

devoted to the processing of computed tomography (CT) 

volumetric images in the automatic semantic segmentation tasks. 

To benchmark the architecture, we utilised the differentiable 

Sørensen-Dice similarity coefficient (SDSC) as a validation metric 

and optimised it on the training data by minimising the loss 

function. Our hand-crafted architecture was trained and tested on 

the manually compiled dataset of CT scans. The improved 3D U-

Net architecture achieved the average SDSC score of 84.8 % on 

testing subset among multiple abdominal organs. We also 

compared our architecture with recognised state-of-the-art results 

and demonstrated that 3D U-Net based architectures could 

achieve competitive performance and efficiency in the multi-organ 

segmentation task. 

 

Keywords – Computed tomography volumetric images, fully 

convolutional neural networks, medical image analysis, multi-

organ segmentation, Sørensen-Dice similarity coefficient. 

I. INTRODUCTION 

Automated segmentation of medical images is a complex 

task due to substantial changes in the shape and size of anatomy 

among patients. Additionally, low contrast with surrounding 

tissues can complicate automated segmentation. Recent 

advances in this area have been mainly related to the use of deep 

learning methods [1], which allow for the configuration of 

effective models directly from the visualised data. Notably, the 

creation and practical implementation of convolutional neural 

networks (CNNs) [2] and their improvement to fully 

convolutional neural networks (FCNs) [3] have refined the 

semantic segmentation of both flat and volumetric images. In 

this paper, we investigate an application of three-dimensional 

FCNs (3D FCNs) that can provide multi-organ segmentation of 
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volumetric medical images with high accuracy and 

computational efficiency. 

A. Convolutional Neural Networks 

The recent breakthroughs in computer visions relate 

primarily to the practical use of CNNs on graphics processing 

devices (GPUs). GPU acceleration has crucially sped up the 

matrix calculation, allowing for the training of multi-structural 

models for a shorter period on enormous datasets. CNNs have 

been commonly utilised in the segmentation and classification 

tasks owing to their efficient hierarchical feature representation 

of images based on a data-driven manner [4]. Attributes suitable 

for classification are extracted from images obtained only from 

the supervisory signal that determines the desired classification 

output. This technique, called “supervised learning”, has 

enhanced biomedical and radiological visualisation [5], and 

significantly refined leading-edge approaches in medical image 

analysis [6]. 

Figure 1 illustrates an example of CNN architecture that 

generates prediction of the input image for a multi-level 

classification. Over the past few years, CNNs have shown 

exponential results in medical imaging tasks. Several examples 

of their prosperous implementation in radiology are the 

detection of pulmonary embolisms [7], the discovery of gastric 

cancer in endoscopic images [8], medical image registration [9], 

classification of human anatomy [10], nucleus segmentation 

[11], the reduction of false positives by unique morphological 

features for computer-aided polyp detection [12], and many 

others. 

B. Fully Convolutional Neural Networks 

Despite the essential advances of CNNs in computer vision 

tasks, they contain structural flaws that limit their use. One of 

the most remarkable drawbacks of these networks is the loss of 

spatial information of the input image when the convolutional 

features are transmitted into the final layer. However, spatial 

information is decisive for segmentation bulk images, and thus 

the application of raw CNNs to these tasks is insufficient and 

fruitless. In order to eliminate this limitation of CNNs, 

Shelhamer et al. [3] proposed FCN, in which the transposed 

convolutional layers replaced the final fully-connected layers. 

http://creativecommons.org/licenses/by/4.0
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Transposed layers allow applying the trained sample set to low-

resolution activation maps and restore the original spatial 

information of the input image. In FCN, the various levels of 

the network are bond by shortcut joints to store the features of 

an image that is “closer” to the original one. As presented in 

[13], such transformation allows CNN to retain 

multidimensionality and achieve a more detailed result in 

volumetric image segmentation. Fig. 2 depicts the schematic 

architecture of FCN for the segmentation of computer 

tomography (CT) image slices. 

 
Fig. 1. Volumetric scheme of CNN for anatomy segmentation in whole-body CT scans. 

 
Fig. 2. Volumetric scheme of FCN for anatomy segmentation in whole-body CT scans. 

 

II.  RELATED WORKS 

Semantic segmentation techniques of bulk medical images 

based on convolutional architectures are classified into two 

groups: 2D CNN based and 3D CNN based methods. 2D 

approaches usually work in a slice-by-slice manner. One of the 

most representative 2D CNN based techniques in medical 

segmentation is the U-Net architecture [14]. Because of the U-

shaped block configuration, U-Net can perform image 

localisation by predicting the image pixel by pixel. In [15], 

authors suggested a setting of FCN that provides an end-to-end 

multi-class classification presenting an anatomical label as a 

voxel on a CT scan. Havaei et al. [16] proposed a two-pathway 

shallow network with different cascaded 2D architectures for 

high-grade glioblastomas segmentation in magnetic resonance 

imaging (MRI) of the human brain. Roth et al. [17] improved 

spatial aggregation by presenting holistically nested networks 

for pancreas segmentation in CT scans. In [18], authors 

extended a 2D CNN for volumetric segmentation of raw 3D 

tomographic images. The core of their network is a 3 × 3 × 3 

kernel with ReLU as an activation function. 

Various enhancements to 2D CNN-based techniques have 

significantly improved image segmentation over traditional 

hand-generated feature-based methods. Nevertheless, 2D 

CNNs remain ineffective in volumetric image analysis. CNNs 

do not encode relative spatial long-range feature dependencies 

and therefore become invariant to massive transformations of 

the input data [19]. Moreover, plane convolutional layers drop 
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all the input data considering the pose and the orientation of the 

object and forward all the information to similar neurons. 

To overcome the above-mentioned challenges, researchers 

proposed various 3D CNN based architectures [20]–[24]. Çiçek 

et al. [20] expanded the 2D U-Net into a three-dimensional 

version, called 3D U-Net. Their network comprises two stages: 

an analysis path, also known as an encoder, to allocate 

volumetric feature dependencies and a synthesis path (decoder) 

to generate a full-resolution segmentation. Both the analysis 

and synthesis paths include shortcut connections within 

convolutional layers of the same size. Milletari et al. [21] 

presented V-Net architecture that utilises residual connections 

and estimates the training accuracy based on the Dice 

coefficient function, aimed at addressing the situation of class 

imbalance. V-Net has demonstrated high performance in 

segmentation of bulk medical images. In [22], Zhu et al. 

proposed AnatomyNet – 3D U-Net with two extensions: new 

encoding design to allow auto-segmentation on whole-volume 

CT and 3D squeeze-and-excitation permanent blocks in 

encoding layers to improve feature representation. 

Multi-modality input and multi-level classification were 

further implemented to obtain state-of-the-art results in multi-

organ classification tasks. Multi-level CNNs provide the high 

accuracy of image classification and segmentation by using the 

algorithm that searches the surrogate model for hyperparameter 

configuration based on different strategy searches. For instance, 

Chen et al. [23] presented VoxResNet – the advancement of the 

3D residual network, which stores multi-layer contextual 

information with multi-modality technique into the original 

network. In [24], authors took advantage of a cascade manner 

in 3D FCN and prove that two consecutive FCNNs can provide 

detail segmentation of abdominal organs and vessels. 

III. THE PROBLEM STATEMENT 

The main goal of the present research is the investigation of 

whether fully convolutional neural networks and their 

modifications can be successfully applied to multi-organ 

segmentation of bulk images. To achieve the goal, the following 

tasks have been set: 

1) to select a fully convolutional network as an underlying 

architecture for the multi-class segmentation task; 

2) to adjust the selected network for the addressed issue; 

3) to prepare an appropriate dataset by compiling CT scans 

with divorce abdominal organs; 

4) to explore the configured neural model by estimating it 

with an objective metric; 

5) to compare the investigated architecture with state-of-the-

art methods to prove its usefulness and efficiency in 

medical image segmentation tasks. 

IV. APPLICATION 

FCNs allow training models for pixel semantic segmentation 

in the end-to-end fashion [3]. According to the analysis of the 

literature provided above, the most promising successor of FCN 

is 3D U-Net architecture. In this section, we describe the 3D  

U-Net architecture settings and dataset improvements for 

further multi-organ segmentation of CT images. 

 

 

 

Fig. 3. Volumetric scheme of 3D U-Net, which applies an end-to-end architecture. The kernel of each convolutional layer has a size of 3 × 3 × 3 and is followed 

by ReLU activations and 2 × 2 × 2 Max Pooling layers. 

A. 3D U-Net Configuration 

As we have seen, FCNs can achieve promising results in 

segmentation and classification tasks in a data-driven manner. 

Let us consider a training set of input images and labels 

( ),n nT I L= , where nI  represents CT images of N , and nL  

indicates the corresponding ground truth labels of N . 

Representation T  allows the neural network to find a direct 

mapping from the original image to its segmentation version by 
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changing the value of numerous parameters. As in [20], our 

network comprises an encoder and a decoder. The encoder 

contains four resolution levels with two convolutional layers 

with 3 × 3 × 3 kernels [25] at each level. ReLU activations [26] 

and Max Pooling of 2 × 2 × 2 [27] follow convolutional layers 

with strides of two in each dimension. The decoder contains the 

transposed 3 × 3 × 3 convolutional layers as the final layers, 

each of which employs ReLU activations. The final 

convolutional layer applies the voxel SoftMax activation 

function to calculate the three-dimensional probability 

activation map for each target organ as the output of our 

network. Fig. 3 illustrates the scheme of the proposed 

architecture. 

To provide robust experiments with medical images, we 

choose the same input and output volume sizes as 3D U-Net and 

utilise convolution layers with 3 × 3 × 3 kernels, which employ 

zero-padding throughout. We further apply randomly divided 

subvolumes selected from a few training CT scans to train the 

model. The scope of each subvolume is 64 × 64 × 64, which 

fulfils feasible minibatch training on a single GPU. We choose 

batch size equal to 256 as it can lead to a better model 

approximation during the training [28]. Our architecture utilises 

shortcut connections in the symmetric analysis path as in the 

original 3D U-Net that leads to approximately 20 M trainable 

weights. 

B. Benchmark Dataset & Data Augmentation 

To estimate network training performance, we collected four 

hundred images with high-resolution of abdominal CT scans 

from the Cancer Imaging Archive [29]. Images from the dataset 

were related to patients with different types and stages of 

cancer. Fig. 4 shows representative instances of the CT scans 

from the crafted dataset. 

 

Fig. 4. The variety of grayscale images from the CT scans dataset [29]. 

Each CT volume has 450–1167 slices of 512 × 512 pixels. 

We chose voxel dimensions as [0.57–0.91, 0.58–0.91, 0.48–

0.98] mm. All images delineate the arteries, gallbladder, liver, 

pancreas, spleen, stomach, and vein. Taken the advice from 

[21], we applied smooth B-spline distortions to the images and 

labelled training data. We randomly sampled the distortion 

maps from a smooth division with a maximum bias of 4 and an 

interlinear space of 24 voxels. In order to provide efficient 

calculation on a single GPU, we also reduced the extension of 

all the original images by four times, getting axial image sizes 

of 128 × 128 × (number of slices) / 4. 

Moreover, to generate decent distortions, we employed random 

rotations within 20−   and 20+  , and translations of 20−  to 

20+  voxels to every dimension at every iteration. 

C. Minimisation of the Loss Function 

Sørensen-Dice similarity coefficient (SDSC) is a metric that 

measures the amount of similarity between two binary regions 

[30]. For this reason, SDSC is commonly utilised to estimate 

the performance of different segmentation algorithms. The 

formula for classical SDSC is as follows: 

 2
A B

SDSC
A B

= 
+

, (1) 

where A represents a set of the ground truth, and B corresponds 

to the computed segmentation. Both sets are binary with values 

0 or 1 at each of their voxels. 

To extend the use of SDSC to volumetric images, Milletari 

et al. [21] proposed a differentiable version of SDSC, which we 

applied to train our 3D U-Net. We minimised the loss function 

in order to optimise the SDSC score on the training data as the 

following gradient 
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calculated according to the j-th voxel of the prediction; ip P  

is a predicted binary segmentation value and ig G  is the 

ground truth binary value at each voxel i  of a set of voxels V  

in each input image. To anticipate multiple classes for 

segmentation, our model computes total loss function as 

 
1

M

total j j

j

L w L
M

=  , (3) 

where M  represents the number of both foreground and 

background classes and jw  is a weight indicator that can 

contribute to every label class j . As suggested in [31], we 

maintain 
30.5 10jw −=   for all labels in our application. 

V. EXPERIMENTS & RESULTS 

A. Model Implementation 

We trained and validated our model in Python v3.6, using the 

TensorFlow v.1.13 backend with Keras library as a wrapper 

[32]. The training of the model is based on automatic 

differentiation and eager execution technique. For the training 

process, we employed Adam optimisation method with an 

initial learning rate of 
310−
, the weight decay of 

30.5 10− , and 
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momentum of 0.9. The model was trained for 950 epochs on a 

single NVIDIA GeForce GTX1080 GPU with 8 GB. The source 

code can be found via [33]. 

B. Model Estimation 

We estimated the model by dividing the dataset into 360 

training and 40 testing images. Fig. 5 depicts the training and 

testing curves of the loss function and the Dice coefficient. 

Table I outlines the numerical results of multi-organ 

segmentation. 

Our model achieved an average SDSC score of 0.855 ± 0.064 

and 0.847 ± 0.065 by the end of the training and the testing, 

respectively. Fig. 6 illustrates the multi-organ segmentation of 

both axial and volumetric renderings. 

 

 

 

Fig. 5. The training and testing accuracy of our 3D U-Net for multi-organ segmentation. Distribution of loss function among the 950 epochs is to the left. The 

curves of SDSC is to the right. 

 

           
 a) axial sample (ground truth) b) axial sample (segmentation) 

 

           
 c) 3D rendering (ground truth) d) 3D rendering sample (segmentation) 

 
Fig. 6. The axial (a, b) and 3D rendering (c, d) results of multi-organ segmentation of scanned CT images. 
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TABLE I 

THE RESULTS OF THE 3D U-NET APPLICATION 

SDSC 
Training Testing 

Min. Max. Avg. Min. Max. Avg. 

artery 0.647 0.901 0.798 0.638 0.875 0.782 

gallbladder 0.001 0.939 0.882 0.297 0.917 0.868 

liver 0.883 0.944 0.932 0.891 0.946 0.924 

pancreas 0.276 0.896 0.813 0.298 0.904 0.776 

spleen 0.769 0.951 0.905 0.908 0.936 0.896 

stomach 0.002 0.953 0.898 0.363 0.929 0.884 

vein 0.274 0.867 0.745 0.373 0.841 0.736 

Total Avg. 0.397 0.918 0.856 0.631 0.913 0.848 

TABLE II 

COMPARISON WITH STATE-OF-THE-ART METHODS 

SDSC Work Approach 
Avg. SDSC on the 
validation dataset 

Training time, h 

artery 

[20] 3D U-Net 0.697 2.17 

[21] 2D FCN 0.701 2.32 

[22] 3D U-Net 0.797 4.14 

[24] 3D FCN 0.801 0.97 

Our approach 3D U-Net 0.782 1.65 

gallbladder 

[20] 3D U-Net 0.812 2.17 

[21] 2D FCN 0.835 2.32 

[22] 3D U-Net 0.924 4.14 

[24] 3D FCN 0.916 0.97 

Our approach 3D U-Net 0.868 1.65 

liver 

[20] 3D U-Net 0.823 2.17 

[21] 2D FCN 0.779 2.32 

[22] 3D U-Net 0.911 4.14 

[24] 3D FCN 0.903 0.97 

Our approach 3D U-Net 0.924 1.65 

pancreas 

[20] 3D U-Net 0.698 2.17 

[21] 2D FCN 0.716 2.32 

[22] 3D U-Net 0.824 4.14 

[24] 3D FCN 0.807 0.97 

Our approach 3D U-Net 0.776 1.65 

spleen 

[20] 3D U-Net 0.815 2.17 

[21] 2D FCN 0.819 2.32 

[22] 3D U-Net 0.875 4.14 

[24] 3D FCN 0.884 0.97 

Our approach 3D U-Net 0.894 1.65 

stomach 

[20] 3D U-Net 0.831 2.17 

[21] 2D FCN 0.827 2.32 

[22] 3D U-Net 0.868 4.14 

[24] 3D FCN 0.845 0.97 

Our approach 3D U-Net 0.881 1.65 

vein 

[20] 3D U-Net 0.634 2.17 

[21] 2D FCN 0.62 2.32 

[22] 3D U-Net 0.872 4.14 

[24] 3D FCN 0.856 0.97 

Our approach 3D U-Net 0.736 1.65 

 

C. Direct Comparison to the State-of-the-Art 

Here, we aim to compare our proposed architecture with 

state-of-the-art papers based on different approaches in multi-

organ segmentation. We conducted all experiments on the same 

dataset compiled from the Cancer Imaging Archive [29] by 

dividing it into training and validation subsets. The 

characteristics of the work machine and software remained 

similar to the described above. The investigated methods were 

benchmarked on a validation subset by the average SDSC. 

Table II outlines the list of calculated indicators. 

As it is seen in Table II, the investigated architecture 

outperforms the state-of-the-art methods for several separate 

organs, such as liver, spleen, and stomach achieving 92.4 %, 

89.4 %, and 88.1 % of average SDSC, respectively. Our 3D  

U-Net architecture shows the efficiency on a single GPU and 

proves usefulness in research and practical use. 
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VI. DISCUSSION 

In this paper, we investigate a modified fixed-point 3D U-

Net model for multi-organ segmentation. At the training phase, 

we applied a ground truth annotation to create a smaller input 

area. We applied Sørensen-Dice similarity coefficient as the 

primary evaluation criterion. The number of 950 epochs were 

performed at both the training and the testing stages to fit the 

model. The encoder-decoder structure with batch-normalisation 

serves as a baseline architecture. In the decoder, the final fully-

connected layer was substituted with a transposed layer. 

We accumulated a total of 400 images with high-resolution 

of abdominal CT scans to provide axial and multi-dimensional 

segmentation of seven human organs. The total dataset was split 

into training and testing subsets with 360 and 40 images, 

respectively. Moreover, we applied data augmentation to 

reduce the impact of overfitting. 

The proposed approach of 3D image segmentation does not 

imply any restrictions on the form of segmented anatomy. This 

omission can lead to isolated areas at the edges of organs. For 

example, 3D rendering poorly details images of thin body parts 

with few voxels, such as arteries and veins (Fig. 6d). In 

addition, the authors admit that increasing numbers of training 

epochs might increase the precision variance. In this study, the 

number of epochs was limited in order to reduce the likelihood 

of the model overfitting. This issue is to be addressed in further 

research. 

VII. CONCLUSION 

Our hand-crafted architecture was trained and tested on the 

compiled dataset of CT scans. The investigated architecture 

achieved the average SDSC score of 84.8 % on testing subset 

among seven target abdominal organs, which were artery, 

gallbladder, liver, pancreas, spleen, stomach, and vein. We 

compared the proposed architecture with several state-of-the-

art methods and showed that 3D U-Net based architectures 

could score high performance in the multi-organ segmentation 

tasks. Our study proved that a single GPU could achieve 

competitive results in 3D visualisation and could find practical 

use in medical image analysis. 

In the future study, the authors aim to consider anatomical 

limitations of CT images to provide topologically correct 

segmentation results. We intend to utilise more GPU memory, 

which may allow processing the volume CT scans at a higher 

resolution. Furthermore, we will collect more CT images of the 

abdominal cavity for better case representation. 

REFERENCES 

[1] D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image 

analysis,” Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 
221–248, Jun. 2017. https://doi.org/10.1146/annurev-bioeng-071516-

044442 

[2] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey 
of deep neural network architectures and their applications,” 

Neurocomputing, vol. 234, pp. 11–26, Apr. 2017. 

https://doi.org/10.1016/j.neucom.2016.12.038 
[3] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for 

semantic segmentation,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 39, no. 4, pp. 640–651, Apr. 2017. 
https://doi.org/10.1109/TPAMI.2016.2572683 

[4] H. Suk, S. W. Lee, and D. Shen, “Hierarchical feature representation and 

multimodal fusion with deep learning for AD/MCI diagnosis,” 
NeuroImage, vol. 101, pp. 569–582, Nov. 2014. 

https://doi.org/10.1016/j.neuroimage.2014.06.077 

[5] A. Hamidinekoo, E. Denton, A. Rampun, K. Honnor, and R. Zwiggelaar, 
“Deep learning in mammography and breast histology, an overview and 

future trends,” Medical Image Analysis, vol. 47, pp. 45–67, Jul. 2018. 

https://doi.org/10.1016/j.media.2018.03.006 
[6] G. Litjens et al., “State-of-the-art deep learning in cardiovascular image 

analysis,” JACC Cardiovascular Imaging, vol. 12, no. 8 Part 1, pp. 1549–

1565, Aug. 2019. https://doi.org/10.1016/j.jcmg.2019.06.009 
[7] J.-Z. Cheng et al., “Computer-aided diagnosis with deep learning 

architecture: applications to breast lesions in US images and pulmonary 

nodules in CT scans,” Scientific Reports, vol. 6, no. 24454, Apr. 2016. 
https://doi.org/10.1038/srep24454 

[8] T. Hirasawa et al., “Application of artificial intelligence using a 

convolutional neural network for detecting gastric cancer in endoscopic 

images,” Gastric Cancer, vol. 21, no. 4, pp. 653–660, Jan. 2018. 

https://doi.org/10.1007/s10120-018-0793-2 

[9] Y. Hu et al., “Weakly-supervised convolutional neural networks for 
multimodal image registration,” Medical Image Analysis, vol. 49, pp. 1–

13, Oct. 2018. https://doi.org/10.1016/J.MEDIA.2018.07.002 

[10] H. Takiyama et al., “Automatic anatomical classification of 
esophagogastroduodenoscopy images using deep convolutional neural 

networks,” Scientific Reports, vol. 8, no. 7497, pp. 1–8, May. 2018. 
https://doi.org/10.1038/s41598-018-25842-6 

[11] X. Xie, Y. Li, M. Zhang, and L. Shen, “Robust segmentation of nucleus 

in histopathology images via mask R-CNN,” Springer, pp. 428–436, Jan. 
2019. https://doi.org/10.1007/978-3-030-11723-8_43 

[12] Y. Ren, J. Ma, J. Xiong, Y. Chen, L. Lu, and J. Zhao, “Improved false 

positive reduction by novel morphological features for computer-aided 
polyp detection in CT colonography,” IEEE Journal of Biomedical and 

Health Informatics, vol. 23, no. 1, pp. 324–333, Jan. 2019. 

https://doi.org/10.1109/JBHI.2018.2808199 

[13] Q. Dou et al., “3D deeply supervised network for automated segmentation 

of volumetric medical images,” Medical Image Analysis, vol. 41, pp. 40–

54, Oct. 2017. https://doi.org/10.1016/j.media.2017.05.001 
[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks 

for biomedical image segmentation,” in Medical Image Computing and 

Computer-Assisted Intervention, MICCAI 2015. Lecture Notes in 
Computer Science, Springer, Champ, vol 935, pp. 234–241, Nov. 2015. 

https://doi.org/10.1007/978-3-319-24574-4_28 

[15] X. Zhou, T. Ito, and R. Takayama, “Three-dimensional CT image 
segmentation by combining 2D fully convolutional network with 3D 

majority voting,” in Deep Learning and Data Labeling for Medical 

Applications, DLMIA 2016. Lecture Notes in Computer Science, 
Springer, Cham, vol. 10008, pp. 111–120, Sep. 2016. 

https://doi.org/10.1007/978-3-319-46976-8_12 

[16] M. Havaei et al., “Brain tumour segmentation with deep neural networks,” 
Medical Image Analysis, vol. 35, pp. 18–31, Jan. 2017. 

https://doi.org/10.1016/j.media.2016.05.004 

[17] H. R. Roth, L. Lu, N. Lay, A. P. Harrison, A. Farag, A. Sohn, and R. M. 
Summers, “Spatial aggregation of holistically-nested convolutional neural 

networks for automated pancreas localisation and segmentation,” Medical 

Image Analysis, vol. 45, pp 94–107, Apr. 2018. 
https://doi.org/10.1016/j.media.2018.01.006 

[18] E. Trivizakis et al., “Extending 2-D convolutional neural networks to 3-D 

for advancing deep learning cancer classification with application to MRI 
liver tumor differentiation,” IEEE J. Biomed. Heal. Informatics, vol. 23, 

no. 3, pp. 923–930, May 2019. 

https://doi.org/10.1109/JBHI.2018.2886276 
[19] A. Sinha and J. Dolz, “Multi-scale guided attention for medical image 

segmentation,” arXiv:1906.02849 [cs.CV], Jun. 2019. 

[20] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, 
“3D U-net: Learning dense volumetric segmentation from sparse 

annotation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes 

Artif. Intell. Lect. Notes Bioinformatics), vol. 9901 LNCS, pp. 424–432, 
Oct. 2016. https://doi.org/10.1007/978-3-319-46723-8_49 

[21] F. Milletari, N. Navab, and S. Ahmadi, “V-Net: Fully convolutional 

neural networks for volumetric medical image segmentation,” in 2016 
Fourth International Conference on 3D Vision (3DV), pp. 565–571, Dec. 

2016. https://doi.org/10.1109/3DV.2016.79 

https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1016/j.neuroimage.2014.06.077
https://doi.org/10.1016/j.media.2018.03.006
https://doi.org/10.1016/j.jcmg.2019.06.009
https://doi.org/10.1038/srep24454
https://doi.org/10.1007/s10120-018-0793-2
https://doi.org/10.1016/J.MEDIA.2018.07.002
https://doi.org/10.1038/s41598-018-25842-6
https://doi.org/10.1007/978-3-030-11723-8_43
https://doi.org/10.1109/JBHI.2018.2808199
https://doi.org/10.1016/j.media.2017.05.001
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46976-8_12
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1016/j.media.2018.01.006
https://doi.org/10.1109/JBHI.2018.2886276
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1109/3DV.2016.79


Applied Computer Systems 

_________________________________________________________________________________________________2020/25 

50 

[22] W. Zhu et al., “AnatomyNet: deep learning for fast and fully automated 

whole-volume segmentation of head and neck anatomy,” The 
International Journal of Medical Physics and Practice, vol. 46, no. 2, pp. 

576–589, Nov. 2018. http://dx.doi.org/10.1002/mp.13300 

[23] H. Chen, Q. Dou, L. Yu, J. Qin, and P.-A. Heng, “VoxResNet: Deep 
voxelwise residual networks for brain segmentation from 3D MR 

images,” NeuroImage, vol. 170, pp. 446–455, Apr. 2018. 

https://doi.org/10.1016/j.neuroimage.2017.04.041 
[24] H. R. Roth et al., “An application of cascaded 3D fully convolutional 

networks for medical image segmentation,” Computerized Medical 

Imaging Graphics, vol. 66, pp. 90–99, Jun. 2018. 
https://doi.org/10.1016/j.compmedimag.2018.03.001 

[25] V. V. Romanuke, “An attempt of finding an appropriate number of 

convolutional layers in CNNs based on benchmarks of heterogeneous 
datasets,” Electrical, Control and Communication Engineering, vol. 14, 

no. 1, pp. 51–57, Jul. 2018. https://doi.org/10.2478/ecce-2018-0006 

[26] V. V. Romanuke, “Appropriate number and allocation of ReLUs in 

convolutional neural networks,” Research Bulletin of the National 

Technical University of Ukraine “Kyiv Polytechnic Institute”, no. 1, pp. 

69–78, 2017. https://doi.org/10.20535/1810-0546.2017.1.88156 
[27] V. V. Romanuke, “Appropriate number of standard 2×2 Max Pooling 

layers and their allocation in convolutional neural networks for diverse 

and heterogeneous datasets,” Information Technology and Management 
Science, vol. 20, no. 1, pp. 12–19, Jan. 2018. 

https://doi.org/10.1515/itms-2017-0002 
[28] P. M. Radiuk, “Impact of training set batch size on the performance of 

convolutional neural networks for diverse datasets,” Information 

Technology and Management Science, vol. 20, no. 1, pp. 20–24, Jan. 
2017. https://doi.org/10.1515/itms-2017-0003 

[29] The Cancer Imaging Archive, “TCIA Collections”. [Online]. Available: 

https://www.cancerimagingarchive.net/#collections-list. [Accessed: Feb. 
11, 2019]. 

[30] K. H. Zou, S. K. Warfield, A. Bharatha, C. M. C. Tempany M. R. Kaus, 

et al., “Statistical validation of image segmentation quality based on a 

spatial overlap index,” Academic Radiology, vol. 11, no. 2, pp. 178–189, 

Feb. 2004. https://doi.org/10.1016/S1076-6332(03)00671-8 

[31] Q. Huang, J. Sun, H. Ding, X. Wang, and G. Wang, “Robust liver vessel 

extraction using 3D U-Net with variant dice loss function,” Computers in 
Biology and Medicine, vol. 101, pp. 153–162, Oct. 2018. 

https://doi.org/10.1016/j.compbiomed.2018.08.018 

[32] M. Abadi et al., “TensorFlow: A system for large-scale machine 
learning,” in 12th USENIX Symposium on Operating Systems Design and 

Implementation (OSDI ‘16), pp. 265–283, Nov. 2016. [Online]. 

Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi 

[33] P. Radiuk, “Applying 3D U-Net architecture to the task of multi-organ 

segmentation in computed tomography,” GitHub, Inc., Feb. 2020. 
[Online]. Available: https://github.com/soolstafir/3D-U-Net-in-CT 

[Accessed: Mar. 01, 2020]. 

 

Pavlo M. Radiuk was born in 1993 in 

Khmelnytskyi, Ukraine. He graduated from 

Khmelnytskyi National University in 2017 and 

received the Master’s degree in Mathematical and 

Computer Modelling. In the same year, Pavlo 

Radiuk became a Doctoral postgraduate at 
Khmelnytskyi National University. 

Mr Radiuk has been involved in teaching work at 

Khmelnytskyi National University. His primary 
study courses are system modelling, data mining, 

and machine learning. Mr Radiuk has published several scientific articles 
considering the application and optimisation of neural networks in medical 

image analysis. His current topics of interest concern statistical analysis, 

computer vision and numerical optimisation technique. 
Address for correspondence: 11, Instytuts’ka str., Khmelnytskyi, 29016, 

Ukraine. 

E-mail: radiukpavlo@gmail.com 
ORCID iD: https://orcid.org/0000-0003-3609-112X 

 

 
 

http://dx.doi.org/10.1002/mp.13300
https://doi.org/10.1016/j.neuroimage.2017.04.041
https://doi.org/10.1016/j.compmedimag.2018.03.001
https://doi.org/10.2478/ecce-2018-0006
https://doi.org/10.20535/1810-0546.2017.1.88156
https://doi.org/10.1515/itms-2017-0002
https://doi.org/10.1515/itms-2017-0003
https://doi.org/10.1016/S1076-6332(03)00671-8
https://doi.org/10.1016/j.compbiomed.2018.08.018
mailto:radiukpavlo@gmail.com
https://orcid.org/0000-0003-3609-112X

