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Abstract – Along with new artifact development, software 
engineering also includes other tasks. One of these tasks is the 
reverse engineering of binary artifacts. This task can be performed 
by using special “decompiler” software. In the present paper, the 
author performs a comparison of four different Java 
programming language decompilers that have been chosen based 
on both personal experience and results of a software developer 
survey. 
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I. INTRODUCTION 
While software development is usually about producing new 

artifacts, i.e., turning the code written in some programming 
language to a binary distribution, sometimes it is necessary to 
perform reverse operation, which is reverse engineering [1]. 
Reverse engineering is the process of extracting the knowledge 
or design blueprints from anything man-made. In relation to 
software engineering, this can be described as extraction of the 
source code from the binary (compiled) files. While at first sight 
such a process might seem conflicting with the copyright, 
sometimes it is necessary to perform such an operation. An 
example might be a necessity to fix defects in program or library 
that was developed by a company some time ago, but any 
source code for it is missing. Other aspect of reverse 
engineering in software might be a necessity to obtain some 
information from the given libraries/programs that have no 
source code available – for example, cryptographic keys etc. 
Basically, such cases that are related to reverse engineering of 
own products are valid and legal use cases. Another example of 
a valid reverse engineering application is the study of computer 
viruses [1] by the authors of anti-virus software, which is a 
necessity for understanding of how malicious software works 
and how to act against it. 

Based on a TIOBE index [2], one of the most popular 
programming languages used in an enterprise development is 
Java programming language [3], which is an object-oriented 
programming language that uses bytecode instructions executed 
by a stack-based virtual machine. The fact that Java is built 
around bytecode instead of an assembly language offers several 
advantages – for example, code written once can be executed 
on different platforms, given a virtual machine implementation 
exists for the aforementioned platforms. From the reverse 
engineering point of view, it means that it is necessary to only 
process bytecode, which in comparison to the assembly 
languages, contains fewer instructions. Thus, in order to turn 
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Java bytecode to the source code, it is necessary to be able to 
transform around 200 different instructions [4] for the latest 
Java version (10) at the moment, which in comparison, for 
example, to Intel processor assembly instruction set [5] 
containing around 2000 different instructions seems an easier 
task.  

Such a task can be performed by software called 
“decompiler” [1], which translates binary artifact into the 
source code with a certain amount of precision. Several 
decompilers exist for the Java programming language, and the 
goal of the paper is to compare these decompilers in order to 
provide recommendations for the software developers.  

This paper is structured as follows. In Section II, the chosen 
list of Java programming language decompiler software is 
given. Section III presents a short introduction to the Java 
programming language binary file format and bytecode 
instructions. Section IV gives several examples on Java 
bytecode decompilation techniques that are used by the 
decompilation software. In Section V, a test case developed by 
the author of the paper is described. Section VI shows the 
results of test case decompilation along with a short analysis of 
the obtained results. Section VII describes additional test results 
as well as comparison of decompilers using additional criteria 
defined by the author of the paper. Finally, in the last section 
conclusions are made and recommendations about Java 
decompiler software are given. 

II. JAVA DECOMPILER SOFTWARE 
Several decompiler programs exist for the Java programming 

language. In order to choose one to use, it would be necessary 
to perform the comparison of these programs. In this section, 
the author provides a list of such software. The list of the 
decompiler software is built using both the author’s personal 
experience on using such software and results of the survey 
performed by the author at his current workplace in order to 
determine what other programmers would recommend using in 
order to solve such a task: 

• JD Project [6] is a modular decompiler that can be run 
as a standalone application or be integrated into 
development environments, such as Eclipse [7] or 
Intellij IDEA [8].  

• CFR [9] is distributed in a form of library that contains 
a command line interface (CLI) and can also be used 
as part of other software.  
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• Procyon [10] is a framework that can be integrated into 
other applications and contains CLI. Several graphical 
user interface (GUI) implementations exist for it.  

• Fernflower [11] is a Java decompiler used in the 
Intellij IDEA [8] development environment. It is 
distributed in a form of a library that also has CLI 
interface. 

The aforementioned survey on Java decompiler software 
conducted by the author is based on two questions: 

• Which Java decompilers are you familiar with? 
• Which Java decompiler would you recommend to use? 

There were a total of 247 people that answered these 
questions. Results of the survey are shown in Tables I and II. 

TABLE I  
WHICH JAVA DECOMPILERS ARE YOU FAMILIAR WITH 

Decompiler Total answers 
Fernflower 200 
JD Project 158 
Procyon 141 
CFR 50 
JAD 2 

 
TABLE II 

WHICH JAVA DECOMPILER WOULD YOU RECOMMEND TO USE 

Decompiler Total answers 
Fernflower 121 
JD Project 74 
Procyon 44 
CFR 8 

 
Results of the survey show that most of the people are 

familiar with the Fernflower decompiler software and 
recommend to use it, which can be explained by the fact that it 
is built into the development environment used by the company, 
which is Intellij IDEA [8]. 

Several other implementations of Java programming 
language decompiler exist; however, in most cases these 
implementations are outdated and unsupported. Thus, in the 
paper, four decompilers are compared. 

III. AN INTRODUCTION TO THE JAVA VIRTUAL  
MACHINE BINARY FILE FORMAT 

Java virtual machine (JVM) uses binary .class files that 
contain result of the source code compilation [12]. These files 
contain all the necessary information about the compile unit 
(which is basically a Java class or interface), including: 

• Version of the compiler that produced given .class file. 
This allows the JVM to detect if it should be able to 
load and execute given file. 

• Constant pool containing various string literals, class 
and interface names, field and method names as well 
as other constants that are used in the given 
compilation unit. 

• Access flags that determine both visibility and type of 
a given compilation unit. This information defines if 

and how the actual class contained in the file can be 
instantiated and subclassed. 

• Information on a base class and interfaces given 
compilation unit inherits from or implements. 

• Field and method list along with their access flags and 
other modifiers.  

• Attributes of class, its fields and methods that are used 
to determine additional information on the 
aforementioned components of a compilation units. 
One of the attributes is the actual code of a method, 
others represent different information that can be used 
in a runtime, e.g., annotations, which are syntactic 
metadata attached to the given member, or list of 
exceptions that might be thrown during the execution 
of a selected method. 

The code attribute contains the actual bytecode instruction 
listing that will be used during appropriate method invocation. 
As it has already been mentioned, JVM bytecode contains 
approx. 200 instructions that can be divided into the following 
groups: 

• Mathematical operations – these instructions are 
meant for the actual mathematic operation 
representation (for example, DADD instruction sums up 
2 double type variables), as well as constant loading 
onto the top of the stack (for example, 
ICONST_0…ICONST_5 instructions allow loading 
integers from 0 to 5). 

• Stack operations – JVM is a stack-based virtual 
machine, which means that it does not use registers of 
any kind. Instead, all the local variables are loaded 
onto stack and can be processed on it. These 
instructions allow both writing and reading 
information contained on the top of the stack (for 
example, ALOAD allows pushing the object to the 
stack, while ASTORE fetches it and stores in local 
variable), as well as creating new objects on the top of 
the stack (NEW allows creating a new object, while 
NEWARRAY creates a new array of a given type). 
Several instructions in this group are also meant to 
copy objects (DUP creates a copy of a variable on the 
top of the stack and pushes it to the top) or remove 
them from stack without storing into any of the local 
variables (POP). 

• Type conversion instructions – for example, D2I 
converts double type variable on the top of the stack to 
the int type and pushes the result on the top of the 
stack. 

• Type checking instructions that allow both checking 
the type of variable on the top of the stack and 
replacing it with the check result (INSTANCEOF) or 
throwing a runtime exception (CHECKCAST). 

• Numerical type comparison instructions – for 
example, LCMP that compares two long type 
variables on the top of the stack. 

• Synchronization instructions MONITORENTER and 
MONITOREXIT that are used to obtain mutually 
exclusive access to the given resource. 
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• Method invocation instructions, such as 
INVOKEVIRTUAL, that allow invoking methods in a 
different way. 

• Instructions that allow the invoked method to return its 
invocation result to other running code – for example, 
ARETURN allows using an object as an invocation 
result, while RETURN means that the method has not 
returned any result at all. 

• Branching instructions, which are used to change the 
program flow during code execution. JVM has both 
conditional (for example, IFACMP_EQ that changes 
the flow if two objects are identical by reference) and 
unconditional branching instructions (GOTO). Special 
instructions also exist for switch language construct 
processing, for example, TABLESWITCH. 

• Debugger instruction BREAKPOINT that is not 
included in the compiled Java code. Instead, debuggers 
are injecting this instruction dynamically. 

• ATHROW – instruction meant to throw an exception. 
• ARRAYLENGTH – instruction that allows getting the 

length of the array on the top of the stack. 
• NOP – an empty instruction. 

Each method in .class file also has information on local 
variables being used. It might or might not contain information 
on variable names – it depends on the way the Java code was 
compiled. If local variable names are omitted during the 
compilation, then there is only information on local variable 
logical numbers (indices) and types. 

IV. JVM BYTECODE DECOMPILING TECHNIQUES 
As it can be seen from the previous section, decompilation of 

Java bytecode would require extracting from the .class file 
information on its members such as fields and methods, 
transforming appropriate method bytecode into the source code 
and adding additional information on access flags for all the parts 
of the class file.  

In the present paper, the author focuses on the bytecode 
transformation possibilities, since other decompilation tasks can 
be handled in a straightforward way by extracting the necessary 
information and using simple transformation techniques.  

As for the bytecode, it is necessary to understand that most 
JVM bytecode instructions can also be handled in a pretty simple 
and straightforward way. In this case, the author is talking about 
all the groups of the bytecode instructions, except the branching. 
The decompiler would also require keeping the track on the state 
of the JVM stack during method invocation, so it is possible to 
determine, which objects are being loaded on the stack and read 
from it. It is also necessary to analyse the local variable table to 
determine, which of the local variables are used during method 
invocation. The author would like to provide several examples on 
how the decompilation techniques for these instruction groups 
might work. 

The first example is shown in Fig. 1. In this case, the code itself 
consists of three mathematical instructions – two load integer 
constants on the top of the stack, third sums given integers up. 
The last instruction in the given bytecode example tells JVM to 

use the variable on the top of the stack as the return value of the 
method.  

 

ICONST_1 
ICONST_2 
IADD 
IRETURN 

Fig. 1. JVM bytecode using mathematical operations. 

To restore the source code from the given byte code fragment, 
decompiler must keep track on what actually is happening during 
this bytecode execution. It is possible to see that because of the 
first instruction invocation integer constant 1 is being put on the 
top of the stack, which results in the following stack state: [1]. 
Second instruction puts integer constant 2 on the top of the stack, 
so the stack becomes: [2,1]. Then next instruction removes two 
top stack members, sums them up and puts the result of this 
mathematical operation on the top of the stack, so the stack is 
being turned to [1+2]. Finally, last bytecode instruction tells 
JVM to use the variable on the top of the stack as a method return 
value. By following this information, it is possible to see that 
given bytecode fragment corresponds to the Java source code 
shown in Fig. 2. 

 
return 1 + 2; 

Fig. 2. First bytecode fragment decompilation result. 

Figure 3 shows a similar bytecode fragment with the only 
exception that instead of integer constants, local variables are 
used. 

 
ILOAD 1 
ILOAD 2 
IADD 
IRETURN 

Fig. 3. JVM bytecode using mathematical operations and local variables. 

Decompilation logic for this bytecode fragment is the same as 
in the previous example: decompiler should keep the track on 
what the state of the stack should become because of each 
instruction execution and use this information to rebuild the 
source code. When local variables are used in the bytecode 
instructions, decompiler should refer to appropriate methods’ 
local variable table to determine actual variable names if they are 
present. Figure 4 shows two possible outcomes of this bytecode 
decompilation result – the first one assumes that local variable 
names are present, while the second one assumes this information 
was removed during the compilation process, and decompiler had 
to generate variable names based on their indices in the local 
variable table. 

 
return a + b; 
return var1 + var2; 

Fig. 4. Second bytecode fragment decompilation result. 
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It is possible to see that without considering branching 
instructions, decompiler’s task would be to rebuild what would 
happen during appropriate bytecode instruction invocation and 
emit the appropriate syntactic constructions because of its work.  

If the branching instructions also appear in the bytecode, it is 
necessary to analyse, to where the control flows are being 
redirected by a branching instruction. Figure 5 provides the first 
example of a bytecode with branching instructions.  

 
   ILOAD 1 
   ILOAD 2 
   IF_ICMPLT L1 
   ICONST_1 
   IRETURN 
L1: 
   ICONST_2 
   IRETURN 

Fig. 5. First branching example. 

Here, two local integer variables are compared, and if the 
second one is less than the first one, control flow redirect 
appears. It targets the label after branching instruction, so 
decompiler should be able to determine that such branching 
corresponds to the if language construction. Instructions that 
can be found just after branching instruction, in turn, 
correspond to the else part of if statement. Thus, the 
decompilation result should be as shown in Fig. 6. 

 
if (a < b) { 
    return 1; 
} else { 
    return 2; 
} 

Fig. 6. First branching example decompilation result. 

Another branching example is when the label, which is a 
target of a control flow redirect, is located before the branching 
instruction. Such cases correspond to the loops in the code 
(while, for, do…while). An example of such a bytecode is 
given in Fig. 7.  

 
L1: 
    …  
    ILOAD 1 
    ILOAD 2 
    IF_ICMPLT L1 
    RETURN 

Fig. 7. Second branching example. 

Such bytecode should be decompiled to the result that is 
shown in Fig. 8. 

 
while (a < b) { 
    …             
} 

Fig. 8. Second branching example decompilation result. 

It is worth mentioning that all the examples that are given in 
this section are primitive enough, and real decompiler should 
also be able to handle nested branching instructions and more 
complex control flow redirections. However, these seem to be 
enough to demonstrate, how Java decompiler should work and 
what information it should be using during the reverse 
engineering process. In the next section, the author would like 
to discuss a test case that he has developed for decompiler 
capability testing on a more complicated branching code. 

V. DEVELOPED TEST CASE 
To test how Java decompilers can handle complex branching 

cases, it is necessary to develop an example that would contain 
such kinds of branching. To develop such a bytecode, it is 
necessary to understand what a complex branching is in JVM 
bytecode.  

While nested branches might result in a complex decompiled 
code, such cases are not a problem to decompile – decompiler 
software should keep track on where control flow redirection 
labels are located in the bytecode, and should be able to detect 
correct syntactic constructions. 

To perform a test of decompiler capabilities, the author has 
developed a test case for this kind of software, which is based 
on a single loop. Loop itself contains several instructions that 
are computing random integer number between 0 and 2 and then 
checks, which number was generated in order to decide if the 
loop should be terminated. This kind of logic in bytecode 
corresponds to the while (true) loop construction that has 
some break instructions inside. However, it is also possible to 
enter the loop itself in its various states, which means that when 
first entering the loop, it is equally possible to start with any 
possible break branch. Such a bytecode means that 
decompiler software should be able to come up with a solution 
on how such a loop can be entered. 

As a result, an example class with two methods has been 
developed using Java bytecode. First method of this class is 
meant to calculate random number in 0…2 interval. Bytecode 
source of this method is presented in Fig. 9. 

 
NEW java/util/Random 
DUP 
INVOKESPECIAL java/util/Random.<init> ()V 
INVOKEVIRTUAL java/util/Random.nextInt ()I 
ICONST_3 
IREM 
IRETURN 

Fig. 9. Random number generation method. 

This method creates a new instance of java.util.Random class 
and invokes nextInt() method on it. Then it calculates the 
remainder of division operation of the generated random integer 
and 3 and returns it as a result. Java source code corresponding 
to this method is presented in Fig. 10. 

 
return new Random().nextInt() % 3; 

Fig. 10. Random number generation method – Java code. 
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    ALOAD 0 
    INVOKESPECIAL Test.rem()I 
    ISTORE 1 
 
    ILOAD 1 
    ICONST_0 
    IF_ICMPEQ LOOP_PART1 
 
    ILOAD 1 
    ICONST_1 
    IF_ICMPEQ LOOP_PART2 
 
    ILOAD 1 
    ICONST_2 
    IF_ICMPEQ LOOP_PART3 
 
LOOP_START: 
 
    LOOP_PART1: 
        INVOKESTATIC java/lang/System.gc()V 
        ALOAD 0 
        INVOKESPECIAL Test.rem()I 
        ICONST_0 
 
        IF_ICMPEQ LOOP_END 
 
    LOOP_PART2: 
        INVOKESTATIC java/lang/System.gc()V 
        ALOAD 0 
        INVOKESPECIAL Test.rem()I 
        ICONST_0 
 
        IF_ICMPEQ LOOP_END 
 
    LOOP_PART3: 
        INVOKESTATIC java/lang/System.gc()V 
        ALOAD 0 
        INVOKESPECIAL Test.rem()I 
        ICONST_0 
 
        IF_ICMPEQ LOOP_END 
 
        GOTO LOOP_START 
 
LOOP_END: 
    RETURN 

Fig. 11. The main test method. 

The bytecode of the main test method is shown in Fig. 11. In 
order to make decompiler’s task more complicated when 
processing it, a dummy method invocation of 
java.lang.System.gc() has been added after each loop 
entry point. This method has been chosen due to the fact that it 
has void return type meaning and there is no necessity to clean 
up the stack after it was invoked. Without this invocation, some 
decompilers are able to reconstruct the code in the way shown 
in Fig. 12. While this result is correct from the reverse 
engineering point of view, it is kind of a shortcut taken by the 
decompiler and does not reflect the results wanted from this test 
case.  

 
 
 
 

public void test() { 
    int i = rem(); 
    while ( 
     ((i == 0) || ((i == 1) || (i != 2)))  
      && ((rem() != 0) &&  
      (rem() != 0) && (rem() != 
0)) 
   ) { 
    } 
} 

Fig. 12. Decompiled method without System.gc() calls. 

VI. RESULTS OF TEST CASE DECOMPILATION 

public void test() { 
    int i = this.rem(); 
    if (i != 0) { 
        if (i != 1) { 
            if (i == 2) { 
                System.gc(); 
                if (this.rem() == 0) { 
                    return; 
                } 
            } 
 
            System.gc(); 
            if (this.rem() == 0) { 
                return; 
            } 
        } 
    } else { 
        System.gc(); 
        if (this.rem() == 0) { 
            return; 
        } 
    } 
 
    do { 
        System.gc(); 
        if (this.rem() == 0) { 
            break; 
        } 
 
        System.gc(); 
        if (this.rem() == 0) { 
            break; 
        } 
 
        System.gc(); 
    } while (this.rem() != 0); 
 
} 

Fig. 13. Fernflower decompilation result. 

In this section, the author demonstrates the results of test 
example decompilation using different decompilers as well as 
analyses these results.  
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Figure 13 shows the decompilation result obtained from 
Fernflower decompiler. It is possible to see that decompiler has 
unrolled the first possible iteration of the main loop – it is able 
to detect that a loop entering code may be invoked up to a single 
time, after which the loop should continue in a normal way. As 
a result, this solution has led to a code duplication; however, the 
result is readable and can be used. 

 
public void test() { 
    int i = rem(); 
    if (i != 0) { 
        if (i == 1) { 
            break label31; 
        } 
        if (i == 2) { 
            break label42; 
        } 
    } 
    label31: 
    label42: 
    do { 
        System.gc(); 
        if (rem() == 0) { 
            break; 
        } 
        System.gc(); 
        if (rem() == 0) { 
            break; 
        } 
        System.gc(); 
    } while (rem() != 0); 
} 

Fig. 14. JD Project decompilation result. 

Figure 14 shows decompilation result obtained by using JD 
Project decompiler. In this case, decompiler did not unroll the 
first loop iteration and utilised Java ability to use break 
instruction to redirect control flow to any label. This technique 
allowed avoiding code duplication in the unrolled loop 
iteration. However, the result obtained from the JD Project is 
not compilable, since Java does not support using break 
instruction with labels that are defined after it. It is also worth 
mentioning that JD Project decompiler did not use this 
keyword, since it was able to identify that rem() method 
belonged to the same class. 

Figure 15 shows results that were obtained from the CFR 
decompiler. It was unable to produce the compilable code at all, 
also it did not attempt to perform the unrolling of the first loop 
iteration. 

Finally, Fig. 16 shows the result of using the Procyon 
decompiler tool. In this case, decompiler software has not 
performed loop unroll. Instead, the result of initial method 
invocation before a loop is stored in final local variable that 
cannot be changed and is rechecked on every iteration in order 
to decide, if certain actions have to be performed. It is possible 
to say that Procyon decompiler moved all the loop entry point 
selection inside the loop and ensured that appropriate variable 
responsible for this logic could not be changed. The 
decompilation result can be compiled and executed. 

public void test() { 
    block1: 
    { 
        i = this.rem(); 
        if (i == 0) break block1; 
        if (i == 1) **GOTO lbl9 
        if (i == 2) **GOTO lbl11 
    } 
    do { 
        System.gc(); 
        if (this.rem() == 0) return; 
        lbl9: 
        // 2 sources: 
        System.gc(); 
        if (this.rem() == 0) return; 
        lbl11: 
        // 2 sources: 
        System.gc(); 
        if (this.rem() == 0) return; 
    } while (true); 
} 

Fig. 15. CFR  decompilation result. 

 
public void test() { 
    final int i = this.rem(); 
    while (true) { 
        Label_0042: { 
            Label_0031: { 
                if (i != 0) { 
                    if (i == 1) { 
                        break Label_0031; 
                    } 
                    if (i == 2) { 
                        break Label_0042; 
                    } 
                } 
                System.gc(); 
                if (this.rem() == 0) { 
                    return; 
                } 
            } 
            System.gc(); 
            if (this.rem() == 0) { 
                return; 
            } 
        } 
        System.gc(); 
        if (this.rem() != 0) { 
            continue; 
        } 
        break; 
    } 
} 

Fig. 16. Procyon decompilation result. 

The results obtained from testing decompilers against the 
developed test case show that a test case itself was complex 
enough, since two out of four decompilers could not produce a 
code that could be compiled again. In both cases, decompilers 
did not attempt to somehow modify the loop entry point 
selection logic, while Fernflower performed the unrolling of the 
first loop iteration but Procyon moved this logic inside the loop. 
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VII. ADDITIONAL DECOMPILER COMPARISON 
Both Java 7 and Java 8 versions introduced new capabilities 

to the Java programming language. For the Java 7 it is possible 
to identify two features that could affect the decompilation 
results: 

• Try-with-resources syntax [13]. 
• Ability to use string literals in switch statement [14]. 

Java 8, in turn, introduced functional programming 
capabilities in a form of lambda expressions [15] and method 
references [16]. Modern decompilers should be able to support 
these features.  

 
public class Test { 
    void java7StringSwitch(final String s) { 
        switch (s) { 
            case "Hello": 
                System.out.println("World"); 
                break; 
            default: 
                System.out.println("Hi!"); 
        } 
    } 
 
    void java7TryWithResources() { 
        try ( 
            final InputStream is = 
            new FileInputStream("1.txt") 
        ) { 
            System.out.println( 
                    is.available()); 
        } catch (final IOException e) { 
            e.printStackTrace(); 
        } finally { 
            System.out.println("Bye!"); 
        } 
    } 
 
    void java8Lambdas() { 
        new Thread(() -> { 
            System.out.println("Hello"); 
            System.out.println("World"); 
        }).start(); 
    } 
 
    void java8MethodReferences() { 
        new Thread( 
          this::java7TryWithResources) 
                .start(); 
    } 
} 

Fig. 17. Java 7/8 feature test case. 

The author of the present paper does not consider new syntax 
construction introduced in newer Java versions – 9 and 10, since 
both these versions based on the author’s experience are not yet 
widely adopted. 

In order to test decompiler capabilities, the author has 
developed another test case in a form of Java code that was 
compiled and later decompiled in order to compare the 
decompilation results with an original source code. This 
example is shown in Fig. 17. The results of this test case 
decompilation are shown in Table III.  

 
 
 

TABLE III 
JAVA 7/8 FEATURE DECOMPILATION RESULTS 

Feature Fernflower Procyon JD Project CFR 
Try-with-
resources 

See Fig. 18 OK See Fig. 18 See 
Fig. 18 

String literal in 
switch 

See Fig. 19 OK OK Error 

Lambda 
expressions 

OK OK Error OK 

Method 
references 

OK OK Error OK 

 

Here, only Procyon decompiler was able to restore the code 
to the state, which was accurately representing the source code. 
Both CFR and JD Project were unable to handle some of the 
features with JD Project not supporting Java 8 features and CFR 
failing on string literal in switch statement. Figure 18 
represents results obtained in try-with-resources statement 
decompilation by three out of four decompilers. With minor 
differences it was the same among all. 

 
void java7TryWithResources() { 
    try { 
        InputStream is = new  
          FileInputStream("1.txt"); 
        Throwable var2 = null; 
 
        try { 
            System.out 
              .println(is.available()); 
        } catch (Throwable var20) { 
            var2 = var20; 
            throw var20; 
        } finally { 
            if (is != null) { 
                if (var2 != null) { 
                    try { 
                        is.close(); 
                    } catch (Throwable var1) { 
                        var2 
                         .addSuppressed(var1); 
                    } 
                } else { 
                    is.close(); 
                } 
            } 
 
        } 
    } catch (IOException var22) { 
        var22.printStackTrace(); 
    } finally { 
        System.out.println("Bye!"); 
    } 
} 

Fig. 18. Try-with-resources decompiled. 

Figure 19, in turn, shows results for string literal in switch 
statement decompilation by Fernflower. It is possible to see that 
decompiler could not identify the correct type of the switch 
instruction, but instead used the information in the bytecode to 
decompile it in a straightforward way. 
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void java7StringSwitch(String s) { 
    byte var3 = -1; 
    switch(s.hashCode()) { 
        case 69609650: 
            if (s.equals("Hello")) { 
                var3 = 0; 
            } 
        default: 
            switch(var3) { 
                case 0: 
                    System.out 
                      .println("World"); 
                    break; 
                default: 
                    System.out.println("Hi!"); 
            } 
 
    } 
} 

Fig. 19. String literal in switch statement decompiled by Fernflower. 

In addition to Java 7/8 feature support, it is possible to define 
other requirements for the Java programming language 
decompiler software. One of these requirements would be an 
ability to modify the decompiled code during decompilation 
process. This, for example, could be achieved, if decompiler 
rebuilds abstract syntax tree (AST) [17] for the generated code 
and allows processing it using the visitor pattern [18]. Such a 
feature should be part of decompiler’s API and should not 
require modifying its source code. 

Another requirement is the license under which decompiler 
is developed and distributed – it can enforce limitations on an 
ability to use the decompiler in commercial products or modify 
its source code, if it is available. 

When looking at the extension possibility for the decompiled 
code modification, it is as follows: 

• Fernflower is an open source decompiler that has no 
built-in API to support these kinds of modification, so 
one would have to modify the source code of the 
compiler itself to allow for decompiled code 
processing. 

• Procyon has a built-in API that supports the visitor 
pattern for a decompiled AST processing. Thus, it is 
not necessary to do any modifications to the 
decompiler’s code – it is possible to add one’s own 
extensions to it. 

• JD Project has no documented API that would allow 
modifying the decompiled Java source code and 
adding such a functionality would require 
decompiler’s source code modification. 

• CFR is a closed source project and it has no 
documented code modification feature. Author of the 
CFR himself offers to decompile the CFR to modify it. 

Licensing for the four compared Java decompilers is the 
following: 

• Fernflower is an open-source project that uses Apache 
2.0 license [19] making it available for the commercial 
projects and modification of the source code. 

• Procyon also is an open-source project that is licensed 
under Apache 2.0 license [19]. 

• JD Project is an open-source project licensed under 
GNU GPLv3 license [20], which means that it is free 
for a non-commercial use. 

• Finally, CFR is a closed-source project. It is licensed 
under MIT license [21] that allows using it in 
commercial projects as well as modifying it. 

VIII. CONCLUSION 
In the present paper, the author has performed a study of the 

Java decompilers and its capabilities by analysing performance 
in different test cases, the licensing model and abilities to extend 
the decompilation results. 

To choose Java decompilers to be compared, the author has 
used both his personal experience and a survey of Java 
developers. As a result, four different decompilers have been 
chosen with Fernflower and JD Project both being mostly 
renown and recommended to use by other people. Surprisingly, 
JD project has shown very poor performance in the author’s 
developed test case and Java 7/8 feature decompilation. It is also 
licensed under the GNU GPLv3 license that might limit its 
usage in commercial projects. Fernflower, in turn, has 
performed well enough in the main test case, but it has not been 
precise when decompiling Java 7 features; however, Java 8 
feature support seems mature enough. 

Two other compilers, which are not popular among the 
surveyed developers, have shown the following results. CFR is 
unable to decompile the main test case as well as one of Java 7 
test cases. It has performed very well in Java 8 test cases and 
has a commercial use friendly license, but it is a closed-source 
project, which means that its modification might be a 
challenging task in case it is required. Procyon, in turn, is able 
to handle both the main test case and Java 7/8 test cases. It is 
only decompiler that is able to cover all the selected Java 7/8 
features producing results close enough to the original source 
code. It is only decompiler that has an API allowing for the 
modification of the decompiled code. Procyon represents the 
decompiled code in a form of an AST tree and allows for visitor 
pattern usage to process this tree. Procyon is licensed under 
Apache 2.0 license, which makes it available for commercial 
products and allows for the source code modification. 

It may not be easy to provide the recommendations on which 
decompiler for the Java language to choose based only on the 
results of the present research; however, the author himself sees 
Procyon decompiler behaving the best amongst the ones 
compared here. It has performed well enough in all the defined 
test cases, as well as has support for additional features and a 
friendly licensing model. Interestingly, this decompiler seems 
to be not very well known and has not received many 
recommendations during the survey, which might be explained 
by the fact that developers are not familiar enough with it. 
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