
Applied Computer Systems

109

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
December 2018, vol. 23, no. 2, pp. 109–117
doi: 10.2478/acss-2018-0014
https://content.sciendo.com

©2018 Konstantins Gusarovs.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

An Analysis on Java Programming Language
Decompiler Capabilities

Konstantins Gusarovs*
Riga Technical University, Riga, Latvia

Abstract – Along with new artifact development, software
engineering also includes other tasks. One of these tasks is the
reverse engineering of binary artifacts. This task can be performed
by using special “decompiler” software. In the present paper, the
author performs a comparison of four different Java
programming language decompilers that have been chosen based
on both personal experience and results of a software developer
survey.

Keywords – Decompilation, Java, reverse engineering.

I. INTRODUCTION
While software development is usually about producing new

artifacts, i.e., turning the code written in some programming
language to a binary distribution, sometimes it is necessary to
perform reverse operation, which is reverse engineering [1].
Reverse engineering is the process of extracting the knowledge
or design blueprints from anything man-made. In relation to
software engineering, this can be described as extraction of the
source code from the binary (compiled) files. While at first sight
such a process might seem conflicting with the copyright,
sometimes it is necessary to perform such an operation. An
example might be a necessity to fix defects in program or library
that was developed by a company some time ago, but any
source code for it is missing. Other aspect of reverse
engineering in software might be a necessity to obtain some
information from the given libraries/programs that have no
source code available – for example, cryptographic keys etc.
Basically, such cases that are related to reverse engineering of
own products are valid and legal use cases. Another example of
a valid reverse engineering application is the study of computer
viruses [1] by the authors of anti-virus software, which is a
necessity for understanding of how malicious software works
and how to act against it.

Based on a TIOBE index [2], one of the most popular
programming languages used in an enterprise development is
Java programming language [3], which is an object-oriented
programming language that uses bytecode instructions executed
by a stack-based virtual machine. The fact that Java is built
around bytecode instead of an assembly language offers several
advantages – for example, code written once can be executed
on different platforms, given a virtual machine implementation
exists for the aforementioned platforms. From the reverse
engineering point of view, it means that it is necessary to only
process bytecode, which in comparison to the assembly
languages, contains fewer instructions. Thus, in order to turn

* Corresponding author’s e-mail: konstantins.gusarovs@gmail.com

Java bytecode to the source code, it is necessary to be able to
transform around 200 different instructions [4] for the latest
Java version (10) at the moment, which in comparison, for
example, to Intel processor assembly instruction set [5]
containing around 2000 different instructions seems an easier
task.

Such a task can be performed by software called
“decompiler” [1], which translates binary artifact into the
source code with a certain amount of precision. Several
decompilers exist for the Java programming language, and the
goal of the paper is to compare these decompilers in order to
provide recommendations for the software developers.

This paper is structured as follows. In Section II, the chosen
list of Java programming language decompiler software is
given. Section III presents a short introduction to the Java
programming language binary file format and bytecode
instructions. Section IV gives several examples on Java
bytecode decompilation techniques that are used by the
decompilation software. In Section V, a test case developed by
the author of the paper is described. Section VI shows the
results of test case decompilation along with a short analysis of
the obtained results. Section VII describes additional test results
as well as comparison of decompilers using additional criteria
defined by the author of the paper. Finally, in the last section
conclusions are made and recommendations about Java
decompiler software are given.

II. JAVA DECOMPILER SOFTWARE
Several decompiler programs exist for the Java programming

language. In order to choose one to use, it would be necessary
to perform the comparison of these programs. In this section,
the author provides a list of such software. The list of the
decompiler software is built using both the author’s personal
experience on using such software and results of the survey
performed by the author at his current workplace in order to
determine what other programmers would recommend using in
order to solve such a task:

• JD Project [6] is a modular decompiler that can be run
as a standalone application or be integrated into
development environments, such as Eclipse [7] or
Intellij IDEA [8].

• CFR [9] is distributed in a form of library that contains
a command line interface (CLI) and can also be used
as part of other software.

mailto:konstantins.gusarovs@gmail.com

Applied Computer Systems

__ 2018/23

110

• Procyon [10] is a framework that can be integrated into
other applications and contains CLI. Several graphical
user interface (GUI) implementations exist for it.

• Fernflower [11] is a Java decompiler used in the
Intellij IDEA [8] development environment. It is
distributed in a form of a library that also has CLI
interface.

The aforementioned survey on Java decompiler software
conducted by the author is based on two questions:

• Which Java decompilers are you familiar with?
• Which Java decompiler would you recommend to use?

There were a total of 247 people that answered these
questions. Results of the survey are shown in Tables I and II.

TABLE I
WHICH JAVA DECOMPILERS ARE YOU FAMILIAR WITH

Decompiler Total answers
Fernflower 200
JD Project 158
Procyon 141
CFR 50
JAD 2

TABLE II

WHICH JAVA DECOMPILER WOULD YOU RECOMMEND TO USE

Decompiler Total answers
Fernflower 121
JD Project 74
Procyon 44
CFR 8

Results of the survey show that most of the people are

familiar with the Fernflower decompiler software and
recommend to use it, which can be explained by the fact that it
is built into the development environment used by the company,
which is Intellij IDEA [8].

Several other implementations of Java programming
language decompiler exist; however, in most cases these
implementations are outdated and unsupported. Thus, in the
paper, four decompilers are compared.

III. AN INTRODUCTION TO THE JAVA VIRTUAL
MACHINE BINARY FILE FORMAT

Java virtual machine (JVM) uses binary .class files that
contain result of the source code compilation [12]. These files
contain all the necessary information about the compile unit
(which is basically a Java class or interface), including:

• Version of the compiler that produced given .class file.
This allows the JVM to detect if it should be able to
load and execute given file.

• Constant pool containing various string literals, class
and interface names, field and method names as well
as other constants that are used in the given
compilation unit.

• Access flags that determine both visibility and type of
a given compilation unit. This information defines if

and how the actual class contained in the file can be
instantiated and subclassed.

• Information on a base class and interfaces given
compilation unit inherits from or implements.

• Field and method list along with their access flags and
other modifiers.

• Attributes of class, its fields and methods that are used
to determine additional information on the
aforementioned components of a compilation units.
One of the attributes is the actual code of a method,
others represent different information that can be used
in a runtime, e.g., annotations, which are syntactic
metadata attached to the given member, or list of
exceptions that might be thrown during the execution
of a selected method.

The code attribute contains the actual bytecode instruction
listing that will be used during appropriate method invocation.
As it has already been mentioned, JVM bytecode contains
approx. 200 instructions that can be divided into the following
groups:

• Mathematical operations – these instructions are
meant for the actual mathematic operation
representation (for example, DADD instruction sums up
2 double type variables), as well as constant loading
onto the top of the stack (for example,
ICONST_0…ICONST_5 instructions allow loading
integers from 0 to 5).

• Stack operations – JVM is a stack-based virtual
machine, which means that it does not use registers of
any kind. Instead, all the local variables are loaded
onto stack and can be processed on it. These
instructions allow both writing and reading
information contained on the top of the stack (for
example, ALOAD allows pushing the object to the
stack, while ASTORE fetches it and stores in local
variable), as well as creating new objects on the top of
the stack (NEW allows creating a new object, while
NEWARRAY creates a new array of a given type).
Several instructions in this group are also meant to
copy objects (DUP creates a copy of a variable on the
top of the stack and pushes it to the top) or remove
them from stack without storing into any of the local
variables (POP).

• Type conversion instructions – for example, D2I
converts double type variable on the top of the stack to
the int type and pushes the result on the top of the
stack.

• Type checking instructions that allow both checking
the type of variable on the top of the stack and
replacing it with the check result (INSTANCEOF) or
throwing a runtime exception (CHECKCAST).

• Numerical type comparison instructions – for
example, LCMP that compares two long type
variables on the top of the stack.

• Synchronization instructions MONITORENTER and
MONITOREXIT that are used to obtain mutually
exclusive access to the given resource.

Applied Computer Systems

__ 2018/23

111

• Method invocation instructions, such as
INVOKEVIRTUAL, that allow invoking methods in a
different way.

• Instructions that allow the invoked method to return its
invocation result to other running code – for example,
ARETURN allows using an object as an invocation
result, while RETURN means that the method has not
returned any result at all.

• Branching instructions, which are used to change the
program flow during code execution. JVM has both
conditional (for example, IFACMP_EQ that changes
the flow if two objects are identical by reference) and
unconditional branching instructions (GOTO). Special
instructions also exist for switch language construct
processing, for example, TABLESWITCH.

• Debugger instruction BREAKPOINT that is not
included in the compiled Java code. Instead, debuggers
are injecting this instruction dynamically.

• ATHROW – instruction meant to throw an exception.
• ARRAYLENGTH – instruction that allows getting the

length of the array on the top of the stack.
• NOP – an empty instruction.

Each method in .class file also has information on local
variables being used. It might or might not contain information
on variable names – it depends on the way the Java code was
compiled. If local variable names are omitted during the
compilation, then there is only information on local variable
logical numbers (indices) and types.

IV. JVM BYTECODE DECOMPILING TECHNIQUES
As it can be seen from the previous section, decompilation of

Java bytecode would require extracting from the .class file
information on its members such as fields and methods,
transforming appropriate method bytecode into the source code
and adding additional information on access flags for all the parts
of the class file.

In the present paper, the author focuses on the bytecode
transformation possibilities, since other decompilation tasks can
be handled in a straightforward way by extracting the necessary
information and using simple transformation techniques.

As for the bytecode, it is necessary to understand that most
JVM bytecode instructions can also be handled in a pretty simple
and straightforward way. In this case, the author is talking about
all the groups of the bytecode instructions, except the branching.
The decompiler would also require keeping the track on the state
of the JVM stack during method invocation, so it is possible to
determine, which objects are being loaded on the stack and read
from it. It is also necessary to analyse the local variable table to
determine, which of the local variables are used during method
invocation. The author would like to provide several examples on
how the decompilation techniques for these instruction groups
might work.

The first example is shown in Fig. 1. In this case, the code itself
consists of three mathematical instructions – two load integer
constants on the top of the stack, third sums given integers up.
The last instruction in the given bytecode example tells JVM to

use the variable on the top of the stack as the return value of the
method.

ICONST_1
ICONST_2
IADD
IRETURN

Fig. 1. JVM bytecode using mathematical operations.

To restore the source code from the given byte code fragment,
decompiler must keep track on what actually is happening during
this bytecode execution. It is possible to see that because of the
first instruction invocation integer constant 1 is being put on the
top of the stack, which results in the following stack state: [1].
Second instruction puts integer constant 2 on the top of the stack,
so the stack becomes: [2,1]. Then next instruction removes two
top stack members, sums them up and puts the result of this
mathematical operation on the top of the stack, so the stack is
being turned to [1+2]. Finally, last bytecode instruction tells
JVM to use the variable on the top of the stack as a method return
value. By following this information, it is possible to see that
given bytecode fragment corresponds to the Java source code
shown in Fig. 2.

return 1 + 2;

Fig. 2. First bytecode fragment decompilation result.

Figure 3 shows a similar bytecode fragment with the only
exception that instead of integer constants, local variables are
used.

ILOAD 1
ILOAD 2
IADD
IRETURN

Fig. 3. JVM bytecode using mathematical operations and local variables.

Decompilation logic for this bytecode fragment is the same as
in the previous example: decompiler should keep the track on
what the state of the stack should become because of each
instruction execution and use this information to rebuild the
source code. When local variables are used in the bytecode
instructions, decompiler should refer to appropriate methods’
local variable table to determine actual variable names if they are
present. Figure 4 shows two possible outcomes of this bytecode
decompilation result – the first one assumes that local variable
names are present, while the second one assumes this information
was removed during the compilation process, and decompiler had
to generate variable names based on their indices in the local
variable table.

return a + b;
return var1 + var2;

Fig. 4. Second bytecode fragment decompilation result.

Applied Computer Systems

__ 2018/23

112

It is possible to see that without considering branching
instructions, decompiler’s task would be to rebuild what would
happen during appropriate bytecode instruction invocation and
emit the appropriate syntactic constructions because of its work.

If the branching instructions also appear in the bytecode, it is
necessary to analyse, to where the control flows are being
redirected by a branching instruction. Figure 5 provides the first
example of a bytecode with branching instructions.

 ILOAD 1
 ILOAD 2
 IF_ICMPLT L1
 ICONST_1
 IRETURN
L1:
 ICONST_2
 IRETURN

Fig. 5. First branching example.

Here, two local integer variables are compared, and if the
second one is less than the first one, control flow redirect
appears. It targets the label after branching instruction, so
decompiler should be able to determine that such branching
corresponds to the if language construction. Instructions that
can be found just after branching instruction, in turn,
correspond to the else part of if statement. Thus, the
decompilation result should be as shown in Fig. 6.

if (a < b) {
 return 1;
} else {
 return 2;
}

Fig. 6. First branching example decompilation result.

Another branching example is when the label, which is a
target of a control flow redirect, is located before the branching
instruction. Such cases correspond to the loops in the code
(while, for, do…while). An example of such a bytecode is
given in Fig. 7.

L1:
 …
 ILOAD 1
 ILOAD 2
 IF_ICMPLT L1
 RETURN

Fig. 7. Second branching example.

Such bytecode should be decompiled to the result that is
shown in Fig. 8.

while (a < b) {
 …
}

Fig. 8. Second branching example decompilation result.

It is worth mentioning that all the examples that are given in
this section are primitive enough, and real decompiler should
also be able to handle nested branching instructions and more
complex control flow redirections. However, these seem to be
enough to demonstrate, how Java decompiler should work and
what information it should be using during the reverse
engineering process. In the next section, the author would like
to discuss a test case that he has developed for decompiler
capability testing on a more complicated branching code.

V. DEVELOPED TEST CASE
To test how Java decompilers can handle complex branching

cases, it is necessary to develop an example that would contain
such kinds of branching. To develop such a bytecode, it is
necessary to understand what a complex branching is in JVM
bytecode.

While nested branches might result in a complex decompiled
code, such cases are not a problem to decompile – decompiler
software should keep track on where control flow redirection
labels are located in the bytecode, and should be able to detect
correct syntactic constructions.

To perform a test of decompiler capabilities, the author has
developed a test case for this kind of software, which is based
on a single loop. Loop itself contains several instructions that
are computing random integer number between 0 and 2 and then
checks, which number was generated in order to decide if the
loop should be terminated. This kind of logic in bytecode
corresponds to the while (true) loop construction that has
some break instructions inside. However, it is also possible to
enter the loop itself in its various states, which means that when
first entering the loop, it is equally possible to start with any
possible break branch. Such a bytecode means that
decompiler software should be able to come up with a solution
on how such a loop can be entered.

As a result, an example class with two methods has been
developed using Java bytecode. First method of this class is
meant to calculate random number in 0…2 interval. Bytecode
source of this method is presented in Fig. 9.

NEW java/util/Random
DUP
INVOKESPECIAL java/util/Random.<init> ()V
INVOKEVIRTUAL java/util/Random.nextInt ()I
ICONST_3
IREM
IRETURN

Fig. 9. Random number generation method.

This method creates a new instance of java.util.Random class
and invokes nextInt() method on it. Then it calculates the
remainder of division operation of the generated random integer
and 3 and returns it as a result. Java source code corresponding
to this method is presented in Fig. 10.

return new Random().nextInt() % 3;

Fig. 10. Random number generation method – Java code.

Applied Computer Systems

__ 2018/23

113

 ALOAD 0
 INVOKESPECIAL Test.rem()I
 ISTORE 1

 ILOAD 1
 ICONST_0
 IF_ICMPEQ LOOP_PART1

 ILOAD 1
 ICONST_1
 IF_ICMPEQ LOOP_PART2

 ILOAD 1
 ICONST_2
 IF_ICMPEQ LOOP_PART3

LOOP_START:

 LOOP_PART1:
 INVOKESTATIC java/lang/System.gc()V
 ALOAD 0
 INVOKESPECIAL Test.rem()I
 ICONST_0

 IF_ICMPEQ LOOP_END

 LOOP_PART2:
 INVOKESTATIC java/lang/System.gc()V
 ALOAD 0
 INVOKESPECIAL Test.rem()I
 ICONST_0

 IF_ICMPEQ LOOP_END

 LOOP_PART3:
 INVOKESTATIC java/lang/System.gc()V
 ALOAD 0
 INVOKESPECIAL Test.rem()I
 ICONST_0

 IF_ICMPEQ LOOP_END

 GOTO LOOP_START

LOOP_END:
 RETURN

Fig. 11. The main test method.

The bytecode of the main test method is shown in Fig. 11. In
order to make decompiler’s task more complicated when
processing it, a dummy method invocation of
java.lang.System.gc() has been added after each loop
entry point. This method has been chosen due to the fact that it
has void return type meaning and there is no necessity to clean
up the stack after it was invoked. Without this invocation, some
decompilers are able to reconstruct the code in the way shown
in Fig. 12. While this result is correct from the reverse
engineering point of view, it is kind of a shortcut taken by the
decompiler and does not reflect the results wanted from this test
case.

public void test() {
 int i = rem();
 while (
 ((i == 0) || ((i == 1) || (i != 2)))
 && ((rem() != 0) &&
 (rem() != 0) && (rem() !=
0))
) {
 }
}

Fig. 12. Decompiled method without System.gc() calls.

VI. RESULTS OF TEST CASE DECOMPILATION

public void test() {
 int i = this.rem();
 if (i != 0) {
 if (i != 1) {
 if (i == 2) {
 System.gc();
 if (this.rem() == 0) {
 return;
 }
 }

 System.gc();
 if (this.rem() == 0) {
 return;
 }
 }
 } else {
 System.gc();
 if (this.rem() == 0) {
 return;
 }
 }

 do {
 System.gc();
 if (this.rem() == 0) {
 break;
 }

 System.gc();
 if (this.rem() == 0) {
 break;
 }

 System.gc();
 } while (this.rem() != 0);

}

Fig. 13. Fernflower decompilation result.

In this section, the author demonstrates the results of test
example decompilation using different decompilers as well as
analyses these results.

Applied Computer Systems

__ 2018/23

114

Figure 13 shows the decompilation result obtained from
Fernflower decompiler. It is possible to see that decompiler has
unrolled the first possible iteration of the main loop – it is able
to detect that a loop entering code may be invoked up to a single
time, after which the loop should continue in a normal way. As
a result, this solution has led to a code duplication; however, the
result is readable and can be used.

public void test() {
 int i = rem();
 if (i != 0) {
 if (i == 1) {
 break label31;
 }
 if (i == 2) {
 break label42;
 }
 }
 label31:
 label42:
 do {
 System.gc();
 if (rem() == 0) {
 break;
 }
 System.gc();
 if (rem() == 0) {
 break;
 }
 System.gc();
 } while (rem() != 0);
}

Fig. 14. JD Project decompilation result.

Figure 14 shows decompilation result obtained by using JD
Project decompiler. In this case, decompiler did not unroll the
first loop iteration and utilised Java ability to use break
instruction to redirect control flow to any label. This technique
allowed avoiding code duplication in the unrolled loop
iteration. However, the result obtained from the JD Project is
not compilable, since Java does not support using break
instruction with labels that are defined after it. It is also worth
mentioning that JD Project decompiler did not use this
keyword, since it was able to identify that rem() method
belonged to the same class.

Figure 15 shows results that were obtained from the CFR
decompiler. It was unable to produce the compilable code at all,
also it did not attempt to perform the unrolling of the first loop
iteration.

Finally, Fig. 16 shows the result of using the Procyon
decompiler tool. In this case, decompiler software has not
performed loop unroll. Instead, the result of initial method
invocation before a loop is stored in final local variable that
cannot be changed and is rechecked on every iteration in order
to decide, if certain actions have to be performed. It is possible
to say that Procyon decompiler moved all the loop entry point
selection inside the loop and ensured that appropriate variable
responsible for this logic could not be changed. The
decompilation result can be compiled and executed.

public void test() {
 block1:
 {
 i = this.rem();
 if (i == 0) break block1;
 if (i == 1) **GOTO lbl9
 if (i == 2) **GOTO lbl11
 }
 do {
 System.gc();
 if (this.rem() == 0) return;
 lbl9:
 // 2 sources:
 System.gc();
 if (this.rem() == 0) return;
 lbl11:
 // 2 sources:
 System.gc();
 if (this.rem() == 0) return;
 } while (true);
}

Fig. 15. CFR decompilation result.

public void test() {
 final int i = this.rem();
 while (true) {
 Label_0042: {
 Label_0031: {
 if (i != 0) {
 if (i == 1) {
 break Label_0031;
 }
 if (i == 2) {
 break Label_0042;
 }
 }
 System.gc();
 if (this.rem() == 0) {
 return;
 }
 }
 System.gc();
 if (this.rem() == 0) {
 return;
 }
 }
 System.gc();
 if (this.rem() != 0) {
 continue;
 }
 break;
 }
}

Fig. 16. Procyon decompilation result.

The results obtained from testing decompilers against the
developed test case show that a test case itself was complex
enough, since two out of four decompilers could not produce a
code that could be compiled again. In both cases, decompilers
did not attempt to somehow modify the loop entry point
selection logic, while Fernflower performed the unrolling of the
first loop iteration but Procyon moved this logic inside the loop.

Applied Computer Systems

__ 2018/23

115

VII. ADDITIONAL DECOMPILER COMPARISON
Both Java 7 and Java 8 versions introduced new capabilities

to the Java programming language. For the Java 7 it is possible
to identify two features that could affect the decompilation
results:

• Try-with-resources syntax [13].
• Ability to use string literals in switch statement [14].

Java 8, in turn, introduced functional programming
capabilities in a form of lambda expressions [15] and method
references [16]. Modern decompilers should be able to support
these features.

public class Test {
 void java7StringSwitch(final String s) {
 switch (s) {
 case "Hello":
 System.out.println("World");
 break;
 default:
 System.out.println("Hi!");
 }
 }

 void java7TryWithResources() {
 try (
 final InputStream is =
 new FileInputStream("1.txt")
) {
 System.out.println(
 is.available());
 } catch (final IOException e) {
 e.printStackTrace();
 } finally {
 System.out.println("Bye!");
 }
 }

 void java8Lambdas() {
 new Thread(() -> {
 System.out.println("Hello");
 System.out.println("World");
 }).start();
 }

 void java8MethodReferences() {
 new Thread(
 this::java7TryWithResources)
 .start();
 }
}

Fig. 17. Java 7/8 feature test case.

The author of the present paper does not consider new syntax
construction introduced in newer Java versions – 9 and 10, since
both these versions based on the author’s experience are not yet
widely adopted.

In order to test decompiler capabilities, the author has
developed another test case in a form of Java code that was
compiled and later decompiled in order to compare the
decompilation results with an original source code. This
example is shown in Fig. 17. The results of this test case
decompilation are shown in Table III.

TABLE III
JAVA 7/8 FEATURE DECOMPILATION RESULTS

Feature Fernflower Procyon JD Project CFR
Try-with-
resources

See Fig. 18 OK See Fig. 18 See
Fig. 18

String literal in
switch

See Fig. 19 OK OK Error

Lambda
expressions

OK OK Error OK

Method
references

OK OK Error OK

Here, only Procyon decompiler was able to restore the code
to the state, which was accurately representing the source code.
Both CFR and JD Project were unable to handle some of the
features with JD Project not supporting Java 8 features and CFR
failing on string literal in switch statement. Figure 18
represents results obtained in try-with-resources statement
decompilation by three out of four decompilers. With minor
differences it was the same among all.

void java7TryWithResources() {
 try {
 InputStream is = new
 FileInputStream("1.txt");
 Throwable var2 = null;

 try {
 System.out
 .println(is.available());
 } catch (Throwable var20) {
 var2 = var20;
 throw var20;
 } finally {
 if (is != null) {
 if (var2 != null) {
 try {
 is.close();
 } catch (Throwable var1) {
 var2
 .addSuppressed(var1);
 }
 } else {
 is.close();
 }
 }

 }
 } catch (IOException var22) {
 var22.printStackTrace();
 } finally {
 System.out.println("Bye!");
 }
}

Fig. 18. Try-with-resources decompiled.

Figure 19, in turn, shows results for string literal in switch
statement decompilation by Fernflower. It is possible to see that
decompiler could not identify the correct type of the switch
instruction, but instead used the information in the bytecode to
decompile it in a straightforward way.

Applied Computer Systems

__ 2018/23

116

void java7StringSwitch(String s) {
 byte var3 = -1;
 switch(s.hashCode()) {
 case 69609650:
 if (s.equals("Hello")) {
 var3 = 0;
 }
 default:
 switch(var3) {
 case 0:
 System.out
 .println("World");
 break;
 default:
 System.out.println("Hi!");
 }

 }
}

Fig. 19. String literal in switch statement decompiled by Fernflower.

In addition to Java 7/8 feature support, it is possible to define
other requirements for the Java programming language
decompiler software. One of these requirements would be an
ability to modify the decompiled code during decompilation
process. This, for example, could be achieved, if decompiler
rebuilds abstract syntax tree (AST) [17] for the generated code
and allows processing it using the visitor pattern [18]. Such a
feature should be part of decompiler’s API and should not
require modifying its source code.

Another requirement is the license under which decompiler
is developed and distributed – it can enforce limitations on an
ability to use the decompiler in commercial products or modify
its source code, if it is available.

When looking at the extension possibility for the decompiled
code modification, it is as follows:

• Fernflower is an open source decompiler that has no
built-in API to support these kinds of modification, so
one would have to modify the source code of the
compiler itself to allow for decompiled code
processing.

• Procyon has a built-in API that supports the visitor
pattern for a decompiled AST processing. Thus, it is
not necessary to do any modifications to the
decompiler’s code – it is possible to add one’s own
extensions to it.

• JD Project has no documented API that would allow
modifying the decompiled Java source code and
adding such a functionality would require
decompiler’s source code modification.

• CFR is a closed source project and it has no
documented code modification feature. Author of the
CFR himself offers to decompile the CFR to modify it.

Licensing for the four compared Java decompilers is the
following:

• Fernflower is an open-source project that uses Apache
2.0 license [19] making it available for the commercial
projects and modification of the source code.

• Procyon also is an open-source project that is licensed
under Apache 2.0 license [19].

• JD Project is an open-source project licensed under
GNU GPLv3 license [20], which means that it is free
for a non-commercial use.

• Finally, CFR is a closed-source project. It is licensed
under MIT license [21] that allows using it in
commercial projects as well as modifying it.

VIII. CONCLUSION
In the present paper, the author has performed a study of the

Java decompilers and its capabilities by analysing performance
in different test cases, the licensing model and abilities to extend
the decompilation results.

To choose Java decompilers to be compared, the author has
used both his personal experience and a survey of Java
developers. As a result, four different decompilers have been
chosen with Fernflower and JD Project both being mostly
renown and recommended to use by other people. Surprisingly,
JD project has shown very poor performance in the author’s
developed test case and Java 7/8 feature decompilation. It is also
licensed under the GNU GPLv3 license that might limit its
usage in commercial projects. Fernflower, in turn, has
performed well enough in the main test case, but it has not been
precise when decompiling Java 7 features; however, Java 8
feature support seems mature enough.

Two other compilers, which are not popular among the
surveyed developers, have shown the following results. CFR is
unable to decompile the main test case as well as one of Java 7
test cases. It has performed very well in Java 8 test cases and
has a commercial use friendly license, but it is a closed-source
project, which means that its modification might be a
challenging task in case it is required. Procyon, in turn, is able
to handle both the main test case and Java 7/8 test cases. It is
only decompiler that is able to cover all the selected Java 7/8
features producing results close enough to the original source
code. It is only decompiler that has an API allowing for the
modification of the decompiled code. Procyon represents the
decompiled code in a form of an AST tree and allows for visitor
pattern usage to process this tree. Procyon is licensed under
Apache 2.0 license, which makes it available for commercial
products and allows for the source code modification.

It may not be easy to provide the recommendations on which
decompiler for the Java language to choose based only on the
results of the present research; however, the author himself sees
Procyon decompiler behaving the best amongst the ones
compared here. It has performed well enough in all the defined
test cases, as well as has support for additional features and a
friendly licensing model. Interestingly, this decompiler seems
to be not very well known and has not received many
recommendations during the survey, which might be explained
by the fact that developers are not familiar enough with it.

REFERENCES
[1] E. Eilam, Reversing: Secrets of Reverse Engineering, 1st edition. USA:

Wiley, 2005.
[2] TIOBE Index | TIOBE - The Software Quality Company [Online].

Available: https://www.tiobe.com/tiobe-index/ [Accessed: Sep. 3, 2018].

Applied Computer Systems

__ 2018/23

117

[3] Java Software | Oracle [Online]. https://www.oracle.com/java/
[Accessed: Sep. 3, 2018].

[4] Chapter 6 The Java Virtual Machine Instruction Set [Online].
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-6.html
[Accessed: Sep. 3, 2018].

[5] Intel® 64 and IA-32 Architectures Software Developer Manuals | Intel®
Software [Online]. https://software.intel.com/en-us/articles/intel-sdm
[Accessed: Sep. 3, 2018].

[6] Java Decompiler [Online]. http://jd.benow.ca/ [Accessed: Sep. 3, 2018].
[7] Enabling Open Innovation & Collaboration | The Eclipse Foundation

[Online]. https://www.eclipse.org/ [Accessed: Sep. 3, 2018].
[8] IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains

[Online]. https://www.jetbrains.com/idea/ [Accessed: Sep. 3, 2018].
[9] CFR - yet another java decompiler. [Online].

http://www.benf.org/other/cfr/ [Accessed: Sep. 3, 2018].
[10] mstrobel / Procyon / wiki / Java Decompiler – Bitbucket [Online].

https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
[Accessed: Sep. 3, 2018].

[11] GitHub - fesh0r/fernflower: Unofficial mirror of FernFlower Java
decompiler. [Online]. https://github.com/fesh0r/fernflower [Accessed:
Sep. 3, 2018].

[12] Chapter 4. The class File Format [Online].
https://docs.oracle.com/javase/specs/jvms/se10/html/jvms-4.html
[Accessed: Sep. 3, 2018].

[13] The try-with-resources Statement (The Java™ Tutorials> Essential
Classes > Exceptions) [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceC
lose.html [Accessed: Sep. 5, 2018].

[14] Strings in switch Statements [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/guides/language/strings-
switch.html [Accessed: Sep. 5, 2018].

[15] Lambda Expressions (The Java™ Tutorials > Learning the Java Language
> Classes and Objects) [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.h
tml [Accessed: Sep. 5, 2018].

[16] Method References (The Java™ Tutorials > Learning the Java Language
> Classes and Objects) [Online]. Available:
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.ht
ml [Accessed: Sep. 5, 2018].

[17] D. Grune, and C. J. H. Jacobs, Parsing Techniques – a Practical Guide,
2nd edition. USA: Springer-Verlag, 2008.
https://doi.org/10.1007/978-0-387-68954-8

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley,
1994.

[19] Apache License, Version 2.0 [Online]. Available:
http://www.apache.org/licenses/LICENSE-2.0 [Accessed: Sep. 6, 2018].

[20] The GNU General Public License v3.0 - GNU Project - Free Software
Foundation [Online]. Available: https://www.gnu.org/licenses/gpl-
3.0.en.html [Accessed: Sep. 6, 2018].

[21] The MIT License | Open Source Initiative [Online]. Available:
https://opensource.org/licenses/MIT [Accessed: Sep. 6, 2018].

Konstantins Gusarovs received the Master
degree in Computer Systems from Riga
Technical University, Latvia, in 2012. He is
presently the fourth-year PhD student and
Researcher at the Department of Applied
Computer Science, Riga Technical
University, as well as Java Developer at
C.T.Co Ltd. His current research interests
include object-oriented software
development and automatic obtaining of
program code.
E-mail: konstantins.gusarovs@gmail.com

https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.1007/978-0-387-68954-8
mailto:konstantins.gusarovs@gmail.com

