
Applied Computer Systems

5

ISSN 2255-8691 (online)
ISSN 2255-8683 (print)

May 2017, vol. 21, pp. 5–12
doi: 10.1515/acss-2017-0001

https://www.degruyter.com/view/j/acss

©2017 Artūrs Bartusevičs, Andrejs Lesovskis, Viktorija Ponomarenko.
This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Model-Driven Approach and Library of Reusable

Source Code for Automation of IT Operations

Artūrs Bartusevičs1, Andrejs Lesovskis2, Viktorija Ponomarenko3
1–3 Riga Technical University, Latvia

Abstract – Large software development projects with high

levels of agility require several IT operations: software

configuration management, bug tracking management, making

software builds and deployments. Due to high agility in projects,

the starting phases are very chaotic and sometimes in a few days

customer is willing to get the first release of software. It means

that all IT operations should be automated as soon as possible.

The study presents a model-driven approach for automation of

IT operations through the reuse of the existing source code. In

addition, it presents a method for the development of library of

reusable source code. The paper contains a brief description of

the model-driven approach, library of source code and meta-

models developed for a new methodology. The paper ends with

the results of the practical experiments and conclusions on how

this approach could be improved in the future.

Keywords – Automation, IT operations, meta-models, model-

driven approach, reusable source code.

I. INTRODUCTION

Let us imagine a modern software development company

that develops large and complex software where different

technologies are integrated together: Oracle, Java, Ruby,

.NET, etc. Multiple bug tracking systems are used to manage

the development of the mentioned software and a

sophisticated procedure of software configuration

management should be applied to manage the source codes in

multiple repositories. These repositories are controlled by

different version control systems such as Git and Subversion.

Frequent builds and deployments are required to support up-

to-date testing process.

First, it is extremely important to automate all these

activities that in the context of the current paper will also be

called IT operations. Secondly, this automation should be

implemented as soon as possible because manual work will

waste time and human factors can greatly increase the

likelihood of error. Nowadays starts of new projects are like

explosion and customer is willing to get the first release of

software just in a few days. However, an automated process

which can prepare release is still not ready.

The mentioned software development company has a

number of modern tools to automate IT operations, including

but not limited to software configuration management, bug

tracking, creation of software builds and deployments,

continuous integration, etc. [1]. Is it possible to manage all

these operations by a click of one button? For example, the

project described above has a tool and a script to manage

versions of the source code, a tool to make builds and

deployments, and scripts to manage issues in the bug tracking

system. On the one hand, it seems that all operations are

automated, but in reality they are automated separately and

could not be managed by one click. Therefore, a software

configuration manager should first manage branches using

version control tools and scripts, then make software builds

and deployments for test environments, and finally update the

information about related issues in the bug tracking systems.

Sometimes it is possible to achieve such a high level of

automation that allows for the management of all the

mentioned operations with just one click. However, are these

automation solutions reusable? How much time will it take to

implement similar automation in a new project? Are

automations of different operations integrated together and

could they be controlled by one click? Usually, these

questions become a challenge for software development

companies. The current paper will describe some of possible

answers to the mentioned questions. Figure 1 summarises the

scope of the paper and the problems that will be justified.

Applied Computer Systems

__ 2017/21

6

Fig. 1. The scope, definitions and problems of the paper.

Scope

The study is devoted to large-scale software development

projects with complex environments, many development

technologies and different tools to manage the configurations

of software items and to track issues and changes in the

software. The main topic is easy-to-use, fast, and cost-efficient

automation of IT operations in such a large project.

Definitions

 IT operations – all technical operations to manage

configurations of software items, branch using version

control tools, bug track, perform continuous integration,

make and deploy software builds, etc.

 Automation of IT operations – preparation of scripts for a

particular platform to automate the activities mentioned

in the definition above.

Problem statements

 Implementation of automation of IT operations in new

projects takes too much time;

 Existing scripts, tools, and approaches for automation are

not reusable in a particular enterprise; as a result,

implementation time could not be decreased by reuse of

existing scripts.

 Automation could not be managed by one click from one

tool, switching to different tools increases overall time

spent to support IT operations.

Novelty of the research

 A method for the development of library of reusable

source code for automation of different IT operations;

 Model-driven approach to generate source code for

automation of operations in the projects using the library

of reusable source code;

 Meta-models for models, which implement a new model-

driven approach provided in the paper.

Structure of the paper

The second section of the paper provides background and

history of current research, as well as introduces other related

works. The third section briefly describes the method for the

development of library of reusable source code for

automation. The fourth section contains the description of a

model-driven approach for generating source code for

automation and related meta-model. The fifth section is

dedicated to the practical applications of the provided

approach and lessons learnt. The paper ends with conclusions

and areas for future research.

II. BACKGROUND AND HISTORY

Current research started four years ago. Then only software

configuration management was included in the research topic.

First, the analysis of the books about the best practices of

software configuration management [2], [3] helped the authors

to discover an interesting problem. Sometimes a ready

solution for automation of software configuration management

process is not in compliance with the initial requirements of

the mentioned process. It means that the purpose of some

requirements is lost during the development of process

automation source code. Authors of the mentioned books [2],

[3] introduce the use of models for the initial requirements of

process, for example, branching models, models of software

builds and deployment process, etc. After the source code for

the automation of the mentioned processes is ready, it should

be checked for compliance with models of requirements. It

was one of the first attempts to use a model-driven approach in

the field of software configuration management. Later other

researchers came up with new ideas to use model-driven

approaches for software configuration management and

automation of related processes [4], [5]. Some of the benefits

of using a model-driven approach for the automation are the

following:

 Generating source code for automation by a model-

driven approach could reduce manual efforts and save

time during the development of code;

 Increasing traceability between initial requirements and

source code.

Later, ideas to use a model-driven approach have been

provided in a few papers related to software configuration

management [6], [7], [8]. Until 2009, software configuration

DEV TEST PROD

How to automate operations related to moving
software changes among environments?

Easy, Faster, Cost heap...

Complex Environments
with Different

technologies: Oracle,
Ruby, Java, .NET ...

Few Bug Tracking units

Few different repositories

Platform

Call

IT operations

Automation of IT Operations = Preparing Executable Scripts for Particular Platform

Builds
Deployments

Software
Configuration
Management

Bug
Tracking Management

Scripts

IT operations
management server

Are existing solutions for automation reusable?
How much time will implementation of automation take in new projects?

Are automations of different operations integrated and could be controlled by one click?

Applied Computer Systems

__ 2017/21

7

management and automation of related processes have been

studied together with build and deployment management,

integration with bug tracking, continuous integration, etc. All

these processes have been designated as IT operations, but

huge methodology and research topic related to automation

and improvement of the mentioned operations have called

DevOps [1], [9]. One of the main challenges of DevOps

approach was a statement that a speed of IT operations should

be quite high to get in time working software to a customer

during a high level of agility [9], [10]. Most of modern IT

operation automation tools use a model-driven approach [1].

As an example, OpenMake tools could be mentioned. Tracy

Ragan, one of the authors of OpenMake tools, said that novel

solutions for automation of IT operations would not exist

without a model-driven approach because static scripts could

not be successfully applied in a cloud where there was no

information about static addresses of servers or about

platforms [9]. During the research described in the present

paper, a number of tools and approaches related to automation

have been studied. These tools have the following

disadvantages:

 Sometimes, the scope of tools is only one particular IT

operation, for example, building and deployment. There

are no recommendations on how to integrate these tools

with the tools that automate some other operations.

Some tools require purchasing of licences, installing a number

of additional tools and refactoring a structure of the existing

projects. It could be a problem for managers of companies,

because usually companies already have a number of trusted

tools, scripts, and best practices. Companies would like to

increase reuse of the existing and trusted tools and scripts,

instead of buying new, unknown, and untrusted tools.

As a result of the analysis, the authors of this paper have

also taken a model-driven approach as the main idea for a new

solution for automation. However, the provided solution does

not have any restrictions on what tools will be used or what

operations will be automated. The provided solution allows

developers to create a library with the reusable units of source

code for automation of different operations. The library can be

extended by adding new units and can work with the existing

and trusted tools and scripts. In addition, a new model-driven

approach can generate source codes for automation of the

operations in the particular project using the library of

reusable source code.

The authors have made the first attempt to adopt a model-

driven approach for software configuration management in

2014 [11]. Concept described in [12] contains names of

models and steps to generate source code for automation.

However, meta-models have not been developed yet. The first

meta-model for this concept has been described in [12]. The

first completed solution for automation of software

configuration management has been introduced in [13], but the

first practical results have been described in [14] and [15]. In

the present research, automation of software configuration

management is extended by other IT operations; in addition,

the library of reusable source code and meta-models are

improved and several errors from previous versions are fixed.

Figure 2 illustrates the main principles of the provided

approach. There is a method how to develop the library of

reusable source code and a model-driven approach which

could generate source code for automation of IT operations in

particular projects.

Fig. 2. The main principles of the provided approach.

Applied Computer Systems

__ 2017/21

8

III. LIBRARY OF REUSABLE SOURCE CODE

Main Principles

The basic element of library of reusable source code is

Action. Action is an executable function which gets input

parameters and returns result of execution as a set of output

parameters. Single Action is illustrated in Fig. 3.

Fig. 3. Action.

Action does not contain any information about other

Actions. However, Actions could be combined into

ActionFlow – a set of single Actions with a particular goal.

For example, ActionFlow could move software changes

between two environments: DEV and TEST. Such

ActionFlow could contain the following Actions:

 Finding new commits in a version control repository

(find_commits);

 Merging new commits to a branch of TEST environment

(merge);

 Making a software build from a TEST branch (build);

 Deploying the created build to the servers of TEST

environments (deploy);

 Sending notifications to the testers about a new version in

a TEST environment (notify).

Each mentioned Action receives a set of parameters, makes

necessary activities, and returns a set of output parameters.

The next Action depends on the output parameters of previous

Action. Figure 4 demonstrates an example with the Actions

build and install, which are combined to one ActionFlow.

Fig. 4. Actions and ActionFlow.

The library of reusable source code contains two parts: the

structure of directories and files with reusable source code and

library manager. Structure of directories or library of source

code contains all Actions (executable functions). Functions are

structured by:

 Platform;

 Tools and Frameworks.

All Actions or functions related to a particular tool or

framework are grouped in one file depending on rules of a

particular programming language. The file contains private

functions for internal use only and public functions for

external use, called Actions in the context of the described

approach. Library manager contains the following parts:

Applied Computer Systems

__ 2017/21

9

 ALL_Actions – table with all Actions. The table contains

ID of each Action, description of parameters and body of

Action;

 Recommended_ActionFlow – recommendations about

Actions, which could be better to include in flows

depending on tools. In other words, there is a collection

of best practices in a particular enterprise, where the

approach will be applied.

 Examples_from_existing_projects – links to automation

scripts from other projects;

 Full structure of library illustrated in Fig. 5.

Fig. 5. Structure of library of reusable source code.

IV. MODEL-DRIVEN APPROACH FOR GENERATING SOURCE

CODE FOR AUTOMATION

A. Steps of Model-driven Approach

The model-driven approach provided in the present paper

uses the library of reusable source code to generate scripts for

automation of IT operations in particular projects. Overview

of the provided approach is illustrated in Fig. 6.

Fig. 6. Model-driven approach to generate source code for automation.

Applied Computer Systems

__ 2017/21

10

The following elements have been developed for the

implementation of a model-driven approach depicted in Fig. 6:

 Library of reusable source code described in the previous

section;

 Meta-model for Platform Independent Environment

Model;

 Meta-model for Platform Specific Action Model for

Linux platform.

There are two main goals of the approach:

 Getting source code for automation of particular IT

operations;

 Getting structure of views and jobs for an automation

management server (for example, Jenkins, which can be

seen in Fig. 6).

To achieve these goals, the model-driven approach has been

designed, which contains the following three steps:

STEP 1: Software configuration manager or other

responsible person models IT operations in a particular

project. The model describes environments and operations

related to moving software changes between them. The model

does not contain any details about the platform.

STEP 2: Platform Independent Environment Model

transforming to a Platform Specific Action Model according

to the rules of a particular platform and programming

language. The current paper presents an action model for

Linux platform; however, the provided model-driven approach

could be fulfilled by action models for other platforms.

Platform Specific Action Model contains empty ActionFlows

described before.

STEP 3: Software configuration manager or other

responsible person working with reusable source code library

to add code of Actions to ActionFlows on a Platform Specific

Action Model. As a result, source code for automation of

modelled IT operations is ready.

Finally, the structure of views and jobs on a management

server (for example, Jenkins) should be prepared according to

a Platform Independent Action Model. The mentioned server

will call the source code prepared by a model-driven approach

to manage automation of IT operations.

B. Use Case

To illustrate the practical application of models described in

a model-driven approach, let us take software development

project in the development phase. There are two applications:

Oracle EBS and Ruby on Rails web-portal that are integrated

together. There are two bug tracking projects in JIRA, which

manages changes of Oracle EBS and Ruby applications.

Activities in development take place in DEV environment, but

all changes from development should be transferred to a TEST

environment for the testing process. In addition, statuses of

related JIRA issues should be updated after each new release

in the TEST environment. The main goal is to get one magic

button in Jenkins server to automate all the mentioned

activities related to change transfer between DEV and TEST

and related to information update in the bug tracking projects.

Jenkins button requires Linux shell scripts to automate the

mentioned operations. This section describes how to get these

scripts.

Automation of the described use case is illustrated in Fig. 7.

Software configuration manager decided that automation of

daily upgrades of TEST environment should be managed by

“test_delivery” view and process “DEV_TO_TEST”. Process

should contain the following three steps:

 GET_ISSUES – find all issues in two JIRA projects,

which should be updated after a new release in a TEST

environment;

 COLLECT_AND_INSTALL – make builds and

deployments for Oracle EBS and Ruby applications in

TEST environment;

 CHANGE_STATUSES – update related issues in JIRA

project after successful deployments in TEST

environment.

First, a configuration manager creates a Platform

Independent Environment Model, which contains information

about TEST environment (applications and JIRA instances),

process “DEV_TO_TEST” and steps of it.

Secondly, the model is transformed to a Platform Specific

Action Model according to the designed meta-model for Linux

platform. Action model actually is a source code for Linux

platform, but during the current step, ActionFlows for nodes

and instances are empty.

Finally, a configuration manager works with the library of

reusable source code to add Actions to the corresponding

ActionFlows. After that the source code is ready for Jenkins

server, which is setup according to a Platform Independent

Action Model (Fig. 7).

Applied Computer Systems

__ 2017/21

11

Fig. 7. Use case for a model-driven approach.

V. EXPERIMENTS

During the testing of the proposed model-driven approach,

automation of IT operations has been implemented in five

different software development projects. Implementation time

has been fixed for each project. Then the mentioned

implementation time has been compared with related

implementation time of automation but without the use of a

model-driven approach. Figure 8 shows the difference in

automation time when using old methods and the proposed

model driven approach.

Fig. 8. Use case for a model-driven approach.

Blue colour in Figure 8 represents implementation time

using old methods, and red colour represents implementation

time when a model-driven approach is used. Results of the

experiments show that if the library of reusable source code is

empty, implementation of automation using the proposed

model-driven approach is not rational – it takes notably more

time. However, once the library of reusable source code con-

tains all the necessary Actions, implementation of automation

using the model-driven approach can save time (project 2 – 36

hours, project 3 – 52 hours, project 4 – 3 hours, project 5 – 44

hours). To improve the efficiency of the proposed model-

driven approach, it is necessary to find out how to fill the

library of reusable source code as soon as possible. It will help

reduce the implementation time in project 1.

VI. CONCLUSION AND FURTHER RESEARCH

The study presents a model-driven approach for

implementation of automation of IT operations. The approach

uses reusable source code for automation of single activities.

A method for the development of the library of reusable

source code has also been designed during the current

Applied Computer Systems

__ 2017/21

12

research. In the context of the presented model-driven

approach, the following meta-models have been designed:

 Meta-model for a Platform Independent Environment

Model;

 Meta-model for a Platform Specific Action Model for

Linux platform;

Practical experiments with the proposed model-driven

approach show that only filled library of reusable source code

could bring benefits and save time comparing to

implementation of automation using old methods. It means

that one of the most important further studies is the generation

of source code for single actions and transfer of this code to

the library. It should decrease the time for library

development.

Software configuration manager, using knowledge about

automation domain, could manually write the source code for

single Actions and add it to the library. Once the library is

filled, it could be used by a model-driven approach to generate

the source code for automation of operations in a particular

project.

In the future, the source code for single actions should be

generated by an expert system. The expert system will use the

collected knowledge about a particular domain (automation

domain) and human experience. Such an intellectual solution

could provide a modern approach for generation of reusable

source code repositories for different domains. At the same

time, models for generation of custom source code could

become simpler because the number of reusable functions will

be quite smaller than that of elements in the traditional

programming languages.

VII. ACKNOWLEDGEMENT

The present research has partly been funded by Latvian

National Research Programme “Cyber-physical Systems,

Ontologies And Biophotonics for Safe & Smart City and

Society” (SOPHIS) Project No.2 “Ontology-based Knowledge

Engineering Technologies Suitable for Web Environment”.

REFERENCES

[1] R. Azoff, DevOps: Advances in Release Management and Automation,

2011. [Online]. Available: http://electric-cloud.com/wp-

content/uploads/2014/06/EC-IAR_Ovum-DevOps.pdf.
[2] S. P. Berczuk and B Appleton, Software Configuration Management

Patterns: Effective Teamwork. Practical Integration, Addison-Wesley
Professional, 2003.

[3] R. Aiello, Configuration Management Best Practices: Practical Methods

that Work in the Real World. 1st ed. Addison-Wesley Professional,
2010.

[4] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering -

FSE ’12, 2012. https://doi.org/10.1145/2393596.2393648
[5] H. Giese, A. Seibel, T. Vogel, “A Model-Driven Configuration

Management System for Advanced IT Service Management,” in
International Conference on Model Driven Engineering Languages and

Systems (MoDELS 2009). USA, October 4–9, 2009. IEEE Digital

Library: 4th International Workshop on Models. pp. 300–310.
[6] T. Buchmann, A. Dotor, and B. Westfechtel, “MOD2-SCM: A model-

driven product line for software configuration management systems,”

Information and Software Technology, vol. 55, no. 3, pp. 630–650, Mar.

2013. https://doi.org/10.1016/j.infsof.2012.07.010
[7] T. Buchmann and B. Westfechtel, “Mapping feature models onto

domain models: ensuring consistency of configured domain models,”

Software & Systems Modeling, vol. 13, no. 4, pp. 1495–1527, Dec. 2012.
https://doi.org/10.1007/s10270-012-0305-5

[8] F. Schwägerl, T. Buchmann, S. Uhrig, & B. Westfechtel, “Towards the
integration of model-driven engineering, software product line

engineering, and software configuration management,” in Proceedings

of the 3rd International Conference on Model-Driven Engineering and
Software Development, 2015, pp. 5–18.

https://doi.org/10.5220/0005195000050018
[9] T. Ragan, “21st-Century DevOps--an End to the 20th-Century Practice

of Writing Static Build and Deploy Scripts,” Linux Journal, vol. 2013,

issue 230, pp. 116–120, June 2013
[10] P. Grzegrzólka, “Configuration management in agile software

development,” in BIR 2009 – 8th International Conference on
Perspectives in Business Informatics Research, 2014.

[11] A. Bartusevics and L. Novickis, “Model-based Approach for

Implementation of Software Configuration Management Process,” in

MODELSWARD 2015: Proceedings of the 3rd International Conference

on Model-Driven Engineering and Software Development, France,
Angers, 9–11 February, 2015. Lisbon: SciTePress, 2015, pp. 177–184.

ISBN 978-989-758-083-3.

[12] A. Bartusevics, L. Novickis, and E. Bluemel, “Intellectual Model-Based
Configuration Management Conception,” Applied Computer Systems,

vol. 15, no. 1, pp. 22–27, Jan. 2014. https://doi.org/10.2478/acss-2014-
0003

[13] L. Novickis and A. Bartusevics, “Model-Driven Software Configuration

Management and Environment Model,” in Recent Advances in
Electrical and Electronic Engineering: Proceedings of the 3rd

International Conference on Systems, Communications, Computers and
Applications (CSCCA"14), Italy, Florence, 22–24 November, 2014.

Florence: WSEAS Press, 2014, pp. 132–140. ISBN 978-960-474-399-5.

ISSN 1790-5117.
[14] A. Bartusevics, A. Lesovskis, and L. Novickis, “Semantic Web

Technologies and Model-Driven Approach for the Development and
Configuration Management of Intelligent Web-Based Systems,” in

Proceedings of the 2015 International Conference on Circuits, Systems,

Signal Processing, Communications and Computers, Austria, Vienna,
15–17 March, 2015. Vienna: 2015, pp. 32–39. ISBN 978-1-61804-285-

9. ISSN 1790-5117.
[15] A. Bartusevics, L. Novickis, and S. Leye, “Models and Methods of

Software Configuration Management,” Applied Computer Systems, vol.

17, no. 1, Jan. 2015. pp. 53–59. https://doi.org/10.1515/acss-2015-0008

Artūrs Bartusevičs is a Senior Researcher of the Institute of Applied
Computer System. He obtained Dr. sc. ing. degree in systems analysis,

modelling and design from Riga Technical University in 2015 He takes active

part in several national research programmes: Latvian State Research
Programme in information technologies based on ontologies and models

transformation, Latvian Research Council Project in Web Technologies and
Artificial Intelligence etc. He successfully combines academic and business

activities: he is also a Software Configuration Management Specialist at

international company Tieto Latvia.
E-mail: arturs.bartusevics@rtu.lv

Andrejs Lesovskis is a Doctoral student at Riga Technical University, the

Faculty of Computer Science and Information Technology. He obtained MSc

degree in Computer Science and Information Technology at Riga Technical
University in 2009. His research areas include e-learning and semantic web.

E-mail: andrejs.lesovskis@rtu.lv

Viktorija Ponomarenko is a Doctoral student at Riga Technical University.

She holds a Master degree in business informatics from RTU. As a Researcher
of the Institute of ACS, She was involved in several European and National

projects: European Fund Development project “Development of Insurance
Distributed Software Based on Intelligent Agents, Modelling and Web

Technologies”, Latvian Research Council Project in Web Technologies and

Artificial Intelligence, Latvian State Research Programme in information
technologies based on ontologies and models transformation, FP7 project

eINTERASIA etc.
E-mail: viktorija.ponomarenko@rtu.lv

https://doi.org/10.1145/2393596.2393648
https://doi.org/10.1016/j.infsof.2012.07.010
https://doi.org/10.1007/s10270-012-0305-5
https://doi.org/10.5220/0005195000050018
https://doi.org/10.2478/acss-2014-0003
https://doi.org/10.2478/acss-2014-0003
https://doi.org/10.1515/acss-2015-0008

