
Applied Computer Systems doi: 10.1515/acss-2016-0006

___ 2016/19

44
©2016 Nisrine El Marzouki, Oksana Nikiforova, Younes Lakhrissi, Mohammed El Mohajir. This is an open access article licensed under the

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Enhancing Conflict Resolution Mechanism for

Automatic Model Composition

Nisrine El Marzouki1, Oksana Nikiforova2, Younes Lakhrissi3, Mohammed El Mohajir4

1, 3, 4 Sidi Mohamed Ben Abdellah University, Morocco, 1, 2 Riga Technical University, Latvia

Abstract – Despite the fact that model composition paradigm

becomes very important and most commonly used, the support

for their cooperation has not reached its full strength, especially

in managing composition conflicts, because it’s often divided

between and confused with other model composition features.

This makes handling and dealing with these conflicts a crucial

activity in the composition process. Models need to be put under

version control in order to manage the probable conflicts,

facilitate collaboration and control change. Therefore, a solution

for detecting and resolving conflicts is needed. In this paper, we

present a composition conflict resolver presented in the form of a

repository that helps manage composition conflicts and analyse

the model and operations performed on it.

Keywords – Conflict Detection, conflict resolution, conflicting

model composition, model composition

I. INTRODUCTION

In general, incompabilities between independently

developed modules are hard to solve. For simple conflict

cases, the current technology provide relatively simple

mechanisms. On the one hand they are easy to understand and

to apply, but on the other hand they fail for even slightly more

difficult problems. In this context, the composition of separate

concerns is a cornstone for the construction of complex

software, however a large number of composition concepts

have evolved and been successfully put into practice, but their

abilities to cope with composition conflicts are mostly limited,

that why defining a repository to manage conflicts seems a

major task in large model composition projects.

Indeed, in this paper we enhance the concept of managing

composition conflict through a generic repository dedicated to

the resolution of potential composition conflict in order to

uncover composition errors and ensure that a composed model

is produced with a level of credibility.

The main new idea of the research is to propose a general

repository for model composition activities, which can be

applied to conflicting model composition errors in particular.

As the first step toward a global repository, our research will

be based on a set of actions for detecting and correcting

composition conflicts.

The remainder of this paper is structured as follows: Section

2 presents some common concepts and definitions because we

recognise that without solid foundation it will not be possible

to produce any new solution for managing model composition

conflict. Sections 3 and 4 present a compact outline of our

solution. A classification of conflicts detection and resolution

strategies are given is Section 5. After a discussion of related

studies in Section 6, we conclude the paper with a summary of

our future research.

II. BACKGROUND

There is little compromise in model composition jargon,

and even less on the basic specifications of a model

composition solution. To address this issue, the authors

present in this section a common set of concepts and

definitions for model composition in order to use this

assessment to drive the key characteristics of our repository.

A. Concepts and Definitions

We propose a set of definitions for a model composition

framework. They are an extraction of previous research [2]

[3]. The formal definitions are intended as a starting point for

a new solution. The approaches presented in [4] follow

standards of model-driven architecture. This means they all

have models as the central concept. The models are

represented as graphs. In this case it is straightforward to

converge to a graph model representation.

Definition 1 (Model). A model can be simply defined as a

representation or abstraction of the system. By analogy with

the world of programming, an executable program represents

the modeled system while the source code of this program

represents the model. From this analogy, we can use a new

relationship called representedBy [1] between the model and

the modeled system. In the MDA concept, the definition of a

modeling language takes the form of a model, called

metamodel [5]. The result is a new relationship called

conformTo [1], which connects a model to the language in

which it is expressed. (See Fig. 1).

Definition 2 (Metametamodel). A metametamodel is a

model with a unique reference model. It defines the structure

that must have any metamodel.

Definition 3 (Metamodel). A metamodel defines the

structure that must have every model in accordance with this

metamodel, it means that any model must follow the structure

defined by its metamodel.

Definition 4 (Metamodeling). The purpose of

metamodeling is to set a framework for defining modeling

languages. Indeed, with the onset of MDA, space models is

becoming broader and takes all dimensions of application

(business, technical, level of abstraction, etc.) [6]. The idea is

to use as many modeling languages as possible to express

these models. These languages are dedicated to a particular

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2016/19

45

domain (Domain Specific Modeling Languages – DSMLs).

Metamodeling offers ways to define these DSMLs, study their

relationship and thus control their complexity.

The approaches studied before [4] afford a way to harness

the mapping between models in the context of model

composition. In EML [8], the comparison rules are a central

concept to produce a weaving model. First they specify merge

rules that take as input the result of the comparison rules and

then give as an output a set of relationships between the model

elements presented in a form of weaving model. AMW [7]

present the weaving model as a set of matching and merging

links.

Definition 5 (Model transformation). A model

transformation is defined by the operation of generating one or

more target models from one or more source models.

Based on the Model driven Architecture principles, a

transformation model defined by a Mt model is the process

that transforms a Ma model (conforms to a MMa metamodel)

to an Mb model (conforms to a MMb metamodel). In a more

formal way, we can define this operation by the function Mb:

MMb = Transf (Ma: MMa, Mt: MMt).

Depending on the abstraction level change caused by the

transformation and the nature of the Meta source and target

involved, several types of transformation are considered.

Thus, there are the so-called endogenous transformations

whose source and target models conform to the same

metamodel and so-called exogenous transformations whose

source and target metamodels are different.

Moreover, if we take into consideration the elements

matched by a transformation process we can distinguish three

types of transformation:

• Simple transformations (1 to 1) associate to any element of

the source model at most one element of the target model.

• Multiple transformations (M to N) that take as input a set

of elements in the source model and produce as output a

set of elements (usually different) of the target model.

• The update transformations also called changes on site

(add, delete, change properties, etc.). These

transformations are characterized by the absence of the

target model and therefore directly affect the source

model. Restructuring transformations (refactoring) is a

typical example of this type of transformation.

On the other hand, if we consider the level change of

abstraction as a criterion for comparison, there are two types

of transformation: vertical and horizontal. A vertical

transformation causes a change in level of abstraction, it is the

case of refining PIM to PSM in MDA approach, and a

transformation is called horizontal if the models involved

belong to the same level of abstraction.

Definition 6 (Meta-association). A meta-association

allows to define a relationship between two metaclasses. In

fact, a meta-Association defines the structure of links between

meta-object instances metaclasses connected by the meta-

Association

Definition 7 (Compose operation). The compose operation

MAB = Compose (MA, MB, CAB) takes two models MA,

MB and a correspondence model CAB between them as input

and combines their elements into a new output model.

In the model composition approaches [4] there are some

differences in the terminology to specify what a composition

is. Apart from composition, the second most employed term is

merge. However it is advisable to separate merge and

composition. Composition is a more general operation. The

semantic is specified in different operations by a set of rules,

and it varies from case to case. Merge, however, is a special

case of model composition. Merge has information

preservation constraints, i.e., all the information from the input

models should be present in the output models, and no

duplicate information.

Definition 8 (Merge operation). The merge operation

MAB = Merge (MA, MB, CAB) takes two models MA, MB

and a correspondence model CAB between them as input, and

returns a model MAB including all the information from MA

and MB, without duplicate information. The correspondence

model is created by the match operation. It specifies the

elements that are going to be merged.

Fig. 1. Basics of model engineering [2].

B. Requirement for a Model Composition

The authors in their research [1] identified a core set of

requirements for a model composition framework to

complement the definitions for model composition presented

in literature with a concrete set of minimal requirements for a

model composition framework. Obviously, this is an initial set

of requirements and it will likely need refinement after more

practical experience and experiments with the frameworks

have been carried out.

The authors in their research [1] identified a core set of

requirements for a model composition framework to

complement the definitions for model composition presented

in literature with a concrete set of minimal requirements for a

model composition framework. Obviously, this is an initial set

of requirements and it will likely need refinement after more

practical experience and experiments with the frameworks

have been carried out.

A refining model composition framework must provide at

least the following operations:

• Means to reconstruct and reuse the composition

elements;

In this category we find the AMW [8] approach that offers a

weaving generic metamodel that defines the composition of

links to a higher level of abstraction, the extension of this

metamodel for defining the semantics of links depending on

Applied Computer Systems

 ___ 2016/19

46

the application domain. The EML [7] supports generics by

defining reusable generic rule libraries, and lets you merge

models that conform to different Meta.

• Means to ensure consistency of models handled during

the composition process.

• Means to define the ability of the approach to compose

models without human intervention, in order to offer a

more automated composition process.

• Means to determine the languages that support the

traceability of changes and the possibility to keep track of

each execution of a transformation rule.

• Means to identify corresponding elements in the models

that are to be composed;

• Means to define how input elements can be matched in

order to produce the target model;

Two desirable, practical requirements can be identified

from [1]:

• A model composition framework should provide a means

for formalizing the composition process by giving a

formal definition of the composition operations and

handled models;

• A model composition framework should be generic and

independent of any modeling language to support future

changes.

Tool support for model composition must provide at least

the following:

• A module for detecting and resolving composition

conflict;

• A runtime module for model composition operations;

• A resolver for resolving failures and discrepancies that

happen during the composition process;

• A refining mechanism for charging and preserving the

models structure;

• Checking and merging rules to validate the model

composition operations;

III. CONFLICT WITHIN MODEL COMPOSITION

In this section we motivate the need for detecting and

resolving conflict in a model composition process and identify

some of the instructions that can be followed to detect and

resolve composition conflicts. We focus our attention to the

class diagrams inconsistencies.

Several studies [10], [11] have demonstrated that managing

conflicts and dependencies can be done by identifying

possible conflicts and give them a solution or a transformation

rule. Thus, in this phase of harmonization, the authors have

identified three possible conflicts— Lexical conflicts,

structural conflicts and semantic conflicts.

Lexical conflicts: this kind of conflict is caused by the

confusion of identifying lexically equivalent concepts;

multiple meanings and synonyms of classes introduced in the

design of inputs models coming from different teams of

designers make the mission more difficult. Indeed, a synonym

dictionary is used in order to identify mappings among domain

concepts that have an equal semantic value. The great benefit

of using synonym dictionaries is to pave the way for the

domain specialists to explicitly apply their domain expertise in

the matching process.

Structural conflicts: Here we distinguish between 2 types of

conflicts—those related to the type of association between two

classes, and those related to the inheritance hierarchy. The

authors intend using the TreeDiff implementation available in

[12]. Our choice was based on its ability to identify structural

similarities between trees in reasonable time. The result of the

Tree Diff algorithm is the detection of concept equivalence

groups. They are represented as subtrees of the enriched

ontologies. Concepts that belong to such groups are compared

in order to identify if lexically equivalent pairs can also be

identified among the ancestors and descendants of the original

pair.

Syntactic conflicts: includes class invariants, constraints,

and operations specifications formalized by pre- and post-

conditions expressed in OCL. As defined in [13], here we can

use the Typographic Similarity, —where a syntactic property

of a mode element defines its structure. The signature is a

collection of values assigned to a subset of syntactic properties

in a model elements metamodel class. If an instance of a

Classis an abstract class then isAbstract = true for the class,

otherwise the instance is a concrete class, isAbstract = false.

The set of syntactic properties used to determine a profile

elements signature called a signature type [14].

Moreover, understanding of the UML rules of class diagram

allows for an efficient detection of conflicts. In general a

conflict occurs when changes performed in parallel not only

interfere with the modified element, but also with others. For

example, semantic conflicts may occur when a developer

modifies an element that depends on another element modified

by other developers [15]. As semantic conflicts are more

difficult to detect, they can generate false negative conflicts.

Therefore, understanding of the rules related to the diagrams

can also help reduce false negative conflicts.

IV. A REPOSITORY FOR COMPOSITION CONFLICT

In this section, descriptions of the repository are followed

by illustrated examples. The set of resolution rules defined in

this paper is not intended to be a complete set, but serves as a

starting point for the eventual definition of a complete set of

managing model composition conflict.

A. Overview:

There are several approaches to detect conflicts related to

model composition. In this paper we reason about managing

conflicts as a separated module presented in the form of a

repository which communicate in real time with a composition

framework or consistency analyser and can be used in every

phase during the composition process as presented in Fig. 2.

Some approaches pursue a more global way of reasoning by

looking at the composition conflict as a secondary module

included in the implementation of others modules. To

illustrate this, we take another look at this paradigm by trying

to determine all kinds of conflicts interacting at several levels

(Class, relationship, operations). The authors are convinced

that it would not be possible to detect conflict by looking only

Applied Computer Systems

 ___ 2016/19

47

at the whole composition process: a separate context is needed

to determine that the problem exists and then to propose a

solution. Indeed, our primary goal is to define a generic

module presented in the form of a repository for the

composition phases (comparison, weaving, verification), to

precisely describe, detect and resolve composition conflicts.

Fig. 2. A graphical concept of the composition conflict repository.

B. Composition Conflict Categories

The main goal of our repository is to model, detect and

resolve composition conflicts related to the model composition

process. Within this context, we identify several categories of

composition conflicts. To analyse the causes of these conflicts

precisely, we first identify probable causes. Next, we define

explicit actions to resolve composition conflicts related to

composition. We built a methodology based on UML rules

(Table. I) that detects and analyses composition conflicts. As

presented in the Fig. 2 we distinguish four categories of

composition conflicts that can occur when a composition

process occurs: syntactic conflicts, structural conflicts and

semantic conflicts. The first type of conflict is the conflict

caused by the multiple meanings and synonyms of models

introduced as input models (classes, operations or attributes).

The second type relates to structural conflicts between classes.

Here we distinguish between those who are related to the type

of association between two classes, those related to the

inheritance hierarchy. The hierarchy of conflicts include

inheritance cycles (which can appear when you want to merge

the hierarchies from input models) and the level of conflict.

The third type of conflict involves semantic conflicts that

concern modeling elements. This includes class invariants,

constraints, and operations specifications formalised by pre-

and post-conditions expressed in OCL (Object Constraint

Language). (See Table. II).

TABLE I

UML SEMANTICS RULES [26]

Number Rule

1 In a mapping relationship such as Derivation, it is usually formal and unidirectional. In other cases, such as Trace, it is

usually informal and bidirectional. The mapping expression is optional and may be omitted if the precise relationship
between the elements is not specified.

2 In a generalization relationship, for each attribute in the superclass, an equivalent attribute is inferred for the subclass
unless the attribute in question has a private visibility.

3 In a generalisation relationship, for each operation in the superclass, an equivalent operation is inferred for the subclass
unless the operation in question has a private visibility.

4 In a generalisation relationship, for each association in the superclass, an equivalent association is inferred for the

subclass.

5 In a realisation relationship, for each attribute of the interface, an equivalent attribute is inferred for the class.

6 In a realisation relationship, for each operation of the interface, an equivalent operation is inferred for the class.

7 If a class is abstract and all its methods are abstract then, if there is an interface that has the same name and the same
elements, they are semantically equivalent.

TABLE II

THE DIFFERENT CONFLICT CATEGORIES TO DEAL WITH IN THE COMPOSITION PROCESS [26]

Conflict Category Conflict Types Modeling element involved

Syntactic Synonymy Class, operation, attribute

Polysemy

Structural Inheritance cycle Class

Generalisation

Association

Different level in hierarchy

Different types of associations

Semantic Contradictory semantic assertions Class, operation, attribute

Applied Computer Systems

 ___ 2016/19

48

V. RESOLUTION STRATEGIES

To resolve the conflicts presented in the previous part, we

propose an interactive approach in three steps to address

probable composition errors. The first step solves conflicts of

polysemy and synonymy class hierarchy and conflicts. The

second step can solve hierarchy conflicts using the same

process. The third step solves conflicts over the semantic

assertions.

A. Step 1: Treatment of Polysemy and Synonymy Models

In general, the classes of a system are supposed to have

different names. But as the input models can be made by

various teams’ designers, the risk of having identical names

for classes with different roles is strong. Hence, there is a need

for treatment polysemy in order to achieve consistent models.

The resolution strategy follows these instructions:

• Identify models that have the same name in the input

models.

• Determine if they have the same responsibilities.

• Solve otherwise the conflict by renaming models.

• Choose new names for these models.

Check that these new names will not make a new problems

of multiple meanings in the various dictionaries of classes;

otherwise, we should choose other names until there are no

more problems.

Figure 3 below summarises the key steps in the process of

dealing with polysemy conflicts between input models.

Fig. 3. A graphical concept of the composition conflict repository.

Treatment of synonymy is also an important step in the

composition process to avoid duplication and ensure

consistency between models. This treatment consists of:

• Identifying on the input models if there are any models

that have the same role and different names;

• Renaming synonyms models that have the same name;

• Updating class dictionaries affected by this renaming.

B. Step 2: Treatment of Structural Inconsistency Conflicts

The resolution of this type of conflict aims to eliminate the

structural inconsistencies between input models. This category

includes conflicts of cycle’ inheritance. These are problems of

parent classes at different hierarchical levels, and

inconsistencies between the types of association.

In case of inconsistency of the types of association between

classes, we developed the following priorities based on the

rules presented in Table. I and some previous research [27]

[28]:

• Association vs Navigable Association: In this case the

association predominates, because otherwise we risk

losing information. Thereby a navigable association is

bidirectional by default. This means that if an association

exists between two classes, then both objects know about

each other. If “A” is the source class and “B” is the target

class, the arrowhead would be placed on the “B” side of

the association. A navigable association of this type

means that at runtime object “A” knows about object

“B”, but object “B” has no knowledge of or visibility into

object “A”.

• Navigable associations in opposite direction: The

relationship between the two models is transformed into

association (without navigation) that provides access to

the source information.

• Association vs Composition: The relationship becomes

an aggregation; thus, to guarantee the concept of

compound.

• Association vs. Aggregation: Aggregation predominate

because it conveys structural information that we should

maintain.

C. Step 3: Treatment of Semantic Conflicts

To automate the processing of this type of conflict, we must

call a “semantic” tool in order to analyse OCL expressions,

detect conflicts and redundancies between semantic assertions

established for an element defined in multiple input models.

An example of resolving this kind of problem will be

presented in the next section.

VI. ANALYSIS OF CONFLICTS RELATED TO COMPOSITION

As we have previously identified different types of

conflicts, in this section we discuss the various possibilities for

handling and resolving every kind of conflict during the

composition process.

A. Conflict Identification Example: University Artifact.

To show the different composition conflicts in a real case

we will refer to a modeling system of the university artifacts

(Fig. 3) made by different teams’ designer, this example will

illustrate the key elements of our solution.

We focus on the composition of two class diagrams, which

correspond to different team’s point of view.

Applied Computer Systems

 ___ 2016/19

49

Fig. 4. Class diagrams made by two different teams: University artifacts.

Referring to Fig. 5, we consider operations addStudent()

and addStudent(s:Student) in a class CourseOffering that is

part of a class diagram for the university artifact, the operation

addUser() defined by the first team in a class named

CourseOffering adds a student to a collection of student. The

addStudent operation in the second context of modelling calls

the addStudent(s:Student) operation if and only if the user

calling the operation is recognized to add a student. The

addStudent(s:Student) operation adds a user to the list. This,

the composition of these two different operations produces a

conflict because the two operations have different framing and

involved in different context. This is an example of a property

conflict – a property conflict occurs when two matching

elements (elements with the same name and syntactic type) are

associated with conflicting properties. In this example, the

intention is to merge the addStudent() operation made by a

team with the addStudent(s: Student) operation produced by

another team. To resolve this conflict, and based on some

composition directives [8], we should rename the

addStudent(s:Student) operation (First Team) to

checkAndAddStudent, and keep the addStudent() operation in

the same name. Renaming elements is not always a good

solution to resolve this kind of conflict.

Fig. 5. An example of property conflict during the composition process of two class diagram.

Applied Computer Systems

 ___ 2016/19

50

As presented in Fig. 6, the first class diagram contains a

class CourseCapacity with an attribute maxStudent: int, which

has the constraint {maxStudent = 10}. The second class

diagram with the same name (CourseCapacity) and the same

attribute (maxStudent), but different constraint {maxStudent =

12}. Indeed, applying a merge operation to the two class

diagrams will provide a property conflict, particularly in

matching attributes because their constraint ({maxStudent =

10 and maxStudent = 2}) is incoherent. Yet, specifying an

operation that will replace the other one can be a good

directive to resolve this conflict. In this case, the properties

operation with the high level of priority crushed the properties

of the overloaded elements. This solution has also a poor side,

because overriding relations can provide a cycle of conflict,

especially when the two elements have the same level of

priority and are in direct link with dominant properties. This to

say that some time, it is necessary during the composition

process to apply others operations (add, delete) to the elements

in the goal to ensure producing a refined result. [6]

Our repository can be used to apply any kind of possible

resolution during the composition process. If we take the

example of an association, to guarantee and facilitate aces to

an element, an association may be added or deleted

(depending on the type of conflict) in order to avoid a security

risk.

Fig. 6. An example of constraint conflict during the composition process of two class diagram.

B. Conflict Resolution

In this section we present many tables that summarise

actions for resolving model composition conflict at several

levels based on some previous research [25], [29].

TABLE III

MODEL COMPOSITION CONFLICT RESOLUTION AT CLASS LEVEL [29]

TABLE IV

MODEL COMPOSITION CONFLICT RESOLUTION AT RELATIONSHIP LEVEL [29]

TABLE V

MODEL COMPOSITION CONFLICT RESOLUTION AT METHOD LEVEL [29]

Operation Description Conflict Type

Class-Level

Reappoint

Class

change the name of the class and

update the dictionary renaming

Lexical and

syntactical

Displace

Class

Remove the current class and move all

its properties to another class.

Lexical and

syntactical

Take out

 Class

Move the property from the current

class to a new one.

Lexical and

syntactical

Relationship-Level

Take out

 Hierarchy

During an inheritance hierarchy, we

add a new class to a subclass.

Structural

Take out
Subclass

Move the property from the current
subclass to a new one.

Structural

Take out

 Superclass

Move the property from the current

superclass to a new one.

Structural

Crash

Hierarchy

Delete a class from an inheritance

hierarchy.

Structural

Method-Level

Step Down
Method

Displace a method from a
subclass, in order to put it in a

class that require it more.

Structural

Step Up

Method

Displace a method from a class

to a superclass.

Structural

Rename
Method

change the name of the method
and update the dictionary

renaming

Lexical and
syntactical

Reappoint

Method

change the name and the

accessibility of the class and
update the dictionary renaming

Syntactical

Raise
Method

copy the same method in
several classes

Syntactical

Displace

Method

Remove the method from the

current class and move all its
features to another class.

Syntactical

Applied Computer Systems

 ___ 2016/19

51

TABLE VI

MODEL COMPOSITION CONFLICT RESOLUTION AT FIELD LEVEL [29]

VII. RELATED WORK

In [19], the authors propose dividing the system into two

types of interference in order to identify automatically classes

of interference and allow developers to pick up potentially

unwanted flow information. However, this is not presented as

a framework for detecting conflict; thereby it focuses on the

interactions in the weaving phase, while we focus on conflicts

generated in any phase during the composition process.

In [20], Katz shows how to detect interactions that

invalidate desirable properties, he proposes a new method of

regression, checking and verification with a possible division

into static analysis. In our research, we do not focus on

checking undesirable system properties, and do not take in

consideration that the programs can be augmented with

specifications.

In [21], [22], [23], Clarke et al. describe a global model

composition approach based on subjects, The compositions of

subjects as a particular view of the comprehensive system

include many operations that allow conflict resolution through

the application of several measurement between conflicting

elements, but nothing further. They describe directives that

support the composition of constraints, and the deletion of

model elements.

In [24], Douence et al. detect interactions between aspects

using static analysis. When conflicts are detected, they can be

resolved by extending the specification of the aspects. In this

paper, we use graph transformations to simulate aspect

compositions, thereby also modeling part of the semantics of

the language. In our research we focus on how to detect and

resolve conflicts related to the mode composition process.

VIII. CONCLUSION AND FUTURE WORK

This paper defines a set of composition conflict resolution

presented in a form of repository that facilitates the

customisation of model composition. This repository can form

the basis for the development of tools to support the model

composition process from the comparison phase to the

verification phase. The repository also provides a common

vocabulary for describing composition conflict actions.

Illustrated examples demonstrate the use of each action.

The main challenge of the present research is to contribute

to the understanding of composition conflicts, in particular

within the scope of structural composition. To this extent we

propose and illustrate a systematic approach to analyze such

composition conflicts in a precise and concrete manner. We

propose several actions to express conflict detection and

resolution rules. These actions have been introduced to deliver

a precise explanation why and when some forms of

composition cause a conflict, and to ensure that the categories

are not overlapping. Also, the precise formulation makes it

possible to perform the conflict detection fully automatically,

for example, as a separate module which communicate in real

time with a composition framework or consistency analyser.

The actions defined by our repository are expressive in the

sense that they can specify common composition conflict

actions such as renaming, replacing models, and at the same

time they can be used to specify creation and removal of

model elements, making it possible to significantly alter how

models are composed.

Empirical evaluation is needed to validate the repository in

real world design settings. Specifically the amount of effort

required to specify the kinds of resolution that are required in

real world designs needs to be empirically evaluated; the

development of a tractable method of identifying conflicts in

the composed model needs to be investigated; and the

currently defined repository needs to be evaluated for its

ability to support the kinds of composition conflict that

actually occur. This evaluation could result in the specification

of some common detection conflict strategies to manage the

complexity of specifying compositions and could be an area of

future research. We are also exploring how to express the

applicability and consequences of using a generic repository in

terms that it can interact in any step of the composition

process. We plan to investigate the use of the Object

Constraint Language [25] for this purpose.

ACKNOWLEDGEMENTS

The research presented in this article has been supported by

the research grant of the Erasmus+ EU program for a mobility

period between Sidi Mohamed Ben Abdellah University and

Riga Technical University and also by Grant of Latvian

Council of Science No. 09.1269 "Methods and Models Based

on Distributed Artificial Intelligence and Web Technologies

for Development of Intelligent Applied Software and

Computer System Architecture".

REFERENCES

[1] J. Bézivin, S. Bouzitouna, M. D. Del Fabro, M. Gervais, F. Jouault,

D. Kolovos, I. Kurtev, R. Paige, “A Canonical Scheme for Model

Composition,” Proc. of ECMDA-FA, LNCS 4066, Springer-Verlag,
2006, pp. 346–360. http://dx.doi.org/10.1007/11787044_26

[2] J. Bézivin, F. Jouault, D. Touzet, “An introduction to the ATLAS Model

Management Architecture,” LINA, Nantes University, Feb. 2005.

Field-Level

Step Down

Field

Displace a field from a

subclass, in order to put it in
a class that require it more.

Structural

Step Up

Field

Displace a field from a class

to a superclass.

Structural

Displace
Field

Remove the field from the
current class and move all

its features to another class.

Structural

Reappoint

Field

change the name of the field

and update the dictionary

renaming

Lexical and

syntactical

Decline

Field

Remove the field from the

current class and move all

its features to another class.

Syntactical

Raise Field copy the same field in

several classes

Syntactic

Encapsulate
Field

Increase accessibility to a
field through the creation of

getter and setter.

Syntactical

http://dx.doi.org/10.1007/11787044_26

Applied Computer Systems

 ___ 2016/19

52

[3] B. Baudry, “An overview of approaches Oriented Models Aspects,”

MOA days (Models oriented aspects), Toulouse, 2009.

[4] N. E. Marzouki, Y. Lakhrissi, M. Elmohajir, “A Study of Behavioral and
Structural Composition Methods and Techniques,” 978-1-4673-7689-

1/IEEE-16-April 2016.
[5] B. Combemale, “Meta modeling approach for simulation and model

checking – Application to process engineering,” Thesis of the National

Polytechnic Institute of Toulouse, July 2008.
[6] A. Muller, “Construction of systems by applying parameterized

models,” Thesis of the University of Lille 1, June 2006.
[7] Atlas Model Weaver Project Web Page. (2005). Available:

http://www.eclipse.org/gmt/amw/

[8] EMF Eclipse. Eclipse modeling framework. (2006). Available:
http://www.sysml.org/docs/specs/OMGSysML-v1.1-08-11-01.pdf

[9] R. Pottinger and P. Bernstein, “Towards Model Composition,” in Proc.
VLDB, ACM, 2003.

[10] P. Kelsen and Q. Ma, “A Modular Model Composition Technique,” in

D.S. Rosenblum and G. Taentzer (Eds.). Fundamental Approaches to
Software Engineering, LNCS 6013, pp. 173–187, 2010, Springer-Verlag

Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-12029-9_13
[11] I. H. Moghadam and M. O Cinneide, “Resolving Conict and Dependency

in Refactoring to a Desired Design,” e-Informatica Software Engineering

Journal, vol. 9, Issue 1, 2015. http://dx.doi.org/10.5277/e-Inf150103
[12] Y. Lin, J. Gray, and F. Jouault, “DSMDiff: a differentiation tool for

domain-specific models,” European J. of Information Systems, vol. 16,
pp. 349–361, 2007. http://dx.doi.org/10.1057/palgrave.ejis.3000685

[13] M. Alanen and I. Porres, “Difference and Union of Models,” in J.

Whittle, and G. Booch (eds.), “UML” 2003 - The Unified Modeling
Language. Modeling Languages and Applications Stevens, 2003.

http://dx.doi.org/10.1007/978-3-540-45221-8_2
[14] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, et al., “Directives for

Composing Aspect-Oriented Design Class Models,” Transactions of

Aspect-Oriented Software Development I, vol. 3880, LNCS, pp. 75–105,
Springer. http://dx.doi.org/10.1007/11687061_3

[15] C. Brun and A. Pierantonio, “Model differences in the eclipse modelling
framework,” The European J for the Informatics Professional,

UPGRADE, vol. IX, issue 2, pp. 29–34, 2008.

[16] H. Zhang, “Delay-insensitive networks,” M.S. thesis, University of
Waterloo, Waterloo, ON, Canada, 1997.

[17] A. Rezi and M. Allam, “Techniques in array processing by means of

transformations,” Control and Dynamic Systems, Multidemsional

Systems: Signal Processing and Modeling Techniques, C. T. Leondes,

Ed. San Diego: Academic Press, vol. 69, pp. 133–180, 1995.
http://dx.doi.org/10.1016/S0090-5267(05)80040-4

[18] N. Osifchin and G. Vau, “Power considerations for the modernization of
telecommunications in Central and Eastern European and former Soviet

Union (CEE/FSU) countries,” in Second Int. Telecommun. Energy Special

Conf., 1997, pp. 9–16. http://dx.doi.org/10.1109/TELESC.1997.655690
[19] M. Rinard, A. Salcianu, and S. Bugrara, “A classification system and

analysis for interactions in aspect-oriented programs,” in Foundations of
Software Engineering (FSE), pp. 147–158. ACM, Oct. 2004.

http://dx.doi.org/10.1145/1041685.1029917

[20] S. Katz, “Diagnosis of harmful aspects using regression verification,” in
C. Clifton, R. Lammel, and G. T. Leavens (eds.), FOAL: Foundations Of

Aspect-Oriented Languages, pp. 1–6, Mar. 2004.
[21] S. Clarke and J. Murphy, “Developing a tool to support the application

of aspect-oriented programming principles to the design phase,” in Proc.

of the Int. Conf. on Software Engineering, ICSE '98, Kyoto, Japan, April
1998.

[22] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. “Separating concerns

throughout the development lifecycle,” in Proc. of the 3rd ECOOP

Aspect-Oriented Programming Workshop, Lisbon, Portugal, June 1999.
[23] S. Clarke. “Extending standard UML with model composition

semantics,” Science of Computer Programming, vol. 44, issue 1, pp. 71–
100, Elsevier Science, July 2002. http://dx.doi.org/10.1016/S0167-

6423(02)00030-8

[24] R. Douence, P. Fradet, and M. Sudholt, “Composition, reuse and interaction
analysis of stateful aspects,” in K. Lieberherr (ed.), Proc. 3rd Int. Conf. on

Aspect-Oriented Software Development, AOSD ‘2004, pp. 141–150, ACM
Press, Mar. 2004. http://dx.doi.org/10.1145/976270.976288

[25] The Object Management Group (OMG). Unified Modeling Language.

OMG, Available: http://www.omg.org/docs/formal/03-03-01.pdf.
Version 1.5, March 2003.

[26] UML Syntax and Semantics Guide V1.1, OMG, ad/97-08-03, Available:
www.rational.com/UML.

[27] A. Anwar, “Formalization by IDM approach to compose models in the

VUML profile,” Thesis, Toulouse University, Dec. 2009.
[28] A. Kriouile, “BOOM, an object-oriented method of analysis and design

through views,” Thesis, Faculty of Sciences Rabat, Morocco, 1995.
[29] I. H. Moghadam and M. O Cinneide, “Resolving Conflict and

Dependency in Refactoring to a Desired Design,” e-Informatica

Software Engineering J., vol. 9, issue 1, 2015, pp. 37–56.
http://dx.doi.org/10.5277/e-Inf150103

Nisrine El Marzouki is a second-year PhD student at the Laboratory of

Computer Science, Modelling and Systems of the Faculty of Science at Sidi

Mohamed Ben Abdellah University, Morocco. His current research interest is
model composition in the framework of model driven architecture approach.

E-mail: elmarzoukinisrinegmail.com

Oksana Nikiforova received the Doctoral degree in Information

Technologies (system analysis, modelling and design) from Riga Technical
University, Latvia, in 2001. She is a Professor at Riga Technical University.

Her current research interests include object-oriented system analysis and
modelling, especially the issues on model driven software development

E-mail: oksana.nikiforova@rtu.lv

Younes Lakhrissi received the doctoral degree in information technologies

(system analysis, modeling and design) from Toulouse le Mirail University,

France, in 2010. He is presently a Professor with the Sidi Mohamed Ben

Abdellah University. His current research interests include object-oriented

system analysis and modelling, especially the issues on Model Driven
Engineering.

E-mail: younes.lakhrissi@gmail.com

Mohammed El Mohajir obtained his PhD in science from the University

Catholic of Louvain (Belgium) in 1997. He was Doctor Research Associate
from 1997 to 1998 at UCL, Belgium. He then moved to the United Kingdom

to hold a Senior Research Associate position at the School of Mathematics at
the University of East Anglia in Norwich. He joined Sidi Mohamed Ben

Abdelah University in 2004. He is now full Professor at the department of

computer sciences at the Faculty of Science Dhar Mahraz. His research
interest is towards conceptual modeling, requirement engineering and

entreprise Organizational modeling, decision-support Information Systems
and Big Data Analytics.

E-mail: m.elmohajir@ieee.ma

http://dx.doi.org/10.1007/978-3-642-12029-9_13
http://dx.doi.org/10.5277/e-Inf150103
http://dx.doi.org/10.1057/palgrave.ejis.3000685
http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://dx.doi.org/10.1007/11687061_3
http://dx.doi.org/10.1016/S0090-5267(05)80040-4
http://dx.doi.org/10.1109/TELESC.1997.655690
http://dx.doi.org/10.1145/1041685.1029917
http://dx.doi.org/10.1016/S0167-6423(02)00030-8
http://dx.doi.org/10.1016/S0167-6423(02)00030-8
http://dx.doi.org/10.1145/976270.976288
http://dx.doi.org/10.5277/e-Inf150103
http://www.ucl.ac.be/
http://www.ucl.ac.be/
http://www.mth.uea.ac.uk/
http://www.mth.uea.ac.uk/
http://www.usmba.ac.ma/
http://www.usmba.ac.ma/
http://www.fsdmfes.ac.ma/

