
Applied Computer Systems doi: 10.1515/acss-2016-0004

___ 2016/19

30
©2016 Padmaraj Nidagundi, Leonids Novickis. This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Introduction to Lean Canvas Transformation Models

and Metrics in Software Testing

Padmaraj Nidagundi1, Leonids Novickis2

1 IITMinds, India, 2 Riga Technical University, Latvia

Abstract – Software plays a key role nowadays in all fields,

from simple up to cutting-edge technologies and most of

technology devices now work on software. Software development

verification and validation have become very important to

produce the high quality software according to business

stakeholder requirements. Different software development

methodologies have given a new dimension for software testing.

In traditional waterfall software development software testing

has approached the end point and begins with resource planning,

a test plan is designed and test criteria are defined for acceptance

testing. In this process most of test plan is well documented and it

leads towards the time-consuming processes. For the modern

software development methodology such as agile where long test

processes and documentations are not followed strictly due to

small iteration of software development and testing, lean canvas

transformation models can be a solution. This paper provides a

new dimension to find out the possibilities of adopting the lean

transformation models and metrics in the software test plan to

simplify the test process for further use of these test metrics on

canvas.

Keywords – Lean canvas, software testing, software validation,

software verification, test process.

I. INTRODUCTION

Now the growing technology makes human depend in day-

to-day life more on software embedded devices. Software

itself plays a key role in human life. The software

development has also changed from the past decade and new

development methodologies are introduced by new fast

software development and testing concepts such as agile. On

the one hand, fast development of software is going on and, on

the other hand, fast validating and verification parallel

supporting built high quality error free software in a fast way

according to the requirements.

In a software development company the software testing

process gives more power to build high quality software. In

recent years software testing has gained more value

proposition that can directly impact the software building and

delivering process. The lean canvas transformation models

may bring a new dimension to software testing overcoming

many obstacles such as test plan, long test documentation, test

resource planning to software release.

The word “lean” comes from lean manufacturing and shows

the elimination of unnecessary waste “muda” from the process

and brings the value proposition of the overall process. The

lean concept is re-used by Ash Maurya for the lean canvas for

the business [1]. Till nowadays lean canvas was used as a

business mode and for defining a business plan, a problem,

solutions, key metrics and possible advantages.

The lean process concept is focused on the removing of the

waste and improving the efficiency of the development

process. This can have a direct impact on speeding up the

software development process and reducing the development

time as well as the cost. Meanwhile a company can develop

high quality software in the correctly estimated timeframe.

Many studies have shown that lean main advantage is

delivering the product earlier than the planned time. It means

that the software developer team develops and delivers more

product functionalities in short time and the testing team can

verify and validate them. This can also influence the project

finance and directly customers. The adoption of the lean

process concept in software development improves the

decision making in the team and keeps the team motivated all

the time. This way it can affect the quality of the final product

of the customer.

A. Scientific Novelty of Paper

Lean canvas is created to evaluate the business model. It is

one white board with several segmentations that mean a

lightweight one-page document that shows the product

creation to evaluate marketing fit.

Our core contribution is to highlight the identified test

metrics and possibilities of adoption of the use of lean canvas

transformation models in the software test process.

Specifically:

• To identify the entry criteria, exit criteria for the software

product testing.

o In waterfall model where software testing process at

the end and long test documentation are time

consuming.

o In agile where software development cycle is very

short and software testing needs to be done in time and

there is very less time for lightweight test

documentation creation.

o In software test documentation, where it is very

difficult to cover all test items.

o In test planning where before software testing starts a

test plan must be ready.

• To evaluate possibilities of adoption lean canvas

transformation models in software testing.

• To find the way to generate different test metrics, which

affect the software testing.

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2016/19

31

B. Structure of Paper

The current paper is divided into the three main sections and

conclusion. Section 1 formulates the problem and Section 2

provides the brief introduction of related studies to business

model canvas by using modern approach. Section 3 shows

testing process and indication of lean test metrics for further

utilisation for the canvas board.

II. THE PROBLEM WE TACKLE

We have many challenges which concern the software test

planning to manually test as well as automatically till

delivering tested software to end customer. In the manual

testing process, a developer develops software and assumes its

tester job to test it, and the company does not have any test

process. A tester’s responsibility is to pick up and test the

item; thus, a tester is a middleman between a developer and an

end customer, a key person who is directly responsible to

bring the high quality software [3]. The most common

challenges a tester can face:

• Complete testing of the software application:

Is it possible? To test all possible amalgamation

including manual testing as well as the automation one,

there may be a combination of thousands of tests needed.

With a large number of tests a tester is never able to

deliver the tested software product to an end customer.

Fig. 1. Block diagram for the test process overview.

• Misinterpretation of the test process at a company:

Sometimes at a company a tester is not very much

focused on the well-defined test process and sometimes a

tester follows the whole well-defined process but still it

does not apply to its current testing scenario. This all

leads to the imperfect and unsuitable software product

testing.

• Person-to-person communication with developers:

Sometimes a big problem in a software development

company is communication between the developer and

the tester or the test team. The tester needs to know how

to manage the relationship and keep good

communication skills.

• Verifying the software in regression testing:

When the software project has grown and become more

complex, the time of regression testing becomes

unrestrained. Regression testing thrusts to manage the

functionality changes comparing the new with the

previous developed software and reports defects.

• Absence of the proficient tester:

It is a pure management decision to add the proficient

tester or not well trained tester in the project and expect

high results. This leads towards the poor tested software

product to end software users.

• Testing time restriction:

Most of time, we have noticed the boss comes and says

we are releasing the software soon. Now the tester is in a

hurry to complete the whole list of tasks within the time

restriction. On this way the tester can focus only on the

completion of the work and not on the test coverage.

• Executing the earliest test cases:

This is pretty challenging to take the right decision for

which test cases are very important and need to be

executed with of priority. This is under pressure all the

time.

• Comprehension of the requirements:

In some situations the tester is directly responsible for

the communication with the end customer to analyse and

comprehend the requirements. In most situations the

tester needs to focus very much on the listing and

understanding the requirements to test the software in the

right way.

• Exit criteria for software testing:

To make a right decision to stop testing is an arduous

resolution, the pre-defined exit criteria can help simplify

this process. It is a very important step where all test

processes get stopped and this decision is either made by

the tester or the whole team together with the confident.

• One test team or a team member can be in a different

project at the same time:

It is a bit challenging to keep the track of each task.

Communication gaps lead towards the failure of both or

one of the projects.

• Reuse of the test document and test scripts:

In software development the process of software

application changes rapidly and it is still difficult to

manage the test script and tools. Re-utilisation of the test

document and test script is very much needed and it is a

complex task.

• Managing the resource change:

If an experienced tester leaves the company and an

unexperienced tester is nominated in his place, the

Applied Computer Systems

 ___ 2016/19

32

company might face a big problem. The real challenge is

to train the new tester in the specific project from the

beginning and it delays the production of the well tested

software.

• Test automation:

It is always challenging what to automate and what not to

and what level of automation we need with software and

how it can affect the test coverage.

• Agile testing:

Agile has brought the concept of the time-boxed

development, where sprints are managing the development

process within a short time and a limited scope. Agile also

adopted the cutting edge process such as continuous

integration, where the developer checks-in the code several

times a day and at the same time it is recompiled [2]. It shows

that software is continuously changing. In agile development

software is built in smaller development cycles and the

requirements are also small to fit in the sprint. Short

development cycles are focused on the fast testing of the

software that builds in the sprint as well as covers the all

possible tests.

Our approach: In software development process testing

related problems are identified and these problems can be

managed using lean canvas transformation models.

Introducing the possible solutions to make the software testing

process more productive different software development

methodologies with lean canvas must be applied.

III. RELATED RESEARCH

Alexander Osterwalder introduced the business model

canvas for the first time. After that it has become widely used

with startup companies. The main purpose of the lean canvas

is to evaluate a business model and products planned to build

and market. The lean canvas validate the “business plan” and

focuses on the scale of the business.

Fig. 2. Lean canvas life cycle.

Figure 2 demonstrates the full life cycle of the lean canvas.

Everything starts with an idea: using this idea you want to

work on it and it flows towards building the idea and taking it

to the next stage of making it as a product. Once the product is

ready we can measure it with different metrics. Metrics

generate some useful data and we can use the data for the

learning process to improve the idea. You will notice a

complete loop of the canvas that helps validate the business

idea.

A. Lean Canvas Meta Principles

• Make a document of your plan A

• Make an identification of the hazardous parts of your

plan

• Regularly test your plan

The meta principle above helps identify the hazardous parts

of your plan. There are three stages, which help to identify

hazards.

First Stage: Problem/solution fit

Second Stage: Product/market fit

Third Stage: Scale

B. Lean Canvas Life Cycle

The principle from the lean startup (as shown above in Fig.

2): A) Ideas b) Build c) Product d) Measure e) Data f) Learn.

From above we can now generate the lean canvas for the

business validation.

From the formulation above we can identify a similar term

in software testing.

Step 1: Ideas = Software Components

Step 2: Build = Development

Step 3: Product = Testing

Step 4: Measure = Test Measure

Step 5: Data = Test Data

Step 6: Learn = Lean and Feedback

IV. TRANSFORMATION OF THE LEAN TEST LIFE CYCLE

As seen in the previous chapter about the meta principles

and lean canvas life cycle, it validates the business. Now

adopting the same principles and identifying and transferring

similar steps to software testing we can possibly have a new

lean canvas software life cycle.

Fig. 3. Abstract of lean canvas life cycle to lean test canvas life cycle.

Applied Computer Systems

 ___ 2016/19

33

V. DIFFERENT SOFTWARE DEVELOPMENT LIFE CYCLES &

SOFTWARE TEST LIFE CYCLE IMPACT ON

LEAN TEST LIFE CYCLE

A. Different Software Development Life Cycles

Software building is continuously changing from one

decade; day to day new tools are introduced on the market to

build the high quality error free software to end customers. A

waterfall model develops a methodology adaptation nowadays

and it slows down against agile (Scrum, DSDM, FDD, Lean,

eXtreme programming, Crystal). The modern new DevOps

have brought one more new dimension to software

development industry.

Waterfall methodology: It is a traditional approach of the

software development where first all requirements are

gathered, designed, coded, tested and maintained. As we have

noticed, software testing makes its software delivering process

slow and increases the risk of the software failure.

Agile: In February 2001 agile manifesto for agile software

development was released. The core principle of the agile

software development focuses on the a) induvial and

collaborative work b) building working software c)

stakeholder’s collaboration d) a quick response to changes

[17].

DevOps – At the agile conference held in 2008 the agile

infrastructure team introduced the “DevOps” [18]. It is a

cultural change that focuses on the collaboration of the

development, operation and QA team and makes them work

together.

Fig. 4. DevOps work environment.

A number of tools are used in DevOps to make them more

productive, the tools are set together and are called “DevOps

Toolchain”

Code – Programming and code review use continues

integration tools.

Build – Version control for code merging.

Test – Software testing delivers the performance.

Package – Store the code base in an artefact repository.

Release – Release automation with tools.

Configure – Configuration management tools used.

Monitor – End user experience can be monitored with

complete application with different tools.

Software development and testing – There are several

methodologies in practice at a company but the core challenge

is to build the high quality software in a fast way and to

deliver it to the end customers. The software testing also

becomes very complicated with growth of different hardware

and software and one must support them simultaneously.

Direct impact of software testing is to meet the requirement

that is defined in the software development and respond to all

kind of inputs correctly and produce the correct output [10]. In

traditional way, software testing is divided into two ways:

white-box and black-box testing.

White-box testing is used in the unit, integration and system

testing process. In white box different techniques [4] are used

such as API testing, code coverage, fault injection, mutation &

static testing.

Black-box testing is testing the application without knowing

the application. The black box includes methods such as fuzzy

testing, boundary valve analysis, use case testing, exploratory

testing, etc.

Automation testing – The growth of test driven

development and continuous integration tool usage increase

the software test automation [7]. Test automation can speed up

the testing process and help in regression testing.

Fig. 5. Overview of the automation testing process.

As seen in Fig. 5, in the first step check we are able to

automate application or not, and identify what level of

automation is possible. In the next step we can select a more

appropriate tool that gives a maximum benefit. In the next step

we select a correct frame work that supports the tool.

Applied Computer Systems

 ___ 2016/19

34

In the next step we build the proof of concept (POC) for the

end-to-end test case scenario evaluation. The end-to-end test

case automation can prove that the software all-important

functionalities can be automated.

In the next step the developing of the automation frame

work is carried out in such a way that it works like an

intelligent platform, which uses the test automation tools. In

the final step test cases are executed by scheduling at any time

without much human effort [9].

B. Different Test Life Cycles

Software testing is not a single activity or process. It consists

of many other sub-activities and these all sub-processes are

called an STLC.

Fig. 6. STLC overview.

There are different test life cycles in use in the software

industry due to different developments and test processes

companies adopted. Test life cycles are called STLC –

Software Testing Life Cycle. In the requirement analysis the

test team focuses on the understanding of the requirements in

a clear way from the client, business analyst technical leads,

and system architects.

Once QA team has the requirement then tests are classified

as functional, non-functional and test automation possibilities

are analysed. In the test planning phase, we calculate the

approximate cost and efforts estimation for the project.

In this phase we also determine the test tool selection [5],

resource planning and responsibilities, which are distributed

among the team members. In the next phase of the test

environment setup software hardware and software conditions

are determined.

At the same time, test team works on more technical topics

such as architecture, hardware and software test environment.

Details are focused on by the test team. In the test execution

phase the test team will start working according to the test

plans, execute the test cases and found software defects are

reported.

In the final phase the test team members come together and

discuss and analyse the testing they have done till now and

review to learn lessons from the overall STLC test and

identify the best practices for similar future projects.

VI. TESTING PROCESS WASTE AND RIGHT TEST METRICS

IDENTIFICATION USING LEAN PRINCIPLES

A. Lean Principles for Identifying the Waste in Testing

Lean development principle focuses on the seven core

points.

1) Elimination of waste – It is very important to investigate

what kind of waste we are having in the test planning to

process if it is related to documentation, regression test,

test resource planning or something else. Proper test

functionality, tool section, defining test criteria help

eliminate the waste [16].

2) Increase learning – Educating the team on a constant

basis with new changes in software can save a lot of time

in testing. Software introduces new functionality and the

tester gets to know at the end of such a situation which he

needs to avoid. Sometimes the tester finishes his work

and waits for a very long time which is also because of

the lack of test management process knowledge.

3) Judge as late as possible – This situation needs to be

avoided and a delayed decision costs much more in

software testing, so better to adopt the right method of

testing to the complete product.

4) Distribute as fast as possible – If a software item can be

tested in a distributed way it brings the fast output in

terms of finding possible defects very early. We can use

crowed sourcing or cloud software testing service to test

software in a fast way.

5) Delegate the team – Test team lead can engage the

testers, remove obstacles, teach them micro managing

and encourage the progress.

6) Build integrity – End customer needs well-tested error

free software; it also means all different components of

the software are well tested before giving the software to

the customer.

7) See the whole – Software is not a small part of any

application; it plays the key role in big projects as well.

Think globally in terms of the software relation with

other parts.

Applied Computer Systems

 ___ 2016/19

35

Fig. 7. Prototype for finding the right test metrics for lean canvas board using transformation models.

B. Finding the Right Test Metrics for Lean Canvas Board

The key metrics is an indicator for measuring the

performance of anything. In the software testing process we

can use the metrics to improve the software quality. Correct

identified test metrics answers many questions. They can give

us feedback for a software testing process. Software test

metrics bring the values, which can be used to evaluate the

testing process in different phases.

Step 1: Identification of the goals of the project. In testing

we need to set a goal for the quality of the product, for

example, a test coverage using manual and automation tools.

Step 2: Recognising the impact on the next level, for

example, if we use automation testing in the project, we must

know how much test coverage we get with the product under

test.

Step 3: We have got already main test metrics, if we divide

the full project into small sub-components and test them, we

will get new test metrics.

Step 4: Once we identified sub-components, we need to

create the baseline of what kind of testing we can do on the

software.

Step 5: Once we have what kind of testing we are planning

to do on the software, we can get smaller task information

such as test cases, test case execution speed and many more.

Step 6: Establishing the review process for the collected

test metrics. Review process gives a feedback for the correct

test metrics.

C. Utilisation of Transformation Models

The transformation process is an activity that takes more or

one process as input and adds a unique value to them in

transformation process and at the end provides a more

simplified output. As shown in Fig. 6, we use many types of

different possibilities to develop and process the software

itself. On the second level transformation takes place

identifying and removing waste.

On the last stage as an output we get the lean metrics, which

bring unique more accurate and usable metrics which are used

further on with lean canvas.

VII. CONCLUSION AND FUTURE RESEARCH

The study explains the new approach and new possibilities

for investigating and utilising lean and business canvas

transformation models for identifying the right metrics in

different software development lifecycles, software test

process and in software testing life cycles to improve the

software quality.

In order to continue research, it is necessary to accomplish

the following activities:

• To carry out an experiment identifying the lean metrics in

the testing process;

• To define the criteria that evaluate lean identified

metrics;

• To carry out more investigation on more appropriate

transformation models, if necessary;

• To utilise canvas board based on identified and collected

metrics;

• To investigate and design new algorithms to improve the

lean metrics identification process;

• To develop tools and framework for developing canvas

board that fits for the testing process.

The new approach proposed in this article focuses on lean

metrics identification and utilisation. The authors’ ambition is

that a new approach will generate new ideas, and some new

ideas will be extracted from the article. It is an endless search

in the software development and testing area to find the right

test metrics which can further be adopted for testing lean

canvas.

REFERENCES

[1] M. Ide, Y. Amagai, M. Aoyama, Y. Kikushima, “A Lean Design
Methodology for Business Models and Its Application to IoT Business

Model Development,” in Agile Conference, AGILE, 2015, pp. 107–111.
http://dx.doi.org/10.1109/Agile.2015.8

[2] R. Korosec, R. Pfarrhofer, “Supporting the Transition to an Agile Test

Matrix,” in 2015 IEEE 8th Int. Conf. on Software Testing, Verification
and Validation (ICST), 2015, pp. 13–16.

http://dx.doi.org/10.1109/ICST.2015.7102632
[3] U. Viswanath, “Lean Transformation How Lean Helped to Achieve

Quality, Cost and Schedule: Case Study in a Multi Location Product

Development Team,” in IEEE 9th Int. Conf. on Global Software
Engineering, ICGSE, 2014, pp. 95–99.

http://dx.doi.org/10.1109/ICGSE.2014.13

http://dx.doi.org/10.1109/Agile.2015.8
http://dx.doi.org/10.1109/ICST.2015.7102632
http://dx.doi.org/10.1109/ICGSE.2014.13

Applied Computer Systems

 ___ 2016/19

36

[4] A. C. Barus, D. I. P. Hutasoit, J. H. Siringoringo, Y. A. Siahaan, “White

box testing tool prototype development,” in 2015 Int. Conf. Electrical

Engineering and Informatics, ICEEI, 2015, pp. 417–422.
http://dx.doi.org/10.1109/ICEEI.2015.7352537

[5] K. M. Mustafa, R. E. Al-Qutaish, M. I. Muhairat, “Classification of
Software Testing Tools Based on the Software Testing Methods,” in

Second Int. Conf. on Computer and Electrical Engineering, ICCEE '09,

2009, pp. 229–233. http://dx.doi.org/10.1109/ICCEE.2009.9
[6] Z. W. Hui, R. Chen, S. Huang, B. Hu, “GUI regression testing based on

function-diagram,” in 2010 IEEE Int. Conf. on Intelligent Computing
and Intelligent Systems, ICIS, 2010, pp. 559–563.

http://dx.doi.org/10.1109/ICICISYS.2010.5658394

[7] C. Rankin, “The Software Testing Automation Framework,” IBM Systems
J., vol. 41, 2002, pp. 126. http://dx.doi.org/10.1147/sj.411.0126

[8] N. P. Singh, R. Mishra, M. K. Debbarma, S. Sachan, “The review:
Lifecycle of object-oriented software testing,” in 2011 3rd Int. Conf.

Electronics Computer Technology, ICECT, 2011, pp. 52–56.

http://dx.doi.org/10.1109/icectech.2011.5941799
[9] D. Jeffrey, N. Gupta, “Test Case Prioritization Using Relevant Slices,”

in 30th Annu. Int. Computer Software and Applications Conf.,
COMPSAC'06, 2006, vol. 1, pp. 411–420.

http://dx.doi.org/10.1109/COMPSAC.2006.80

[10] G. Abu, L. Chacko, J. W. Cangussu, “Software test process control:
status and future directions,” in Proc. of the 28th Annu. Int. Computer

Software and Applications Conf., COMPSAC, 2004, pp. 160–163.
http://dx.doi.org/10.1109/CMPSAC.2004.1342701

[11] I. Burnstein, T. Suwanassart, R. Carlson, “Developing a Testing

Maturity Model for software test process evaluation and improvement,”
in Proc. Int. Test Conf., 1996, pp. 581–589.

http://dx.doi.org/10.1109/TEST.1996.557106
[12] J. Kasurinen, “Elaborating Software Test Processes and Strategies,” in

2010 Third Int. Conf. on Software Testing, Verification and Validation,

2010, pp. 355–358. http://dx.doi.org/10.1109/ICST.2010.25
[13] P. Klindee, N. Prompoon, “Test cases prioritization for software

regression testing using analytic hierarchy process,” in 2015 12th Int.
Joint Conf. on Computer Science and Software Engineering, JCSSE,

2015, pp. 168–173. http://dx.doi.org/10.1109/jcsse.2015.7219790

[14] L. Xue-Mei, G. Guochang, L. Yong-Po W. Ji, “Research and
Implementation of Knowledge Management Methods in Software

Testing Process,” in 2009 WRI World Congress on Computer Science
and Information Engineering, vol. 7, 2009, pp. 739–743.

http://dx.doi.org/10.1109/CSIE.2009.360

[15] S. Raman, “Lean software development: is it feasible?,” in The
AIAA/IEEE/SAE Digital Avionics Systems Conference, 1998, pp. C13/1–

C13/8. http://dx.doi.org/10.1109/dasc.1998.741480
[16] K. Ghane, “A model and system for applying Lean Six sigma to agile

software development using hybrid simulation,” in 2014 IEEE Int.

Technology Management Conf., ITMC, 2014, pp. 1–4.
http://dx.doi.org/10.1109/itmc.2014.6918594

[17] J. Trimble, C. Webster, “From Traditional, to Lean, to Agile
Development: Finding the Optimal Software Engineering Cycle,” in

2013 46th Hawaii Int. Conf. System Sciences, HICSS, 2013, pp. 4826–

4833. http://dx.doi.org/10.1109/hicss.2013.237
[18] C. A. Cois, J. Yankel, A. Connell, “Modern DevOps: Optimizing

software development through effective system interactions,” in 2014
IEEE Int. Professional Communication Conf., IPCC, 2014, pp. 1–7.

http://dx.doi.org/10.1109/ipcc.2014.7020388

Padmaraj Nidagundi is a founder of company IITMINDS in India and

professional certified software test engineer. Currently he is also a Doctoral

Student at the Faculty of Computer Science and Information Technology,
Institute of Applied Computer Systems, Riga Technical University. He

obtained the Diploma in Computer Science (2004), Bachelor of Engineering,
Information Science (2010), Master of Engineering Sciences in Computer

Systems (2014). His research areas are software development and software

testing process optimisation using lean canvas methods.
E-mail: padmaraj.nidagundi@gmail.com

Leonids Novickis is the Head of the Division of Software Engineering. He

obtained Dr. sc. ing. degree in 1980 and Dr. habil. sc. ing. degree in 1990

from the Latvian Academy of Sciences. Since 1994, he has been regularly
involved in different EU-funded projects: AMCAI (INCO COPERNICUS,

1995–1997) – WP leader; DAMAC-HP (INCO2, 1998–2000), BALTPORTS-
IT (FP5, 2001–2003), eLOGMAR-M (FP6, 2004–2006) – scientific

coordinator; IST4Balt (FP6, 2004–2007), UNITE (FP6, 2006–2008) and

BONITA (INTERREG, 2008–2012) – RTU coordinator; LOGIS, LOGIS-
Mobile and SocSimNet (Leonardo da Vinci) – partner. He was an independent

expert of IST and Research for SMEs in FP6, FP7. He is a corresponding
member of the Latvian Academy of Sciences. His research fields include

applied software system development, business process modelling, eLogistics,

international cooperation, web-based applications. He is the coordinator of
FP7 eINTERASIA project.

E-mail: lnovickis@gmail.com

http://dx.doi.org/10.1109/ICEEI.2015.7352537
http://dx.doi.org/10.1109/ICCEE.2009.9
http://dx.doi.org/10.1109/ICICISYS.2010.5658394
http://dx.doi.org/10.1147/sj.411.0126
http://dx.doi.org/10.1109/icectech.2011.5941799
http://dx.doi.org/10.1109/COMPSAC.2006.80
http://dx.doi.org/10.1109/CMPSAC.2004.1342701
http://dx.doi.org/10.1109/TEST.1996.557106
http://dx.doi.org/10.1109/ICST.2010.25
http://dx.doi.org/10.1109/jcsse.2015.7219790
http://dx.doi.org/10.1109/CSIE.2009.360
http://dx.doi.org/10.1109/dasc.1998.741480
http://dx.doi.org/10.1109/itmc.2014.6918594
http://dx.doi.org/10.1109/hicss.2013.237
http://dx.doi.org/10.1109/ipcc.2014.7020388

