
Applied Computer Systems doi: 10.1515/acss-2016-0003

___ 2016/19

25
©2016 Johan Alfredo Romero-Ramírez, Carlos Enrique Montenegro-Marín, Vicente García-Díaz, Juan Manuel Cueva Lovelle. This is an open access article

licensed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Alternative Development for Data Migration Using

Dynamic Query Generation

Johan Alfredo Romero-Ramírez1, Carlos Enrique Montenegro-Marín2, Vicente García-Díaz3,

Juan Manuel Cueva Lovelle4

1, 2 Engineering Faculty, Universidad Distrital Francisco José de Caldas, Colombia,
3,4 Computer Science Department, University of Oviedo, Spain

Abstract – This article presents an ETL (Extract, Transform,

Load) prototype called Valery as alternative approach to

migration process which includes a compiler for dynamic

generation of SQL queries. Its main features involve: SQL

dynamic generation, set of configuration commands and

environment for file uploading. The tests use the Northwind

academic database and an individual environment. The model

implementation uses flat files and SQL as query language.

Finally, there is an analysis of the results obtained.

Keywords – Data migration, Data transformation, ETL,

schema mapping.

I. INTRODUCTION

John Morris (2001) [1] defines the data migration as the

selection, preparation, extraction, transformation and

movement of the suitable data with the right quality, to the

right place and with the dismantling of the legacy data

sources.

Some of these projects may have the scenario where the

information sources involve flat files [7] and the target system

is a relational database and SQL-based [9].

This specific domain presents the problem that usually

structures and formats of the legacy data differ or are

incompatible with the relational design of the target system

and in some cases unexpected changes are raised in these

structures.

Fig. 1. Schema representation with a non-linear connection.

Therefore, the process must resolve two common and

complex tasks in the migration process [8]: (i) to associate the

different scheme mapping related elements between the source

and the destination (mapping), (ii) to react effectively to the

specification schema changes (schema changes).

Figure 1 shows an example of different sources. The

scheme of the legacy system presents a different format from

the target system related tables and the arrows represent the

correspondence between the source-target scheme fields. It is

possible to see the differences between the corresponding

formats.

This paper presents the features of a solution called Valery

as an alternative approach to data migration for heterogeneous

data sources where the source implies flat files. This is based

on the hypothesis that it is possible to create a model that

exploits the advantages of standardisation and functionality

existing by SQL language (Structured Query Language) [10]

and the RDMB (Relational Database Management System)

[11] onto a model that addresses the problem of mapping

exposed and delegates the factors of performance to the

infrastructure hardware and legacy data size.

II. FEATURES

Valery approach has the following characteristics:

Conversion of the flat file into a temporary table in the

system target: Flat files are converted to a temporary table in

the database manager. The advantage of this approach enables

subsequent handling by the SQL statements in a transparent

manner between the schema source and destination.

Specification of generic cases for the mapping between

the schema source and destination: Mapping patterns are

identified to encapsulate the correspondences between the data

sources and target tables. This allows adapting the model to a

wide range of migration and integration cases which comply

with the generic features and assure independence in the

relational structure.

Specification of SQL statement associated with each case

of migration: Different SQL queries needed to solve each

generic case for migration and integration are identified.

Generation of dynamic queries: Represents the

components associated with the generation of dynamic SQL

queries. Query Builder creates dynamically the sentences due

to generic pattern recognition and consistent configuration of

the destination relational model. For this purpose, Valery has a

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2016/19

26

command console that receives the parameters associated with

a specific migration project.

Evaluation with specific data: Implementation was carried

out using the NorthWind model and own model. The results

indicate a satisfactory performance in quality and runtime.

III. VALERY MIGRATION PROCESS

Mapping specification: The first step is to configure the

source with the relational database format. This is an interface

that allows capturing such a configuration in explicit defined

commands.

Load source files: In this step, loading flat files for

validation and migration of the flat file in a new temporary

table within the database target system is made for subsequent

use in the query execution.

Creation of queries: The system generates the specific

SQL queries according to the settings made.

Execution of SQL queries: Running SQL queries created

and displaying the report of results thrown by the database

manager.

Fig. 2. Valery process.

IV. STATE OF THE ART

Different studies have been performed for the automatic

execution of mapping schemas. To determine the correlation

of patterns these studies propose techniques that exploit

different types of information, such as definitions, data types,

structures of schemas and instances of data [2].

As reference studies in the development of some

components of the proposed model we have presented

QuickMig tools [2] and HumMer (Humboldt Merger) [3].

QuickMig is a new semi-automatic approach for the

identification of semantic correspondences between the

sources of information schema elements. QuickMig presents a

series of new techniques that exploit example cases, domain

ontologies and the re-use of existing allocations to detect not

only the correlation of elements but also their expressions of

mapping. QuickMig includes new mechanisms to effectively

incorporate the knowledge of the domain’s users in the

comparison process. The results give a full evaluation using

diagrams and actual data [2]. On the other hand, Hummer is a

tool ad-hoc that allows for the fusion automatic of data using

extensions SQL for heterogeneous schemes with data

duplicate or in conflict.

V. OVERVIEW

This section provides a review of Valery approach to the

correlation of schemes.

A. Considerations

Valery implementation requires knowledge of the domain

of the migration process. As also outlined in [2], migration

processes need knowledge about the origin and the target

system. Unfortunately, such knowledge may not be always

available in one place. Knowledge about the target system

may be available in the provider, while only customers can

provide a detailed origin systems knowledge.

B. Scope

The solution is applicable to projects that could get

information bequeathed as flat files and where there is SQL-

based database server (RDMB).

Valery offers a generic case of migration domain. These

cases include data with foreign keys, different types of data,

updating data processes, independence from flat file formats

and independence of the database destination complex.

C. Cases

Fig. 3. Schema representation with a linear correspondence.

Linear correspondence of the flat file and database

structures that do not include relational data. In Fig. 3 it is

possible to see an example of considered cases. The associated

fields have a linear relationship with the destination schema

and show differences in nomenclature and data type.

There is a linear correlation between the flat file and the

structures of the database due to referential integrity

presenting tables: the original file must populate all tables in

a single transaction (see Fig. 1). Data are generated massively

associating foreign keys dynamically. In addition, there are

differences in nomenclature and data type.

D. Algorithmic Theoretical Foundation

Valery provides a set of rules for the expression of

associated semantic generation of SQL queries and where

should be correlated data from the data source and the

database file destination. The system makes reading of the

commands and generates the corresponding sentence type

INSERT-SELECT-UPDATE by a generator queries (Query

Engine). Script specification depends on the complexity of the

destination database and of the different levels of the data base

relational hierarchy.

Applied Computer Systems

 ___ 2016/19

27

Fig. 4. Valery methodology.

The methodology for the generation of SQL queries collects

(see Fig. 4): (i) recognition of the SQL statements associated

with each case, (ii) decomposition grammar of each sentence,

(iii) definition of parameters, (iv) valid from the reading of the

sentences tokens construction target, (v) creation of the

keywords of the compiler according to the parameters, (vi)

identification of syntactic trees. This allows for one theoretical

basis for the modelling and design of the query engine that

will take as input the configuration commands according to a

specific migration project.

Fig. 5. Grammatical case of inclusion of one decomposition.

As an example, the grammatical breakdown of target SQL

query associated with case (1) in Fig. 5 is displayed.

The model breaks down the previous sentence in the

following grammatical fragments that symbolise the

commands in the system for their respective configuration:

(a) Table name.

(b) Set of fields in the table destination.

(c) Set of fields in the table origin.

Fig. 6. Graph of an SQL statement.

Gaph (Fig. 6) representation and representation in first

order algebra allow obtaining the following relevant attributes

for the Query Builder design.

The graph shows the following relevant properties for

dynamic generation algorithm:

(a) The root node represents the keyword INSERT INTO.

(b) The next leaf node presents the schema columns.

(c) Equivalent to the keyword VALUES inner node is equal

to the number of columns of the template.

(d) The length of the path from the root node to the leaf

node is proportional to the number of columns.

On the other hand, a representation in first order algebra can

be represented to a mathematical formalization of the

objective statement:

TargetTable ← TargetTable ∪ _{(value1, Value2,…,

ValueN)}

Due to the previous theoretical foundation, it is possible to

represent the attributes required in script type attribute-value

for the correct generation of case one target SQL statements.

Below the commands are shown that are required by the QE:

Attribute (Command_TT): value (name of the destination

table).

Attribute (Command_FS): value (field in the source table).

Attribute (Command_FT): value (field of the destination

table).

Fig. 7. Binary tree used by the Query Builder.

In addition, the QE algorithmic design implements a data

structure of the syntactic tree such as a perfect binary tree

where the hierarchy of commands depends on the foreign keys

of tables. Figure 7 represents the syntactic tree for a specific

case where the representation of commands is modelled.

It is noted that the route of the syntactic tree does not

require rearrangement or searches to meet a predefined SQL

Applied Computer Systems

 ___ 2016/19

28

syntax [4], is only requirement the algorithm implemented

functionality of insertion into the binary tree elements.

This tree insertion in the binary tree has an O (log n)

complexity [5] and is recognised as a problem class P

(treatable) [6].

VI. VALERY ARCHITECTURE

Valery components include: (i) use of flat files: flat files as

legacy information due to the support that lies in the

integration of various applications in these formats. (ii) GUI:

this layer deploys all components related to the design, data

capture, the configured schema validation, loading flat files,

reports of the processes and operations carried out by the users

to interact with the system. (iii) Query Engine: represents the

components associated with the dynamic generation of SQL

statements. To do this, follow the exposed methodology

(Section V.D). The QE is responsible for compiling the

predefined rules and generating SQL statements according to

the request made by the user. This client/server architecture

allows for scalability and concurrence of multiple migration

processes. (iv) Data access layer: the components dedicated

to establish the connection with the RDBMs, affect the target

database according to each charging process and the results of

the application.

Fig. 8. Valery architecture model.

Valery follows the architecture presented in Fig. 8. The core

(QE) is based on the grammatical breakdown of SQL

statements that satisfy the cases of migration and integration.

A set of commands and rules where the QE works as an

interpreter of these commands is defined in the GUI.

VII. TESTING SCENARIO

Test database (Northwind and the own model) was used as

target source, SQL Server as RDBMS and several flat files

(*.csv) structurally separated with table target. With this

testing scenario created the following accounts were verified:

1) Transformations of data complexity: For this purpose a

set of migration process affecting different tables using as

input files that have structural independence with the target

database was defined.

2) Loading the flat file as an additional table in the database

destination: this leads to a better performance of the SQL

queries execution.

3) Tracking and audit: the statements to be executed in the

respective RDBMS use all the functionality offered by the

RDBMS for tracking and audit.

Technical hardware and software for testing: Intel ® Core

™ 2 Duo Processor, Windows 7 Home Premium (64-bit), 4

GB DDR2 800 MHz memory, 500GB HDD (5400 RPM,

Serial ATA), Sql Server 2008 ®.

Migration Northwind processes involved 32 SQL queries

generation while that for the own database processes involved

16 SQL queries generation. The data types of the formats

included strings, dates and numeric values.

Example 1. INSERT queries generated for the Northwind

database.
INSERT INTO Categories (

CategoryName,Description,Picture)
SELECT cmpExcel5,cmpExcel8,cmpExcel11
FROM TablaExternaV10

Example 2. INSERT queries generated for the Northwind

database.
INSERT INTO Products (
SupplierID,ProductName,QuantityPerUnit,Un

itPrice,UnitsInStock,UnitsOnOrder,ReorderLe
vel,Discontinued)
SELECT

(SELECT TOP 1 tabla0.SupplierID FROM Suppliers AS
tabla0
WHERE tabla0.ContactName = cmpExcel25),

cmpExcel28,cmpExcel31,cmpExcel34,cmpExc
el37,cmpExcel40,cmpExcel43,cmpExcel46

FROM TablaExternaV10

Example 3. UPDATE queries generated for the Northwind

database.
UPDATE Orders
SET Freight = campoExcel81,

ShipName = campoExcel84
FROM TablaExternaV10
WHERE OrderID =

(SELECT TOP 1 tabla0.OrderID
FROM Orders AS tabla0,
Customers AS tabla1,

Employees AS tabla2
WHERE tabla0.ShipVia = cmbDinamico51
AND tabla1.CustomerID = tabla0.CustomerID AND

tabla1.ContactName = cmpExcel59
AND tabla2.EmployeeID = tabla0.EmployeeID AND
tabla2.FirstName = campoExcel66)

Table I and Table II show the results of the tests according

to the model of testing used.

TABLE I

EVALUATION OF RESULTS OF THE QUERY EXECUTION

BD Queries Time (sg)

NorthWind 32 0.54

SAP 16 0.26

Applied Computer Systems

 ___ 2016/19

29

TABLE II

AVERAGE RESPONSE OF PROCESSES ACCORDING TO FILE SIZE

Size Average: Upload and Execution

1 mb 12 sg

10 mb 249 sg

100 mb 3526 sg

1000 mb 17513 sg

In Table I, it is possible to observe performance in the

generation of SQL queries. It obtains the expected result of the

syntax (see examples 1, 2, 3) in the generation of queries that

will be subsequently executed in the RDBMS.

On the other hand in Table II, it is possible to see that the

scenarios where the files have a weight of larger system

present an unfavorable performance. This is due to the

conversion of the flat file into the temporary table that is

proportional to the size of the file and the query execution that

is also proportional to size of the temporary table.

VIII. CONCLUSION AND FUTURE STUDIES

The approach presented by Valery was experimentally

evaluated using data in a test environment. It is quite effective

for creating well-formed SQL queries according to the defined

specific domain. Moreover, proportional migration

performance depends of the size file and the database server

hardware. Therefore, performance is an independent factor to

the generation of SQL queries.

Our approach using generic cases allowed for a coverage of

different sorts of migration requirements in two testing

databases using insertion and update.

Mapping and data transformation conditions could solve

specific tests. The approach allowed encapsulating the

problem of mapping settings and delegating the performance

issue to the hardware infrastructure and file sizes

corroborating the initial hypothesis.

The future studies will be connected with similar problems

arising in the model transformation tasks [12]–[16].

REFERENCES

[1] J. Morris, Practical Data Migration, BCS. 2012, pp. 7, 8, 9, 10, 77, 164.

[2] C. Drumm, M Schmitt, H. H. Do and E. Rahm, “QuickMig. Automatic

Schema Matching for Data Migration Projects,” in Proc. of the sixteenth
ACM conf. on Conf. on information and knowledge management,

CIKM’07, ACM New York, NY, USA, 2007, pp. 107–116.
http://dx.doi.org/10.1145/1321440.1321458

[3] A. Bilke, J. Bleiholder, C. Böhm, K. Draba, F. Naumann, M. Weis,

“Automatic Data Fusion with HumMer,” in Proc. of the 31st int. conf.
on Very large data bases, VLDB '05, pp. 1251–1254, 2005.

[4] V. Ebai, What Is Sql?: Fundamentals of Sql, T-Sql, Pl/Sql and
Datawarehousing, 2012, pp XI.

[5] K. Loudon, Mastering Algorithms with C, O Reilly Media, Inc. 2009,

p. 206.
[6] A. D. Munoz, Metaheuristics. Ed. Dykinson, 2007, p. 12.

[7] B. R. Ullrey. Implementing a Data Warehouse: A Methodology that
Worked. AuthorHouse, 2007, pp. 93–94.

[8] Z. Bellahsene, A. Bonifati, E. Rahm, Schema Matching and Mapping.

Springer Science & Business Media. 2011, pp. 152, 153.

[9] A. D. Ionita, Migrating Legacy Applications: Challenges in Service

Oriented Architecture and Cloud Computing Environments. 2012,

pp. 210.
[10] S. Kedar, Database Management System, Technical Publications. 2009.

p. 42.
[11] S. Sumathi, S. Esakkirajan, Fundamentals of Relational Database

Management Systems. Springer, 2007, p. 26.

[12] U. Donins, J. Osis, A. Slihte, E. Asnina and B. Gulbis, “Towards the
Refinement of Topological Class Diagram as a Platform Independent

Model,” in J. Osis, O. Nikiforova (Eds.). Model-Driven Architecture and
Modeling-Driven Software Development. ENASE 2011, 3rd Whs.

MDA&MDSD, SciTePress, Portugal, 2011. pp. 79–88.

[13] J. Osis, E. Asnina, A. Grave, ”Computation Independent Representation
of the Problem Domain in MDA,” e-Informatica Software Engineering J.,

vol. 2, issue 1, 2008, pp. 29–46.
[14] J. Osis, U. Donins, “Formalization of the UML Class Diagrams,”

Evaluation of Novel Approaches to Software Engineering. Springer-

Verlag, Berlin Heidelberg, New York, 2010, pp. 180–192.
http://dx.doi.org/10.1007/978-3-642-14819-4_13

[15] J. Osis, A. Slihte, “Transforming Textual Use Cases to a Computation
Independent Model,” in J. Osis, O. Nikiforova (Eds.). Model-Driven

Architecture and Modeling Theory-Driven Development, ENASE 2010,

2nd MDA&MTDD Whs., SciTePress, Portugal, 2010, pp. 33–42.
[16] A. Slihte, J. Osis and U. Donins, “Knowledge Integration for Domain

Modeling,” in J. Osis, O. Nikiforova (Eds.). Model-Driven Architecture
and Modeling-Driven Software Development. ENASE 2011, 3rd Whs.

MDA&MDSD, SciTePress, Portugal, 2011, pp. 46–56.

Johan Alfredo Romero Ramírez is a System Engineer of the Engineering

Faculty of the Universidad Distrital Francisco José de Caldas. His research
interests include domain-specific languages and web engineering.

Contact address: Engineering Faculty of the Universidad Distrital Francisco

José de Caldas, Carrera 7 Nº 40–53 Piso 5, Bogotá (Cundinamarca,
Colombia).

E-mail: jaromerora@gmail.com

Carlos Enrique Montenegro-Marin is an Associate Professor at the

Engineering Faculty of the Universidad Distrital Francisco José de Caldas. He
has a PhD from the University of Oviedo in computer engineering. His

research interests include model-driven engineering, domain-specific

languages, technology for learning, cloud computing and programing

languages.

Contact address: Engineering Faculty of the Universidad Distrital Francisco
José de Caldas, Carrera 7 Nº 40–53 Piso 5, Bogotá (Cundinamarca, Colombia).

E-mail: cemontenegrom@udistrital.edu.co

Vicente García-Díaz is an Associate Professor at the Computer Science

Department of the University of Oviedo. He has a PhD from the University of
Oviedo in computer engineering. His research interests include model-driven

engineering, domain-specific languages, technology for learning and
entertainment, project risk management, software development processes and

practices. He is a Certified Associate in Project Management through the

Project Management Institute.
Contact address: Computer Science Department, University of Oviedo

Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo
(Asturias, España).

E-mail: garciavicente@uniovi.es

Juan Manuel Cueva Lovelle became a Mining Engineer at Oviedo Mining

Engineers Technical School in 1983 (Oviedo University, Spain). He has a
PhD from Madrid Polytechnic University, Spain (1990). From 1985 he has

been a Professor in the languages and computers systems area at Oviedo

University (Spain), and is an ACM and IEEE voting member. His research
interests include object-oriented technology, language processors, human-

computer interface, web engineering, modelling software with BPM, DSL and
MDA.

Contact address: Computer Science Department, University of Oviedo

Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo
(Asturias, España).

E-mail: cueva@uniovi.es

http://dx.doi.org/10.1145/1321440.1321458
http://dx.doi.org/10.1007/978-3-642-14819-4_13

