
Applied Computer Systems

2015/17 ___

88

The Model Transformation for Getting a UML Class

Diagram from a Topological Functioning Model

Arturs Solomencevs, Riga Technical University, Latvia

Abstract – The approach called Topological Functioning

Modeling for Model Driven Architecture (TFM4MDA) uses a

Topological Functioning Model (TFM) as a formal Computation

Independent Model (CIM) within the Model Driven Architecture

(MDA). The object of this research is the construction of a UML

class diagram on the Platform Independent Model (PIM) level in

conformity with the TFM. Nowadays this transformation is

executed manually. Manual creation of models is time-consuming

and there is a risk of making mistakes. These drawbacks increase

expenses and reduce efficiency of TFM4MDA approach. That is

why automation of transformation is useful. The paper presents

an algorithm for the transformation which is written in a

pseudocode and can be implemented as a tool.

Keywords – Algorithm for automatic model transformation,

model driven architecture, topological functioning model, UML

class diagram.

I. INTRODUCTION

Model Driven Architecture (MDA) is an approach to

system development, which increases the power of models in

this study. The purpose of MDA is to separate the views and

concerns. MDA has three viewpoints and their corresponding

models: a Computation Independent Model (CIM) contains

knowledge about the problem domain and the requirements

for software system; Platform Independent Model (PIM)

focuses on the operation of a system while hiding the details

necessary for a particular platform; and Platform Specific

Model (PSM) [1]. Model transformation forms a key part of

MDA. To get the software source code, we need to go by the

path CIM → PIM → PSM → source code.

Topological Functioning Model (TFM) is a formal model,

which describes the functioning of system. The TFM has a

solid mathematical base. The model-driven software

development approach called Topological Functioning

Modeling for Model Driven Architecture (TFM4MDA) is

based on the TFM [2]. TFM4MDA introduces a more formal

analysis and modeling of the problem domain within the MDA

[3], [4]. TFM within the MDA is used as a CIM.

Since the TFM is a formal model, its usage has the

following benefits:

 Possibility of transformation to the PIM (within the MDA);

 Guarantee that a software product completely satisfies

functional requirements;

 Design process and code generation can be at least

partially automated;

 The correctness of operation of the entire system is

mathematically proven.

The object of this research is transformation from the TFM

to a Unified Modeling Language (UML) class diagram [5] on

the PIM level. UML class diagram is important in software

development, because it displays the structure of the software

system and indicates class responsibilities. Nowadays the

creation of a class diagram from the TFM requires fully

manual execution. Manual execution is time-consuming; also

there is a probability that a user (e.g., a system architect) will

make a mistake during the execution. Time investment and

risk of making mistakes increase the costs of software

development. The costs must be minimized. Therefore, the

goal of the research is to automate the transformation from the

TFM to a UML class diagram. The algorithm of automated

transformation is developed. There is a possibility to develop a

tool that will execute the transformation algorithm. As a result

of transformation, the initial UML class diagram (with

attributes, operations and without relationships among classes)

on the PIM level is constructed.

The paper is structured as follows. Section II describes

related research – other software development approaches

(apart from TFM4MDA) that include the creation of CIM. In

Section III, the TFM, MDA and TFM4MDA are described in

more detail. In Section IV, the creation of class diagram from

the TFM is described. In Section V, the transformation

algorithm from the TFM to a UML class diagram is

introduced. In Section VI, conclusions are presented.

II. RELATED RESEARCH

There are different approaches for domain modeling that

include the creation of CIM. Since model transformation is a

key part of MDA, we are interested in approaches that give an

opportunity to create a class diagram on the PIM level from

the CIM.

Business Process Modeling and Notation (BPMN) is an

Object Management Group (OMG) standard [6]. BPMN is

used for modeling the problem domain within the Business

Process Modeling approach. BPMN model is positioned on

the CIM level within the MDA [7]. BPMN can be transformed

to a UML activity diagram on the CIM level, and the activity

diagram can be transformed to a class diagram on the PIM

level. However, a conclusion is made that the gap between

BPMN and UML is too large so the creation of an activity

diagram from BPMN model is limited under some situations

[8]. Not all BPMN elements can be transformed without the

loss of information or meaning.

ArchiMate is an Open Group Standard, which provides a

graphical language for the representation of enterprise

architectures [9]. A CIM is created at the ArchiMate business

layer. A Meta Object Facility meta-model [10] for the

ArchiMate language does not exist today [11]. It means that

doi: 10.1515/acss-2015-0012

Applied Computer Systems

 ___ 2015/17

89

the formal transformation from an ArchiMate CIM to a UML

class diagram on the PIM level does not exist.

A development approach that is supported by a tool named

a Use Case Driven Development Assistant (UCDA) allows

converting the functional requirements into a class model

semi-automatically. The functional requirements are specified

and represented by use cases [12], [13]. Thus, the use case

model is used as a CIM. Using a use case model as a CIM is

disputable, because it is fragmentary. By calling the model

“fragmentary” we mean that it consists of separate fragments

and it is not holistic. The fragmentary nature of the model has

several shortcomings. There is no way to tell whether the

model is complete. Furthermore, it can be hard to check

whether there are no conflicts (the bigger the model, the

harder to check). Therefore, a use case model is not applicable

as a CIM for modeling big systems. This drawback is shared

by other software development approaches that are driven by

use case modeling. Comparing to the TFM, a use case model

lacks formalism. The disadvantage of using a use case model

is discussed in more detail in Section III.

A methodology and a tool, Linguistic assistant for Domain

Analysis (LIDA), provide linguistic assistance in the model

development process. The goal of this method is to utilize

existing text descriptions of a problem domain, and from

them, produce an initial conceptual class diagram with

attributes, methods and roles [14]. The conceptual class

diagram is a PIM level model. Prior to using the methodology,

the analyst should already have prepared a set of use cases or

scenarios that represent the operational concept for the

proposed system [14]. Thus, the LIDA helps with analyzing

texts (e.g., documents, descriptions of problem domain), but

the analyst has to identify which classes are relevant based on

the prior developed use case model. Hence, use cases take

place as a CIM within the LIDA approach. Therefore, the

LIDA approach is driven by use case modeling and has the

same drawback discussed in the previous paragraph.

Semantics of Business Vocabulary and Business Rules

(SBVR) is another OMG specification that defines the

vocabulary and rules for documenting the semantics of

business vocabularies and business rules for the exchange

among organizations and between software tools [15]. An

approach to transform the SBVR model to a UML class

diagram on the PIM level is introduced [16]. The process has

limitations. The authors are not able to find out the input

parameters of class methods. For this moment this drawback

also appears within the TFM4MDA approach (in

transformation to a class diagram). As far as the author of this

paper understands, the SBVR model is fragmentary. Hence, it

has the same drawbacks as the use case model.

In the Natural Language Based Requirements Analysis

(NIBA), the textual requirement specifications are firstly

linguistically analyzed and translated into the so-called

conceptual predesign schema – Klagenfurt Conceptual

Predesign Model (KCPM) [17]. KCPM provides a user (stake-

holder) centered form or requirement documentation, which

means that the model can be understood and validated by the

users [18]. KCPM can be considered a CIM, because it

represents the knowledge about the problem domain, it is used

for obtaining the requirements for software, and it is

understandable by the end-user [18]. KCPM can be mapped to

a UML class diagram [18]. A drawback of NIBA approach is

that the requirements must be written in the German language

so that they could be automatically analyzed and translated to

the KCPM. The author of this paper concludes that the KCPM

is not formal – nothing is told about formalism in [17] and

[18]. Moreover, the mapping to a class diagram is not strict. The

mapping rules are divided into laws and proposals; the designer

may accept the proposal or take another decision [18]. Hence,

there is no formal transformation to a class diagram.

In the overviewed approaches, the CIM is created

informally. Hence these approaches do not share benefits of

formal domain modeling (mentioned in Section I). Since the

CIM is informal, it is hard to define a formal transformation

from the CIM to the PIM – an unambiguous transformation

that can be automated. TFM, in its turn, is a formal CIM and

the formal transformation to the PIM is defined.

III. TOPOLOGICAL FUNCTIONING MODEL FOR MODEL DRIVEN

ARCHITECTURE APPROACH

Nowadays an object-oriented approach is most widely used

in software development. In object-oriented approaches, for

example, Rational Unified Process (RUP) [19], the problem

domain is not modeled formally, and the development is

commonly driven by use case modeling. This tendency is

disputable, because a use case diagram is fragmentary. There

is no way to determine whether a created use case diagram is

complete or something is missing. This also refers to the list of

requirements for the software system. Furthermore, only a

proper problem domain model provides a powerful language

for expressing requirements for the system [20]. Explicit

problem domain model gives an opportunity to understand

how the system (e.g., business system) is working without

software which is planned to be developed, and how this

system will be influenced by the software. This way it is

possible to understand not only what the clients want, but also

what they need – so records are added to the list of

requirements. If the client’s needs and desires are clearly

determined, the probability of their satisfaction with software

product essentially increases. A proper model is a formal

model. Hence, the formalism must be involved in the very

early stage of software development [20].

Model Driven Architecture (MDA) is an approach to system

development, which increases the power of models in this

study. It is model-driven because it provides a means for using

models to direct the course of understanding, design, construction,

deployment, operation, maintenance and modification [1]. Model

transformation forms a key part of MDA.

CIM is a Computation Independent Model, PIM is a

Platform Independent Model, and PSM is a Platform Specific

Model. With the help of model transformations, going by the

path CIM → PIM → PSM → software code, from an abstract

model (CIM) a detailed model (PSM) is obtained. It is

possible to generate a software source code from the PSM.

Applied Computer Systems

2015/17 ___

90

Fig. 1. CIM creation with the TFM4MDA (taken from [2]).

The requirements for the system are modeled in a

Computation Independent Model, CIM describing the

situation in which the system will be used. Such a model is

called a domain model or a business model [21]. It may hide

much or all information about the use of automated data

processing systems. Typically such a model is independent of

how the system is implemented. A CIM is a model of a system

that shows the system in the environment in which it will

operate, and, thus, it helps in presenting exactly what the

system is expected to do. Topological Functioning Model has

the above-mentioned characteristics of CIM.

Topological Functioning Model is a formal model that

describes the functioning of system. The TFM has a solid

mathematical base. It is represented in the form of a

topological space (X, Θ), where X is a finite set of functional

features of the system under consideration, and Θ is topology

that satisfies axioms of topological structures and is

represented in the form of a directed graph [22]. The TFM

functional features describe the system physical or biological

characteristics that are relevant for the normal functioning of

the system. The TFM topology consists of cause-effect

relations between functional features. Cause-effect relation

exists between two functional features, if appearance of one

functional feature is caused by appearance of the other without

participation of any middle functional feature [22]. Cause-

effect relations form causal chains. Causal chains must form at

least one functioning cycle within the TFM. All the cycles and

subcycles should be carefully analyzed in order to completely

identify existing functionality of the system. The main cycle

(cycles) of system functioning (i.e., functionality that is vitally

necessary for system life) must be found and analyzed before

starting a further analysis. TFM has topological

(connectedness, closure, neighborhood, and continuous

mapping) and functional (cause-effect relations, cycle

structure, inputs and outputs) characteristics. Due to

topological and functional characteristics mentioned above,

the TFM comprises two aspects of the system – both structural

and behavioral [4].

It is proposed to use the TFM as a formal CIM in the

framework of MDA to model the problem domain [4]. This

approach is called Topological Functioning Modeling for

Model Driven Architecture (TFM4MDA) [2]. TFM4MDA is a

model-driven approach that is based on the formalism of

TFM. Fig. 1 illustrates the place of CIM (which is the TFM) in

the approach.

There are two stages of the problem analysis: analysis of the

problem domain and analysis of the application (solution)

domain. These levels should be analyzed separately. TFM

considers problem domain information separate from the

application domain information captured in requirements and,

thus, satisfies the main principle of MDA – separation of

views [23]. The horizontal dashed line in Fig. 1 separates the

problem domain (above) from the application domain (below).

The knowledge about the problem domain is entered into the

TFM and the TFM “as is” is developed [24]. The requirements

are mapped onto the TFM functional features, so the

requirements are validated and the TFM is modified. In this

way, the TFM “to be” is developed – a model of problem

domain which will be supported by required software [25]. It

is possible to create a use case model [26] and a conceptual

class model from the TFM. Mapping requirements onto

functional features and creation of use case model and

conceptual class model are described in detail in [4], [27].

TFM of a complex technical or business system can be

constructed from its informal verbal description – the formal

method is described in detail in [4], which is based on [28].

Another approach for TFM creation is the Integrated Domain

Modeling approach (IDM). By using the IDM approach,

knowledge about a problem domain is represented by

ontology and business use cases [29]. Ontology represents the

declarative knowledge (structure), and business use cases

represent the procedural knowledge (behavior) about the

system. Business use cases must be in conformity with

ontology – verification takes place, and the models are

modified until the conformity is achieved. Then the TFM can

be created from business use cases. The construction of TFM

from business use cases can be done automatically by using

the tool [29].

Applied Computer Systems

 ___ 2015/17

91

Fig. 2. The process of getting a class diagram from the TFM.

IV. GETTING A UML CLASS DIAGRAM FROM THE TFM

The goal of software development is to get the software

source code. As mentioned before, to get the source code

(within thw MDA) we need to go by the path CIM → PIM →

PSM → source code. Thus, in the beginning the PIM must be

created from the CIM. UML class diagram [30] can serve as

PIM which represents the structure of a system. Class diagram

can be detailed to the PSM level, although it is a task of the

future research. This paper focuses on the construction of a

UML class diagram on the PIM level from the TFM (TFM is a

CIM).

The approach of construction of topological UML class

diagram from the TFM is described in [31]. Topological class

diagram has topological relationships (see Section IV. B).

There is no algorithm for automatic transformation from TFM

to a topological class diagram.

As mentioned before, the TFM consists of a set of

functional features and cause-effect relations between

functional features.

A. TFM Functional Features

Within the TFM4MDA each functional feature is a 5-tuple

<A, R, O, PrCond, E>, where A is an object action, R is a

result of this action, O is an object (objects) that receives the

result or that is used in this action (for example, a role, a time

period, a catalog etc.), PrCond is a set PrCond = {c1, …, ci},

where ci is a precondition or an atomic business rule (it is an

optional parameter), and E is an entity responsible for

performing actions [4]. In [31] attributes are added, forming

the 8-tuple: <A, R, O, PrCond, PostCond, E, Cl, Op>, where

PostCond is a set PostCond = {p1, …, pi}, where pi is a

postcondition or an atomic business rule; Cl – Class – is a

class which will represent the object in a system static

(structure) model and which will contain an operation for

functionality defined by this functional feature; Op –

Operation – is an operation which will contain functionality

defined by a functional feature. The main idea is that the

functionality of each functional feature must be realized by an

individual class method. Thus, Cl and Op attributes are needed

to construct a class diagram from the TFM: Cl is a name of a

class, and Op is a name of a method. Cl and Op attributes are

initialized (values are assigned) only when a class diagram is

needed to be constructed. Other 8-tuple attributes (apart from

Cl and Op) are not displayed in a class diagram; however, they

help to initialize Cl and Op attributes.

B. TFM Topology

UML specification [5] does not propose a type of relation

between classes that can be compared with topological (cause-

effect) relation [31]. For this reason, a topological relation

between classes is introduced [31]. However, this solution

requires the extension of meta-model of class diagram with the

goal to create the meta-model of topological class diagram,

which has the description of topological relations [32].

Modifying the meta-model is bad because of the following

reasons: many software tools are constructed based on the

standard UML meta-model and are not able to work with other

meta-models [30]; there is a possibility that a user (e.g., a

system architect) would not like to work with the class

diagram which differs from the standard one. For these

reasons, we focus on the transformation from the TFM to the

standard UML class diagram. Since TFM cause-effect

relations cannot be transformed to any UML standard relation

between classes, the author suggests that the class diagram,

which is a result of transformation from the TFM, has no

relations. Relations are added during the refinement of the

obtained class diagram [33].

C. Transformation from the TFM to a Class Diagram

To execute the transformation from the TFM to a UML

class diagram TFM, the attributes Cl and Op of functional

features must be initialized (not necessary all of them). It is a

user’s (e.g., system architect’s) responsibility.

In order to obtain a class diagram, first of all a graph of

problem domain objects must be developed from the TFM. It

is a simple transformation, where all unnecessary attributes of

TFM functional features are cut – only Cl and Op remain.

Then the graph vertices with similar Cl values are merged and

a new class is created – with name Cl – and the class list of

methods consists of Op values of these vertices [31]. Fig. 2

shows the process of creating the class diagram from the TFM.

D. Introducing the Automation

The author proposes automating the process part which

starts after assigning values to Cl and Op attributes (this is

done manually). In [31] and [34] there are no guidelines and

the way of creating Cl and Op values is not clear. Thus, the

development of guidelines for initializing Cl and Op requires

the future research. The transformation ends with creation of

the class diagram.

Applied Computer Systems

2015/17 ___

92

Fig. 3. An example of developing a graph of problem domain objects from the TFM.

Since the graph of domain objects with operations serves as

a linking model, the author proposes not displaying this

model, but only creating it in memory during execution of the

transformation program. As a result of the automated

transformation, the initial class diagram on the PIM level is

created. This diagram consists of classes with names and lists

of methods. The refinement of the initial class diagram is done

manually [33].

The automation of model transformation facilitates user’s

(analyst, system architect). Therefore, the cost of software

development is decreased. This way the system analysis stage

(TFM development) is related to the development of UML

model on the PIM level.

V. THE TRANSFORMATION ALGORITHM FOR GETTING A UML

CLASS DIAGRAM FROM THE TFM

A. Getting a Graph of Problem Domain Objects from the TFM

Firstly, the graph of problem domain objects with

operations must be developed from the TFM. For each TFM

functional feature, a vertex in the graph must be created and

its attributes must be initialized with the corresponding

functional feature attributes. Fig. 3 shows an example of

developing the graph of problem domain objects from the

TFM. Attribute ID (identifier) is added for algorithm

realization. Attribute Description consists of the following

functional feature attributes: action (A); result (R); object (O)

(Section IV. A).

The algorithm for developing the graph of problem domain

objects from the TFM in a pseudocode:

// The vertex of the problem domain
// object graph is described by the
// following code:

struct DomainObjectVertex
{
 id : Integer; // primary key

 class : String;
 operation : String;

 // The set of integer numbers which includes
 // identifiers of vertices which are connected to

 // the given vertex with an oriented edge.

 // The edge is oriented from the given (this)
 // vertex to the vertex, which identifier is
 // included in the set.

 edges : Set of Integer;
};

// The TFM’s functional feature is described by the
// following code:
struct FunctionalFeature

{
 id : Integer; // primary key
 description : String;

 entity : String;
 class : String; // Cl attribute
 operation : String; // Op attribute

};

// Topological (cause-effect) relationship is

// described by the following code:
struct TopologicalRelationship
{

 // id of “cause” functional feature:
 source : Integer;
 // id of “effect” functional feature:

 target : Integer;
};

T: is a set of TFM’s functionalfeatures;
 t[i] is a functional feature with id = i;
G: is a set of vertexes of the problem

 domain object graph;
 g[i] is a vertex with id = i;

R: is a set of topological relationships;

At the beginning:
{

 G = Ø (empty set);
 T includes all TFM’s functional features;
 R includes all topological relationships from TFM.

}

// The problem domain object graph is developed

// iteratively. During iteration a vertex is
// created and added into the set G.
// T.size() – number of functional features in

// the set T.
For i:=1 to T.size() do

Applied Computer Systems

 ___ 2015/17

93

{

 // create new vertex of object graph:
 create DomainObjectVerticy type variable v;
 v.id := i;

 v.class := t[i].class;
 v.operation := t[i].operation;

 // the set of edges will be created
 // later, for now it is an empty set:
 v.edges := Ø;

 // add vertex v into the set G:
 G := G ⋃ {v};
}

// declaration of variable r:

r – TopologicalRelationship type instance;

// Transferring of TFM relationships into the

// object graph. Process runs iteratively.
// During iteration r becomes an element of
// the set R.

// r.source is a “cause” functional feature’s id
// and also the corresponding vertex’s id.
// Hence g[r.source] is graph’s vertex from which

// the edge comes out.
// r.target is the object graph’s vertex into
// which the edge under consideration incomes.

// Hence r.target value must be added
// into the g[r.source].edges set.
For all r ∈ R do
 g[r.source].edges :=
 g[r.source].edges ⋃ {r.target};

B. Getting a UML Class Diagram from the Constructed Graph of

Problem Domain Objects

The attributes class and operation of vertices in the

developed graph of problem domain objects are equal to the

attributes Cl and Op of TFM functional features that

correspond to these vertices. If Cl or Op attribute of a

functional feature is empty, then the corresponding attribute of

the corresponding vertex in the graph is also empty. For this

reason, a user (e.g., a system architect) has an opportunity to

check the class diagram before assigning values to all Cl and

Op attributes in the TFM. Hence, the algorithm must support

the creation of the class diagram from the TFM in which not

all Cl and Op attributes are initialized (the value is assigned).

Four cases are possible:

1) Both Cl and Op attributes of a functional feature are

initialized. In this case, the corresponding vertex of the graph

participates in construction of the class diagram – both class

name and operation name are taken into account.

2) Cl attribute is initialized, but Op – is not. In this case, the

vertex does not add a new operation, but the class with the

name equal to a value of class attribute is added to the class

diagram.

3) Op attribute is initialized, but Cl – is not. In this case, the

vertex cannot participate in construction of the class diagram,

and the value of its operation attribute is lost (it stays in the

TFM, but it is not transferred to the class diagram).

4) Neither Cl nor Op attribute is initialized. In this case, the

vertex is treated in a similar way to the third case.

It is possible to create the class diagram from the

constructed graph of problem domain objects. The vertices of

the graph with the same type of objects (class values) must be

merged [35]. Since it is not possible to transform the

relationships between TFM functional features to the class

diagram (Section IV. B), the edges of the graph are lost.

Class attributes (in the class diagram) are generated from

getter and setter methods (whose names start with get or set).

Corresponding method is retained in the list of methods of the

class despite the fact that the existence of an attribute

implicitly indicates that a corresponding setter and getter exist.

The method needs to be there so that a user (e.g., a system

architect) could see that the attribute was generated from a

method that was transformed from the TFM.

The algorithm of creating a UML class diagram from the

graph of problem domain objects in a pseudocode:

// The class of UML class diagram is

// described by the following code:
struct Class
{

 className : String;
 // list of attributes:
 attributes : List of String;

 // list of methods:
 operations : List of String;
};

G: is a set of vertexes of the problem
 domain object graph; g[i] is a vertex

 with id = i;
C: is a set of UML classes;
 c is an element of the set C (a class);

At the beginning:
{
 C = Ø (empty set);

 the set G was developed;
}

// The set C is developed iteratively.
// During iteration one element of the set G
// (one vertex) is inspected.

// The information that includes the vertex is
// used to develop the set C.
// G.size() – the number of vertices in the set G.

For i:=1 to G.size() do
{
 // Firstly, the attribute class is checked.

 // If it is empty, then the vertex
 // does not improve the set C.
 IF g[i].class is not empty, THEN

 {
 // Then the set C is checked whether it has
 // an element with a class name equal to

 // vertex’s g[i] class attribute.
 // If it does not have, then a new class
 // is added into the set C.

 IF C does not have a class with
 className that is equal to g[i].class, THEN
 {

 // create a new class:
 create Class type variable cNew;
 cNew.className := g[i].class;

 // for now lists of attributes
 // and methods are empty:

Applied Computer Systems

2015/17 ___

94

 cNew.attributes := Ø;

 cNew.operations := Ø;
 // add the class cNew into set C:
 C := C ⋃ {cNew};
 }

 Designation: cCurrent – the C set’s class which

 attribute className is equal to g[i].class;

 // The operation attribute of vertex g[i]

 // is checked. If it is not empty, then
 // cCurrent.operations list is checked
 // whether it has an element that is equal to

 // g[i].operation. If there is no such method
 // in the list, then it is added.
 IF g[i].operation is not empty,

 THEN
 IF g[i].operation is not in the

 list cCurrent.operations, THEN

 cCurrent.operations :=
 cCurrent.operations ⋃ {g[i].operation};
 }

 // Here ends the code block, which is executed
 // if condition “IF g[i].class is not empty”
 // is met.

}
// The “For i:=1 to G.size() do” loop ends here.

// declaration of variable c:
c – Class type instance;
// declaration of variable oper:

oper –String type instance;

// Generation of class’s attributes.
// The set C is processed iteratively.

// During iteration one class is inspected.
For all c ∈ C
{

 // Each method of a class is analyzed in turn.
 For all oper ∈ c.operations do
 {

 IF oper begins with „set” or with „Set”, or
 with „get”, or with „Get”, THEN
 {

 create String type variable newAttribute;
 newAttribute := oper;

 // To obtain the corresponding name of
 // attribute the word „set” or „get” is cut.

 crop the first 3 symbols of newAttribute;

 // Brackets are also cut.
 IF last two symbols of
 newAttribute are „()”, THEN

 crop the last 2 symbols of newAttribute;

 // Attribute’s first letter should be written

 // in lower case.
 IF the first symbol of
 newAttribute is written in upper case, THEN

 replace the first letter of newAttribute
 with the corresponding lower case letter;

Fig. 4. Example of transforming a graph of problem domain objects (a) to a UML class diagram (b) – result of algorithm execution.

Applied Computer Systems

 ___ 2015/17

95

 // Before adding newAttribute into the list

 // of attributes we need to check if the list
 // does not already have an attribute with
 // the same name.

 IF newAttribute is not in the
 list c.attributes, THEN
 c.attributes :=

 c.attributes ⋃ {newAttribute};
 }
 }

 // The „For all oper ∈ c.operations do”
 // loop ends here.
}

// The „For all c ∈ C do” loop ends here

// After executing the above mentioned algorithm

// the set C is ready to be used for the class
// diagram construction. Classes are transferred to

// the UML class diagram space.

For all c ∈ C do
{
 place a new class in the UML class

 diagram and mark it as cDiagram;
 assign cDiagram the class name c.className;
 add to the list of attributes of cDiagram

 all attributes from the list c.attributes;
 add to the list of methods of cDiagram all
 methods from the list c.operations;

}

Fig. 4 shows an example of getting a UML class diagram

(b) from a graph of problem domain objects (a). The dashed

arrows show that the objects with the same object type

“Document” are used to create a class with the same name.

The attributes of the class are generated from getter and setter

methods.

As a result of the transformation, the initial UML class

diagram on the PIM level is created (with attributes and

operations). To obtain the complete class diagram on the PIM

level, the initial class diagram must be refined [33]. The

refinement of a class diagram is aimed to lower an abstraction

level of it. By lowering an abstraction level, the diagram gets

additional information, which is needed during the software

development and later during its maintenance.

VI. CONCLUSION

This research focused on creation of a UML class diagram

from a Topological Functioning Model. The author worked on

decreasing the costs of software development within the

TFM4MDA approach, which was related to creation of a

UML class diagram on the PIM level from the TFM on the

CIM level. The decrease can be achieved by automating the

formal transformation from the TFM to a class diagram. The

main accomplishment of this study is the developed algorithm

of transformation from the TFM to an initial UML class

diagram on the PIM level. The algorithm is written in a

pseudocode. It can be implemented as a tool, thus improving

the TFM4MDA approach. Thus, the link between the

beginning stage of system analysis (the development of TFM)

and the development of PIM becomes stronger.

The next task is to implement the introduced transformation

algorithm as a tool. Thus, the TFM4MDA approach will

become more efficient. To practically validate the result of the

work, a tool (or tool prototype) must be developed.

Theoretically, working with a tool that executes the

transformation is more effective than manually creating the

initial class diagram (classes with operations). First of all, the

larger the TFM is, the harder it becomes for manual

processing. The probability of making mistakes grows. The

automatic transformation nullifies the risk of making mistakes

during the transformation. Secondly, the user must initialize

Cl and Op attributes only once for each functional feature.

During the development process, the TFM will most likely be

modified at least several times. After a modification, the

retained functional features will still have the initialized Cl

and Op attributes, which will be used for the creation of a

class diagram. This approach is more effective than manually

recreating a class diagram, or trying to modify it accordingly

to the new version of TFM. Thirdly, working directly with the

TFM in the TFM editor would be more comfortable than

working with the TFM and a UML class diagram in two

different editors during manual transformation.

It is not yet known how the changes in the class diagram

should affect the TFM and whether they should affect the

TFM. It would be better if the modifications in the TFM

affected the class diagram. In this case, the user would not

have to start from the initial class diagram after modifying the

TFM. For now the developed transformation algorithm only

creates a new initial class diagram that conforms to the TFM.

The solutions for these problems should be found in the future

research.

REFERENCES

[1] Miller, J. and Mukerji, J., “MDA Guide Version 1.0.1”, OMG. [Online].

Available: http://www.omg.org/cgi-bin/doc?omg/03-06-01. [Accessed:

14 March 2015].
[2] Osis, J., Asnina, E. and Grave, A., “Formal Computation Independent

Model of the Problem Domain within the MDA,” in Information
Systems and Formal Models, Proc. of the 10th Int. Conf., ISIM’07,

Silesian University in Opava, Czech Republic, 2007, pp. 47–54.

[3] Osis, J., Asnina, E. and Grave, A., “Computation Independent Modeling
within the MDA,” in Proc. of the IEEE Int. Conf. on Software Science,

Technology and Engineering, Oct. 30–31, 2007, Herzlia, Israel, IEEE
Computer Society Nr. E3021, pp. 22–34.

http://dx.doi.org/10.1109/SwSTE.2007.20

[4] Osis, J. and Asnina, E., “Topological Modeling for Model-Driven
Domain Analysis and Software Development: Functions and

Architectures,” in Model-Driven Domain Analysis and Software
Development: Architectures and Functions. IGI Global, Hershey – New

York, 2011, pp. 15–39. http://dx.doi.org/10.4018/978-1-61692-874-

2.ch002

[5] OMG (Object Management Group), “OMG Unified Modeling Language

TM (OMG UML), Superstructure, Version 2.4.1.”, 2011. [Online].
Available: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

[Accessed: 14 March 2015].

[6] OMG (Object Management Group), “Business Process Model and
Notation (BPMN), Version 2.0.2.”, 2013. [Online]. Available:

www.omg.org/spec/BPMN/2.0.2/PDF. [Accessed: 14 March 2015].
[7] Linagora, “What is MDA? Why concerns BPMN?” [Online]. Available:

https://research.linagora.com/pages/viewpage.action?pageId=3639295.

[Accessed: 14 March 2014].
[8] Bao, N. Q., “A proposal for a method to translate BPMN model into

UML activity diagram,” Vietnamese-German University – BIS, 2010.
[Online]. Available: http://www.nqbao.com/archives/files/BPMN-

UMLAD.pdf. [Accessed: 14 March 2014].

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://dx.doi.org/10.1109/SwSTE.2007.20
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/BPMN/2.0.2/PDF
https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://research.linagora.com/pages/viewpage.action?pageId=3639295
http://www.nqbao.com/archives/files/BPMN-UMLAD.pdf
http://www.nqbao.com/archives/files/BPMN-UMLAD.pdf

Applied Computer Systems

2015/17 ___

96

[9] The Open Group, “ArchiMate 2.1 Specification”, 2012-2013. [Online].

Available: http://pubs.opengroup.org/architecture/archimate2-

doc/toc.html. [Accessed: 14 March 2014].
[10] OMG (Object Management Group), “OMG Meta Object Facility (MOF)

Core Specification, Version 2.4.2.”, 2014. [Online]. Available:
http://www.omg.org/spec/MOF/2.4.2/PDF/. [Accessed: 14 March 2015].

[11] Armstrong, C., Baker, J.D., Band, I., et al., “Using the ArchiMate®

Language with UML®”, 2013. [Online]. Available:
http://cdn2.hubspot.net/hub/183807/file-1805596253-

pdf/site/media/downloads/W134.pdf?t=1418385713847. [Accessed: 14
March 2014].

[12] Liu, D., “Automating Transition from Use Cases to Class Mode”,

Master Thesis. Calgary: University of Calgary, 2003.
[13] Liu, D., Subramaniam, K., Eberlein, A., Far, B.H., “Natural Language

Requirements Analysis and Class Model Generation Using UCDA” in
Innovations in Applied Artificial Intelligence: 17th Int. Conf. on

Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems. Berlin : Springer, 2004, pp. 295–304.
[14] Overmyer, S. P., Benoit, L., Rambow, O., “Conceptual Modeling

through Linguistic Analysis Using LIDA,” Software Engineering, 2001,

pp. 401–410. http://dx.doi.org/10.1109/icse.2001.919113

[15] OMG (Object Management Group), “Semantics of Business Vocabulary

and Business Rules (SBVR), Version 1.2.”, 2013. [Online]. Available:
http://www.omg.org/spec/SBVR/1.2/PDF/. [Accessed: 14 March 2015].

[16] Raj, A., Prabhakar, T.V., Hendryx, S., “Transformation of SBVR
Business Design to UML Models” in ISEC ’08 Proc. of the 1st India

software engineering conference, Hyderabad, India, Feb. 19–22, 2008,

pp. 29–38. ISBN: 978-1-59593-917-3.
http://dx.doi.org/10.1145/1342211.1342221

[17] Fliedl, G., Kop, C. and Mayr, H.C., et al., “Deriving static and dynamic
concepts from software requirements using sophisticated tagging,” Data

& Knowledge Engineering, 2007, pp. 433–448.

http://dx.doi.org/10.1016/j.datak.2006.06.012
[18] Mayr, H.C. and Kop, Ch., “A user centered approach to requirements

modelling” in Proc. Modellierung 2002, Lecture Notes in Informatics
LNI p-12, GI-Edition, 2002, pp. 75–86.

[19] Rational, “Rational Unified Process. Best Practices for Software

Development Teams”. [Online]. Available:
https://www.ibm.com/developerworks/rational/library/content/03July/10

00/1251/1251_bestpractices_TP026B.pdf. [Accessed: 14 March 2015].
[20] Osis, J. and Asnina, E., “Is Modeling a Treatment for the Weakness of

Software Engineering?” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey - New
York, 2011, pp. 1–14. http://dx.doi.org/10.4018/978-1-61692-874-

2.ch001
[21] Osis, J. and Asnina, E., “Topological Functioning Model as a CIM-

Business Model” in: Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey – New
York, 2011, pp. 40–64. http://dx.doi.org/10.4018/978-1-61692-874-

2.ch003
[22] Osis, J., “Topological Model of System Functioning” (in Russian) in

Automatics and Computer Science, J. of Academia of Siences, Riga,

Latvia, no. 6, 1969, pp. 44–50.
[23] Asnina, E. and Osis, J., “Computation Independent Models: Bridging

Problem and Solution Domains” in J. Osis, O. Nikiforova (Eds.). Model-
Driven Architecture and Modeling Theory-Driven Development: ENASE

2010, 2ndMDA&MTDD Whs., SciTePress, Portugal, 2010, pp. 23–32.

[24] Osis, J. and Asnina, E., Model-Driven Domain Analysis and Software
Development: Architectures and Functions. IGI Global, Hershey – New

York, 2011, 487 p. http://dx.doi.org/10.4018/978-1-61692-874-2

[25] Osis, J. and Asnina, E., “A Business Model to Make Software

Development Less Intuitive,” Proc. of the 2008 Int.Conf. on Innovation

in Software Engineering, Vienna, Austria. IEEE Computer Society CPS,
Los Alamitos, USA, 2008, pp. 1240–1246.

[26] Osis, J. and Asnina, E., “Derivation of Use Cases from the Topological
Computation Independent Business Model” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions. IGI

Global, Hershey – New York, 2011, pp. 65–89.
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004

[27] Osis, J., Asnina, E. and Grave, A., MDA Oriented Computation
Independent Modeling of the Problem Domain. Proceedings of the 2nd

International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2007), Barcelona, Spain, 2007, pp. 66–
71.

[28] Booch, G., Object-Oriented Design with Applications. Addison Wesley
Longman, Inc, 1994.

[29] Slihte, A., Osis, J. and Donins, U., “Knowledge Integration for Domain

Modeling,” Proc. of the 3rd Int. Workshop on Model-Driven
Architecture and Modeling-Driven Software Development, China,

Beijing, 8–11 June, 2011. Lisbon: SciTePress, 2011, pp. 46–56. ISBN

9789898425591.

[30] Rumbaugh, J., Jacobson, I. and Booch, G., The Unified Modeling

Language Reference Manual. 2nd ed. Addison-Wesley, Reading, 2004,
721 p. ISBN 978-0321245625.

[31] Osis, J. and Donins, U., “Formalization of the UML Class Diagrams,”
Evaluation of Novel Approaches to Software Engineering: 3rd and 4th

Int. Conf. ENASE 2008/2009: Revised Selected Papers, Italy, Milan, 9–

10 May, 2010. Berlin: Springer-Verlag, 2010, pp. 180–192. ISBN
9783642148187. E-ISBN 9783642148194. ISSN 1865-0929

[32] Osis, J. and Donins, U., “Platform Independent Model Development by
Means of Topological Class Diagrams,” in 5th Int. Conf. on Evaluation

of Novel Approaches to Software Engineering (ENASE 2010) / Model-

Driven Architecture and Modeling Theory-Driven Development. Greece,
Athens, July 22–24, 2010. Portugal: SciTePress, 2010, pp. 13–22. ISBN

9789898425164.
[33] Donins, U., Osis, J., Slihte, A., Asnina, E. and Gulbis, B., “Towards the

Refinement of Topological Class Diagram as a Platform Independent

Model,” in J. Osis, O. Nikiforova (Eds.). Model-Driven Architecture and
Modeling-Driven Software Development: ENASE 2011, 3rd Whs.

MDA&MDSD, SciTePress, Portugal, 2011, pp. 79–88.
[34] Donins, U., “Software Development with the Emphasis on Topology” in

Advances in Databases and Information Systems: Lecture Notes in

Computer Science. vol. 5968. Berlin: Springer Berlin Heidelberg, 2010,
pp. 220–228. ISBN 9783642120817. E-ISBN 9783642120824. ISSN

0302-9743.
[35] Osis, J., Asnina, E. and Grave, A., “Formal Problem Domain Modeling

within MDA”, Communications in Computer and Information Science,

CCIS, vol. 22, Software and Data Technologies, Springer-Verlag Berlin
Heidelberg, 2008, pp. 387–398.

Arturs Solomencevs obtained the Bachelor Degree in Computer Control and

Computer Science from Riga Technical University, Latvia, in 2014.

 Currently he is the first-year Master Student and Scientific Assistant at the
Department of Applied Computer Science, Riga Technical University. He

actively participates in the scientific research project called Topological
Functioning Model for Software Engineering (TFM4SE).

 E-mail: Arturs.Solomencevs@gmail.com

http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://www.omg.org/spec/MOF/2.4.2/PDF/
http://cdn2.hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf?t=1418385713847
http://cdn2.hubspot.net/hub/183807/file-1805596253-pdf/site/media/downloads/W134.pdf?t=1418385713847
http://dx.doi.org/10.1109/icse.2001.919113
http://www.omg.org/spec/SBVR/1.2/PDF/
http://dx.doi.org/10.1145/1342211.1342221
http://dx.doi.org/10.1016/j.datak.2006.06.012
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
mailto:Arturs.Solomencevs@gmail.com

