
Applied Computer Systems

 ___ 2014/16

77

The Perspective on Data and Control Flow Analysis

in Topological Functioning Models by Petri Nets

Erika Asnina1, Begoña Cristina Pelayo García-Bustelo2,
1Riga Technical University, Latvia, 2University of Oviedo, Spain

Abstract – The perspective on integration of two mathematical

formalisms, i.e., Colored Petri Nets (CPNs) and Topological

Functioning Model (TFM), is discussed in the paper. The roots of

CPNs are in modeling system functionality. The TFM joins

principles of system theory and algebraic topology, and formally

bridges the solution domain with the problem domain. It is a base

for further automated construction of software design models.

The paper discusses a perspective on check of control and data

flows in the TFM by CPNs formalism. The research result is

definition of mappings from TFMs to CPNs.

Keywords – Control flows, data flows, model verification, Petri

nets, topological functioning model.

I. INTRODUCTION

Software developers used to eliminate a process of problem

domain modeling, since the main artifacts of their work

usually are executable code and software requirements

specification that is based on this code. Model Driven

Engineering is a methodology that moves developers’ focus

from coding as such to the creation of transformable (and

sometimes also executable) software architecture

specifications. It uses main viewpoints and corresponding

models (specifications) of Model Driven Architecture (MDA)

[1], namely, a computation independent model (CIM), a

platform independent (PIM) model, and a platform specific

model (PSM). The CIM, a model discussed in this paper,

describes system requirements and a way a system works

within its environment, while details of the structure and

realization of the software application are hidden or yet

undetermined. It is business “owner’s” viewpoint called a

domain model and a domain vocabulary. The CIM usually is

informal and its transformation mostly is manual [2]. The CIM

is a specification of both software and the problem domain (or

at least of its part related to software). Therefore, it should be

able to provide a correspondence between them [2], [3]. But

this is possible only if the CIM is formal [4].

Receiving valid code from a transformable model (a

graphical specification) still is an open question. There are two

aspects of this. The first one is transformation of models into

code itself, and the second one is validity of models

themselves. Here, directly the verification of one of CIMs, a

Topological Functioning Model (TFM), is discussed, since it

serves as a bridge that joins the problem domain and the

solution domain in the computation independent manner [5],

[6]. The cause of this research is manual verification of the

TFM cause-and-effect flows at the present time. When the

TFM is composed, each data and its control need to be

checked on adequacy to the domain functioning. Certainly,

this task does require participation of domain experts. The

open question is automated (tool) assistance in this process,

since in case of a large or complex graph the number of

possible flows can be too big for human mind. On the other

hand, Colored Petri Nets (CPNs) do provide formalism for

tracing data moves and control activities. Therefore, if a TFM

could be transformed to a CPN, then it would be possible to

trace and check data and control flows presented in the TFM.

The goal of this research is to find out the possibility of

mapping data and control flows of the TFM and CPNs.

The paper is organized as follows. Section II describes

formalism and previous application areas of the TFM in brief.

Section III describes the formalism of Petri Nets (PNs), CPNs

and their application areas in brief. Section IV discusses

mappings of data and control flows from the TFM to CPNs.

Section V highlights related work on application of PNs to

business process modeling and verification of semantics in

control and resource flows. In Conclusion, benefits and

limitations of the results are discussed.

II. TOPOLOGICAL FUNCTIONING MODEL

A. A Brief Introduction

The TFM is based on principles of algebraic topology and

system theory. Mathematically, the TFM is represented in the

form of a topological space (X,), where X is a finite set of

functional features (FFs), i.e., characteristics of the system

under consideration, and is the topology that satisfies

axioms of topological structures; and it is represented in the

form of a directed graph [7]–[10]. Topological spaces are

described in detail in [11].

The detailed process of construction of the TFM is omitted

in this paper, since the research objective is to analyze the

possibility of the verification of functional characteristics of

this model. In general, the construction includes definition of

domain objects (a vocabulary), system’s FFs and cause-effect

relations among them, construction of a topological space of

the problem domain, and separation of the TFM of the system

from this topological space. The details are described in [12]–

[16].

The TFM has topological (from algebraic topology) and

functioning (from system theory) properties [13]. The

topological properties are connectedness, closure,

neighborhood and continuous mapping.

doi: 10.1515/acss-2014-0016

Applied Computer Systems

2014/16 ___

78

Mappings,

verification

mappings

Knowledge Model

Business Model

(“a bridge”)

Business

Requirements for the

System

Knowledge about

the problem domain

Customer’s

requirements

Problem Domain Solution Domain

Topological

Functioning Model of

the system-as-is

Topological

Functioning Model of

the system-to-be

Criteria for

decomposition

Software Requirements

Specification, Initial analysis

(structural and behavioral)

models

Noun and verb analysis,

assisting guidelines,

formal description of

system’s functionality

Continuous

mapping

Decompositional

transformation

CIM

Fig. 1. “Bridging” the problem and the solution domains by using the TFM.

Mainly, they relate to formal determination of domain

boundaries in terms of TFM FFs connected by cause-effect

relations, and abstraction/refinement of the domain

functionality.

The functional properties (Section II.C) are cause-effect

relations, cycle structure (formed by FFs connected with

cause-effect relations), inputs and outputs [10], [13].

B. TFM Application

The topological modeling of system functioning (TFM) was

developed at Riga Technical University, Latvia. For the first

time, its theoretic foundations were represented by Janis Osis

in [7]. The TFM has been successfully used for the system

analysis since the 1970s, and its application in different areas

is being developed today as well. The recent more important

studies concern its application for the purposes of biological

systems modeling [17], and for introducing more formalism

into the MDA framework and problem domain analysis, which

grounds development of topological modeling language [3],

[9], [12], [13]. Unfortunately, only publications after 1992 are

available in English.

As mentioned in Introduction, the role of the TFM in the

process of problem domain modeling is to “bridge” the

problem domain and the solution domain through formal

mathematical specification of knowledge of both domains. It

is gained by using topological properties of the TFM as

discussed in [2], [5], [10].

Fig. 1 illustrates the “bridging” at the business model level

of the CIM. The TFM of the system in the problem domain (or

“the system-as-is”) is constructed by using analysis means for

verbally expressed knowledge, namely, noun and verb

analysis, assisting guidelines, and a formal specification for

system functional characteristics. Customer requirements are

mapped onto and verified by this TFM. During this process, a

copy of the TFM is updated in accordance with the customer’s

software functional requirements. Customer requirements

themselves also are updated by adding new or missing

functionality that was not explicitly defined before and

removing incorrect one (or out-of-date knowledge for the

solution domain). The result is the TFM that specifies the

solution domain (“the system-to-be”), which is in conformity

with the TFM of the problem domain. Additionally, the

verified software requirements specification is obtained. The

TFM illustrates planned functionality holistically, and further

development requires its decomposition on parts dedicated for

implementation. According to a development plan and

software requirements, criteria for TFM decomposition are

identified. By using them, the TFM is decomposed into parts,

which are transformed to parts of the initial analysis model.

The TFM of the software is a subsystem of the TFM of “the

system-to-be”, and it serves as a root model for further

decomposition and transformation into software design

models. Exactly the important role that this holistic model

plays in software development requires proper verification of

model correctness. Certainly, the degree of verification of the

correctness is limited with the possibility to check semantic

data. However, usually this verification is performed manually

with domain experts’ help. It is hardened in case of a large or

complex graph of the model.

17
18

14
15

13

11

9

7

8

6

1 2 3 4 5

10

12

16

inputs

outputs

Cause-and-effect

relations
Functioning cycle 5-6-7-17-8-9-10-11-5

Functional

features

Fig. 2. The functional properties of the topological functioning model.

Applied Computer Systems

 ___ 2014/16

79

C. Formalism and Representation of Control and Data Flows in

the Topological Functioning Model

TFM functional properties, which come from system

theory, are closely related to specification of control and data

flows within the domain. They are cause-effect relations, cycle

structure (formed by FFs connected with cause-effect

relations), inputs and outputs (Fig. 2). The explanation of each

of them is given in detail in [13], [18]. Here, only the most

important information is explained.

The definition of FF given in [13] is extended with

incoming and outgoing combinations of cause-effect relations.

It is specified as a unique 9-tuple <A, R, O, PrCond,

PostCond, Pr, Ex, InRel, OutRel>, where:

 A is an action linked with a domain object;

 R is a result of that action (it is an optional element); it

could be a domain object or a set of them, a message, a

trigger for the effect event etc.;

 O is a domain object that gets the result of the action or a

set O of objects, which are used in this action (in case when

an item of Ex gets result R); it could be a role, a time

period or a moment, catalogues etc.;

 PrCond is a set PrCond = {prec1, …, preci}, where preci is

a precondition or an atomic business rule (it is an optional

element) of the action;

 PostCond is a set PostCond = {postc1, …, postci}, where

postci is a post-condition or an atomic business rule (it is an

optional element) of the action;

 Pr is a set of responsible entities (systems or subsystems),

which provide or suggest the action with the set of certain

objects;

 Ex is a set of responsible entities (systems or subsystems),

which enact the action;

 InRel is an expression of combinations of possible logical

relations among incoming cause-effect relations in1, in2, …,

ini;

 OutRel is an expression of combinations of possible logical

relations among outgoing cause-effect relations out1, out2,

…, outi.

A control flow in the TFM is represented by means of

cause-effect relations from a cause FF to an effect FF. In the

simplest case, a cause FF must have at least one effect, as well

as an effect FF must have at least one cause. In complex cases,

logical relations among cause-effect relations may form

different logical combinations. The logical operators used

within these combinations are negation NOR, conjunction

AND, disjunction OR, and exclusive disjunction XOR. Cause-

effect relations connect causally dependable FFs and may

form functioning cycles. Causes and effects are stimulus sent

to the system by the external environment (inputs) and

reactions sent to the external environment by the system

(outputs).

In other words, a cause-effect relation is a control flow from

one FF to another one, which also transfers data/resources

from one functional processing to another; while the FF is a

data/resource handling node.

Fig. 3. An abstract Petri net.

III. PETRI NETS

Petri Nets (PNs) is a formal mathematical and graphical

language for modeling systems with concurrency and resource

sharing, which can be applied for any area or system that can

be described graphically like flow charts. The concept of the

PNs was introduced by Carl Adam Petri in 1962 [19]. PNs can

be used to represent flows of both control and data. One of

powerful PNs extensions are Colored Petri Nets (CPNs) [20]–

[22]. In CPNs, colors denote types of tokens, while transitions

conduct operations on multiple sets of tokens of those colors.

CPNs have a module concept allowing CPN models to be

organized into several modules, which are called by pages

[23], thus allowing the hierarchical order. CPN models can be

constructed by using CPN Tools [24].

Another kind of PNs that is used within this work is the so-

called work flow (WF) nets. A Petri Net is a WF net if [25]: i)

The Petri net has two special places – source and sink; ii) The

sink place is only reachable from the source place with at least

one token in it (this guarantees the proper termination of the

process transaction); and iii) There is no dead transition in the

PN with initial marking in the source place. On the basis of the

WF nets, the net model can be extended to any CPN model

and apply benefits of Petri Net theory. In this research the WF

extension to CPNs is used [26] but without scheduling aspects.

A. Petri Net Formalism

A Petri net is a particular kind of a digraph (directed,

weighted, bipartite), which contains two kinds of nodes –

places and transitions, which are connected by directed arcs

(Fig. 3).

Arcs are directed from a place to a transition or from a

transition to a place. Arcs are labeled with their weights

(classically they are positive integers). The digraph has an

initial state called the initial marking M0. A marking is

denoted by M, an m-vector, where m is the total number of

places. M(p) represents the pth component of M and is the

number of tokens in the place p. The mark on arcs represents a

number of tokens that each arc can transfer to or from the

place. Usually in graphical representation places are illustrated

as circles, and transitions are drawn as bars or boxes [19].

As mentioned in [19], the simple but very important rule in

PN theory is the rule for transition enabling and firing. For

instance, the concept of conditions and events is widely used

in modeling. In the PNs, places represent conditions, and

transitions represent events. An event has a certain number of

Applied Computer Systems

2014/16 ___

80

conditions that must be true in order to generate the event. The

same, a transition has a certain number of input and output

places correspondingly to the pre-conditions and post-

conditions of the event (Fig. 3). The status of the conditions,

true or false, is indicated by the presence or absence of a token

in the place, correspondingly. If a PN is used for modeling

data sharing, then k tokens in the place may indicate that k

data items are available. As mentioned in [19], interpretation

of places and transitions may differ, e.g., i) pre-condition,

event, post-condition, ii) input data, computation step, output

data, iii) resources needed, task or job, resources released, etc.

The transition (firing) rule is as follows [19]:

 A transition t is said to be enabled if each input place p of t

is marked with at least w(p, t) tokens, where w(p, t) is the

weight of the arc from p to t.

 An enabled transition may or may not fire (depending on

whether or not the event actually takes place).

 A firing of an enabled transition t removes w(p, t) tokens

from each input place p of t, and adds w(t, p) tokens to each

output place p of t, where w(t, p) is the weight of the arc

from t to p.

A source transition is a transition without any input place

and it is unconditionally enabled, while a sink transition is a

transition without any output place, whose firing consumes

tokens, but does not produce any [19].

B. Control and Data Flow Representation in Petri Nets

Control flows can be modeled in different ways. The

common construct used for this purpose is illustrated in Fig. 3,

when place p1 has two outgoing arcs: one to transition t2 and

one to transition t3. This construct is called a conflict, choice,

or decision. There are some basic examples that are useful in

modeling [19]:

 Decisions are represented by using state machines (the

previously mentioned construct of p1, t2 and t3 in Fig. 3),

but state machines do not represent the synchronization of

parallel activities;

 Parallel activities (i.e., logical operator AND on the

outgoing control flows from the event) are represented by

concurrent transitions (which are causally independent, i.e.,

one transition may fire before or after or in parallel with the

other). Apart from that, each place in the net must have

exactly one incoming and one outgoing arc (Fig. 4a);

 Conflicts (i.e., logical operators OR and XOR on the

outgoing control flows) are a more complex case. Two

events e1 and e2 are in conflict if either e1 or e2 can occur

but not both (XOR), and they are concurrent if both events

can occur in any order without conflicts (OR). The situation

when conflicts and concurrency are mixed is called

confusion (Fig. 4b).

Data flows can be modeled as a dataflow computation. As

mentioned in [19], in this case tokens denote data values and

the availability of data. Transitions represent operations on

these data, and can be expressed as formal computational

statements.

Fig. 4. Petri nets for representation of parallel activities (a) and symmetric
confusion (b).

C. Properties of Petri Nets

There are two types of properties which can be studied with

a Petri Net model, namely, behavioral and structural [19].

Here only behavioral properties are discussed.

Behavioral properties are reachability, boundedness,

liveness, reversibility and home state, coverability,

persistence, synchronic distance and fairness [19]. Just a part

of them, i.e., those which are necessary for integration with

the TFM are discussed in brief below:

 Reachability is a property, when each sequence of firings

will result in a sequence of markings.

 Liveness is related to the complete absence of deadlocks in

the system. A PN is said to be live if it is possible to

ultimately fire any transition of the net by progressing

through some further firing sequence. Thus, a live PN

guarantees deadlock-free operation.

 Reversability and Home State. A PN is said to be

reversible, if one can always get back to the initial marking

or state. In many applications, it is important not to get to

the initial state, but to the home state. A marking M’ is said

to be a home state, if for each marking M in the set of all

possible markings reachable from the initial marking M0,

M’ is reachable from M.

 Persistence is a property, when, for any two enabled

transitions, the firing of one transition will not disable the

other. A transition in a persistent net, once it is enabled,

will stay enabled until it fires. It could be called a conflict-

free net.

IV. INTEGRATION OF TFM AND CPN FORMALISMS

The TFM is used as a holistic business model of the system,

while the CPN considers the system at a more detailed level of

abstraction. The weakness of the TFM is a lack of mechanisms

for its verification. The only mechanism that exists is domain

expert reviews. The strong point of the CPNs is a mechanism

for modeling and analysis of different functional aspects of the

system, where the most interesting for this research is the

transition of data within the system operation. The research

goal is transformation of the TFM into the CPN and analysis

of its correctness by using native mechanisms.

Applied Computer Systems

 ___ 2014/16

81

A. The TFM and the CPN Models

The one common weakness of all models based on graphs,

including TFMs and PNs, is the size and complexity of

graphs. For PNs, this weakness hardens analysis of behavioral

properties, especially reachability. Therefore, CPNs use the

modularization principle, where a module (called a page)

represents a part of the model and can be analyzed faster. The

question is what construct of the TFM can be related to a

page?

The TFM represents the entire system under discourse

holistically. Even in case of a middle-sized system the

graphical representation, digraph, is very large and hardly

reviewed. In order to handle this weakness, the TFM supports

two modularization principles – hierarchical levels of

abstraction and decomposition:

 Hierarchical levels of abstraction. The TFM uses

simplification and refinement mechanisms between

topological spaces, namely, continuous mapping, in such

a way supporting creation of hierarchical levels of

abstraction [7], [2], [13]. In this case, the model remains

holistic, and a specific FFs can be transformed to pages,

keeping all cause-effect relations among abstracted FFs

as relations among corresponding pages.

 Decomposition. Another principle is decomposition of

the TFM into a set of business processes or use cases by

using business goals as criteria for the decomposition

[12]–[14]. Then, each use case or business process can be

transformed to the CPN model and analyzed. In this case,

causal dependencies among use cases or business

processes must be additionally analyzed.

In general, the process of analysis of CPN models can be

separated in two parts: first, to perform the analysis of each

module of the system, and second, to analyze co-work of

modules. Thus: 1) the TFM must be refined till the level, when

init A terminated init B1 terminated

initB2terminated

Control flow transition (“Generates”)

represented by cause-and-effect relation

Control flow transition (“Generates”)
events

Process

start

Process end

Functional feature A

Fig. 5. The initiation and conduction of FF.

O

R

t1

t2

p1

p2

O

R

a)

b)

(prec1, O)

p1

R=O.A() or

R= Ex.A(O)

(preci, O)

pi

w(p1.t1)= IF prec1

THEN O

w(pi.t1)= IF preci

THEN O

(postc1, R)

pk

(postcm, R)

pm

w(t1,pk)= (postck, R)

w(t1,pm)=(postcm, R)

t1

c)

Fig. 6. Presentation of TFM elements with CPN constructs.

t1

t2

(request_for_a_book_

copy, reader)

p1

(request_for_a

_book_copy)

(reader)

[FF1]

„Received request” =

Librarian.Receive(request_f

or_a_book_copy, reader)

t3

(request_for_a_

book_copy,

reader)

(„Received

request”,

request_for_a_

book_copy)

(„Received request”,

request_for_a_book

_copy)

p2

[FF2]

Check_out =

Librarian.CheckOut(book_copy)
t4

(request_for_a

_book_copy)t5

(book_copy)

p3

(book_copy)

(book_copy)

(„Check_out”,

book_copy)

p4

(„Check_out”,

book_copy)

[FF3]

„Completed request” =

Librarian.GiveOut(book_copy,

reader)

t6

(book_copy)

(„Completed

request”, book_copy,

reader) p5

(„Completed

request”,

book_copy,

reader)

t7
(book_copy,

reader)

(reader)

Fig. 7. The example of CP Net mapped from the TFM FFs.

Applied Computer Systems

2014/16 ___

82

every FF is specialized, i.e., it cannot be refined further from

the desired viewpoint; 2) Then, modules must be defined

within the TFM. This could be done by using decomposition

criteria – business or system goals. For each goal, a set of FFs

and binary cause-effect relations among them is assigned. At

this step, shared functional parts can be determined and

separated as particular modules. After that, these modules can

be simplified and represented within a single model. This

model should specify causal dependencies among modules; 3)

Then, each part and the entire model should be transformed to

the CPN model. This will give the possibility to analyze the

behavioral properties of the whole system and its parts.

B. Presentation of Functional Features and Cause-effect Relations

by means of the Petri Net Theory

As previously mentioned, the TFM elements are: 1) an FF

that could be input, output and intermediate, and 2) a cause-

effect relation that denotes causal dependency of an effect

from a cause. In its turn, CPNs elements are places, colors,

tokens, transitions, arcs and arc weights. Mappings from the

TFM to the CPN are defined below.

The initialization and conduction ofthe FF in terms of

business process execution is illustrates in Fig. 5. Conduction

of FF begins with the initiation event “init”. Then, FF is

conducted. After that a termination event “terminated” is

raised, which generates a transition to the next FF. In

dependency of the termination success, the next FF is or is not

initiated [13].

As mentioned in Section II.C, the FF is a unique 9-tuple

<A, R, O, PrCond, PostCond, Pr, Ex, InRel, OutRel>. A

domain object or a set of them (O) and the results (R) as well

as entities Pr and Ex are denoted as token colors. Since FF

performs action A, it must be represented as a transition. The

initiation of the FF in terms of PN theory is the enabling of the

transition. The conduction of FF is the firing of the transition.

Thus, transition t denotes such action A, which is performed

by one object O (or one entity from Ex) of the FF. CPNs allow

representing arc weights as conditions and corresponding

transited token colors in the general form “IF precondition

THEN (<NumberOfTokens, TokenColor>)” (<NumberOfTokens>

with value 1 could be skipped in the description of the

weight). Therefore, weights of those arcs, which come from

place p to transition t, should be presented as an expression

“w(p, t) = IF preci Then O”. In turn, weights of those arcs,

which come from transition t to place p, should be presented

as an expression “w(t, p) = (postci, R)”. R of a FF is a result of

the conduction of action A. Post-conditions PostCond

represent the system states after firing transition t.

In the general case, an intermediate FF (i.e., that is not input

and output) represents a part of system’s inner functionality. It

is generated by a cause or combination of causes and

generates an effect or combination of effects. For this case,

CPNs suggest using a combination of places and transitions as

presented in Fig. 6(c) and explained above.

An input FF represents a part of functionality that provides

an unlimited set of input resources or state changes in the

system, for example, in case of FF “arriving of a person”

represents an unlimited number of persons, who can activate

the system as an input signal. During constructing the CPN

model, an input FF is represented by PN source transition and

one place, where an arc is directed from the transition to the

place (Fig. 6(a)).

An output FF represents a part of functionality that triggers

an output event and state changes. For example, it could be a

resource that is produced by the system and transited to the

external environment. For this case, CPNs suggest using a

place that transfers a set of tokens to a PN sink transition,

which does not produce any token (Fig. 6(b)).

Within the CPN model, cause-effect relation representation

is not possible as such, because it is a causal relation between

two transitions. CPNs do not allow creating arcs directly

between two transitions. However, cause-effect relations

dictate sequence and enabling of transitions. In general, the

termination event of one FF (the cause) and possibility of

initiation of another FF (the effect) occurs when the system

has one and the same state (Fig. 5); therefore, the combination

of places and incoming and outgoing arcs between two

transitions could be considered representation of the causal

dependency.

The example of the Petri Net that illustrates the provided

mappings is shown in Fig. 7. It is a representation of three

FFs: FF2 “Checking out a book_copy” by Librarian that is

generated by FF1 “Receiving the request_for_a_book_copy

from a reader” by Librarian and generates FF3 “Giving the

book_copy to a reader” by Librarian.

C. Analysis of PN Behavioral Properties for Verification of

Resources in the TFM

Verification of the reachability and liveness of PNs could

help in verification of construction of the system functionality

in the TFM, since it allows discovering deadlocks and those

system states, which are not reachable ever. In terms of the

TFM, it means that there is no such functional part, which

could not be ever executed or which leads to the unstable

operation of the system. Apart from that, this means that each

output FF in the TFM can be reached under certain conditions,

thus providing proper communication with the external

environment of the system. By verifying these properties, it is

possible to discover inconsistencies in resource specification

in the TFM. The fact that a place is not reachable or a

transition cannot be ever fired means that transition of tokens

is not specified correctly, i.e., some FFs are not specified or

their specification is not complete.

Concepts of reversibility and home state in PNs could be

attributed to the concept of functioning cycle structure in

TFMs. The functioning cycle is a very important concept in

the TFM. The presence of cycles distinguishes a TFM from a

simple digraph. The functioning cycle is a chain of those FFs

connected by cause-effect relations, which are vital for system

(subsystem) functioning. However, the concept of home state

is more suitable for this purpose than reversibility, since the

TFM may have many cycles of different orders.

Applied Computer Systems

 ___ 2014/16

83

And the last concept, persistence, allows verification of

absence of conflicts. Apart from that, all marked graphs are

persistent [19].

V. RELATED WORK

The advantages of ordinary PNs and their extensions are

well-known for academic researchers. There are many studies

on transformation of process models to Petri net models in

order to analyze them further.

The author in [27] suggests an iterative procedure model for

the management of business process. In the beginning, the

informal model is constructed in Event-driven Process Chain

(EPC) language. Then, through the suggested procedure this

model is transformed to a formal PN model, which is used for

analysis of the constructed EPC model, and finally serves as

the base for coordination of the process at the run time. The

idea is similar, i.e., support of the business process modeling

at the very beginning of this process.

Another interesting approach is presented in [28], where the

authors use causal PNs. These nets are similar to the WF nets

mentioned above. The authors suggest the VIP approach for

modeling and validating business process specifications by

simulation, especially their performance characteristics.

Authors in [29] verify a web-based system on problem-

based learning by defining a new class of PNs, namely,

Activity Flow Nets. The main idea is to transform UML

activity diagrams to this kind of PNs and verify correctness of

activities and control flows. However, the verification mostly

is based on reviews of the constructed models.

Another very interesting approach is given in [30], where

the authors use a similar idea for verification of workflows by

using Work Flow Colored Petri nets, an extension of WF nets

by CPN elements. It is necessary for the analysis of resource

flows within the processes and scheduling the processes

themselves.

In more recent studies, authors suggest the application of

ordinary, timed and stochastic Petri nets for web-service

construction, modeling and orchestration [31]–[33], etc.

VI. CONCLUSION

This research investigates the possibility of integration of

two formalisms, TFM and PNs. The necessity of such

integration is based on the fact that checking the TFM requires

human activity by now. However, it is hard in case of large or

complex graphs. Therefore, automated assistance would be

valuable. This could be provided by the properties of Petri

Nets. The common point of both formalisms is the fact that

they specify functionality of the system. However, the TFM

does it at the computation-independent level (a set of process

instances level), while the PNs at a more specialized –

execution level (a process instance level). This makes it

possible to verify the TFM at the execution-level by PNs

mechanisms.

The main idea suggested here is common for all the related

works, i.e., modeling of the problem domain by means of the

suitable modeling language and technique, and then

transformation of the constructed model into a model of some

kind of PNs for structural and behavioral property analysis.

This research focuses on the transformation from the TFM

into WF CPNs. The main result is the set of mapping rules

from TFM to PN elements (however, informally described).

The analysis of the obtained PN model can give a list of errors

on the resource transferring and specification within the

system. Therefore, the necessity of improvement of the

functional description in the original TFM now is based on the

facts, not only on developer’s mental speculations.

There are also some limitations. The first is a complex

check of semantic validity of the constructed model by using

only PNs; but here domain ontology can help. The second is

the complexity of created models. As discussed in this paper,

the use of different modularization principles can handle this

issue. And the last one is a lack of automated transformation

from TFM to PN. The proposed idea is planned to be verified

practically in order to assess method applicability. The last

one is the direction of further research.

REFERENCES

[1] OMG. MDA Guide Version 1.0. OMG, 2003. [Online]. Available:

www.omg.org, [Accessed: Sept. 10, 2013].

[2] E. Asnina and J. Osis, “Computation independent models: bridging
problem and solution domains,” in Proceedings of the 2nd International

Workshop on Model-Driven Architecture and Modeling Theory-Driven
Development MDA & MTDD 2010, In conjunction with ENASE 2010,

Athens, Greece, July 2010. Portugal: SciTePress, 2010.

[3] J. Osis and E. Asnina, “A Business Model to Make Software
Development Less Intuitive,” in Proceedings of 2008 International

Conference on Innovation in Sofware Engineering (ISE 2008). Dec. 10–12,
2008, Vienna, Austria. IEEE Computer Society Publishing, 2008.

[4] J. Osis and E. Asnina, “Is Modeling a Treatment for the Weakness of

Software Engineering?” in Model-Driven Domain Analysis and Software
Development: Architectures and Functions. Hershey – New York: IGI

Global, 2011, pp. 1–14. http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
[5] E. Asnina and J. Osis, “Topological Functioning Model as a CIM-

Business Model,” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. Hershey, New York, USA: IGI
Global, 2011, pp. 40–64. http://dx.doi.org/10.4018/978-1-61692-874-2.ch003

[6] J. Osis and E. Asnina, “Derivation of Use Cases from the Topological
Computation Independent Business Model,” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions.

Hershey, New York: USA, IGI Global, 2011, pp. 65–89.
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004

[7] J. Osis, “Topological Model of System Functioning,” in Automatics and
Computer Science, J. of Acad. of Sc., no. 6, 1969, pp. 44–50.

[8] J. Osis, “Formal Computation Independent Model within the MDA Life

Cycle,” in International transactions on system science and
applications, 2006, pp. 159–166.

[9] J. Osis, “Software development with topological model in the framework
of MDA,” in Proceedings of the 9th CaiSE/IFIP8.1/EUNO International

Workshop on Evaluation of Modeling Methods in Systems Analysis and

Design (EMMSAD’2004) in connection with the CaiSE’2004. Riga,
Latvia: RTU, 2004.

[10] J. Osis and E. Asnina, “Topological Modeling for Model-Driven Domain
Analysis and Software Development,” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions.

Hershey, New York: USA, IGI Global, 2011, pp. 15–39.
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002

[11] W. F. Basener, Topology and Its Applications. New Jersey: John Wiley
and Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470067949

[12] J. Osis, E. Asnina and A. Grave, “Formal Problem Domain Modeling

within MDA,” in Communications in Computer and Information Science
(CCIS). Software and Data Technologies. Berlin: Springer-Verlag, 2008,

pp. 387–398. http://dx.doi.org/10.1007/978-3-540-88655-6_29

http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.1002/9780470067949
http://dx.doi.org/10.1007/978-3-540-88655-6_29

Applied Computer Systems

2014/16 ___

84

[13] J. Osis and E. Asnina, Model-Driven Domain Analysis and Software

Development: Architectures and Functions. Hershey, New York, USA:

IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61692-874-2
[14] U. Donins, J. Osis, A. Slihte, E. Asnina, and B. Gulbis, “Towards the

Refinement of Topological Class Diagram as a Platform Independent
Model,” in Model-Driven Architecture and Modeling-Driven Software

Development: ENASE 2011, 3rd Whs. MDA&MDSD, 2011, pp. 79–88.

[15] J. Osis, E. Asnina, A.Grave, “Formal Computation Independent Model
of the Problem Domain within the MDA,” in Information Systems and

Formal Models, Proceedings of the 10th International Conference
ISIM’07. Opava, Czech Republic: Silesian University, pp. 47–54, 2007.

[16] J. Osis, E. Asnina, A. Grave, “MDA Oriented Computation Independent

Modeling of the Problem Domain,” in Proceedings of the 2nd
International Conference on Evaluation of Novel Approaches to

Software Engineering (ENASE 2007). Barcelona, Spain, pp. 66-71, 2007.
[17] J. Osis and L. Beghi, “Topological modelling of biological systems,” in

D. A. Linkens and E. R. Carson (eds) Proceedings of the third IFAC

Symposium on Modelling and Control in Biomedical Systems (Including
Biological Systems). Oxford, UK: Elsevier Science Publishing, 1997.

[18] E. Asnina, J. Osis, and A. Jansone, “System Thinking for Formal

Analysis of Domain Functioning in the Computation Independent

Model,” in Proceedings of the 7th International Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE
2012), Poland, Wrocław, 29–30. June, 2012. Portugal: Insticc, 2012.

[19] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in
Proceedings of the IEEE 77, no. 4, 1989, pp. 541–580.

http://dx.doi.org/10.1109/5.24143

[20] L. Kristensen M. S. Christensen and K. Jensen, “The practitioners’ guide
to coloured Petri nets,” in Int Journal on Software Tools for Technology

Transfer, issue 2. Springer-Verlag, 1998, pp. 98–132.
http://dx.doi.org/10.1007/s100090050021

[21] K. Jensen, “An Introduction to the Theoretical Aspects of Coloured Petri

Nets,” in A Decade of Concurrency, Lecture Notes in Computer Science,
vol. 803. Springer-Verlag, 1994, pp. 230–272.

[22] Ch. Lakos, “Object Oriented Modelling with Object Petri Nets,” in
Concurrent Object-Oriented Programming and Petri Nets, Lecture

Notes in Computer Science, Vol. 2001. Springer, 2011, pp. 1–37.

http://dx.doi.org/10.1007/3-540-45397-0_1
[23] L. M. Kristensen, J. B. Jørgensen and K. Jensen, “Application of

Coloured Petri Nets in System Development,” in ACPN 2003, LNCS,
3098, edited by J. Desel, W. Reisig and G. Rozenberg. Springer-Verlag

Berlin Heidelberg, 2004, pp. 626–685.

http://dx.doi.org/10.1007/978-3-540-27755-2_18
[24] AIS Group. CPN Tools Homepage. [Online]. Available:

http://cpntools.org/ [Accessed: Jul. 10, 2013].
[25] W.M.P. van der Aalst, “The Application of Petri Nets to Workflow

Management,” in The Journal of Circuits, Systems and Computers,

vol. 8, no. 1, 1998, pp. 21–66.
[26] L., Dongsheng, J. Wang, S. C. F. Chan, J. Sun, L. Zhang, “Modeling

workflow process with colored Petri nets,” in Computers in Industry vol. 49,
no. 3, 2002, pp. 267–281. http://dx.doi.org/10.1016/S0166-3615(02)00099-4

[27] J. Dehnert, “Four Steps Towards Sound Business Process Models, ” in

Petri Net Technology for Communication-Based Systems: Advances in
Petri Nets, edited by Hartmut Ehrig, Wolfgang Reisig, Grzegorz

Rozenberg and Herbert Weber, vol. LNCS 2472. Germany: Springer-

Verlag Berlin Heidelberg, 2003, pp. 66–82.

http://dx.doi.org/10.1007/978-3-540-40022-6_4
[28] J. Desel and E. Thomas, “Quantitative Engineering of Business

Processes with VIPbusiness,” in Petri Net Technology for
Communication-Based Systems: Advances in Petri Nets, Vol. LNCS

2472, edited by Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg

and Herbert Weber. Gernamy: Springer-Verlag Berlin Heidelberg, 2003,
pp. 219–242. http://dx.doi.org/10.1007/978-3-540-40022-6_11

[29] V. R. L. Shen, W. Yu-Ying, Y. Cheng-Ying, and Y. Szu-Tso,
“Verification of problem-based learning systems using modified petri

nets,” in Expert Systems with Applications vol. 39, no. 16 (November

2012), pp. 12636–12649. http://dx.doi.org/10.1016/j.eswa.2012.05.019
[30] Zh. Xiao, and M. Zhong, “A method of workflow scheduling based on

colored Petri nets,” in Data & Knowledge Engineering vol. 70, no. 2
(February 2011), pp. 230–247.

http://dx.doi.org/10.1016/j.datak.2010.11.005

[31] Y. Yi, “An Extended Stochastic Petri Nets Modeling Method for
Collaborative Workflow Process,” in Physics Procedia vol. 33, 2012,

pp. 1547–1552. http://dx.doi.org/10.1016/j.phpro.2012.05.251

[32] V. Valentín, H. Macià, J. J. Pardo, M. E. Cambronero, and G. Díaz,

“Transforming Web Services Choreographies with priorities and time

constraints into prioritized-time colored Petri nets,” in Science of
Computer Programming, vol. 77, no. 3 (March 2012), 2012, pp. 290–313.

http://dx.doi.org/10.1016/j.scico.2011.05.002
[33] S. Chemaa, F. Bachtarzi, and A. Chaoui, “A High-level Petri Net Based

Approach for Modeling and Composition of Web Services,” in Procedia

Computer Science 9, 2012, pp. 469–478.
http://dx.doi.org/10.1016/j.procs.2012.04.050

Erika Asnina received M. Sc. in Computer Systems in 2003 and a

Doctoral Degree (Dr. sc. ing.) in Information Technology with specialization
in system analysis, modeling and design in 2006 from Riga Technical

University.

She has been an Associate Professor at the Department of Applied
Computer Science at Riga Technical University since 2013. She also worked

as a Software Developer. She is an author of 30 conference papers, 4 book
chapters and 1 book. Her research interests include software quality assurance,

model-driven and object-oriented software engineering.

The Latvian Academy of Sciences awarded her and the co-author, Janis

Osis, for the book “Model-Driven Software Development: Architectures and

Functions” in 2011. She was also awarded as a scholarship laureate of the
target program “For Education, Science and Culture” by the Latvian

Education Fund in 2004 and 2005.

Address: Department of Applied Computer Science, Riga Technical
University, Meža Str. 1/.3, Riga, LV-1048, Latvia;

E-mail: erika.asnina@rtu.lv

Begoña Cristina Pelayo García-Bustelo is a Lecturer at the Computer
Science Department of the University of Oviedo. She obtained a Doctoral

Degree in Computer Engineering from the University of Oviedo. Her research

interests include object-oriented technology, Web engineering, eGovernment,
modeling software with BPM, DSL and MDA.

Address: Computer Science Department, University of Oviedo, Edificio de la
Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo (Asturias, España);

E-mail: crispelayo@uniovi.es

http://dx.doi.org/10.4018/978-1-61692-874-2
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/s100090050021
http://dx.doi.org/10.1007/3-540-45397-0_1
http://dx.doi.org/10.1007/978-3-540-27755-2_18
http://dx.doi.org/10.1016/S0166-3615(02)00099-4
http://dx.doi.org/10.1007/978-3-540-40022-6_4
http://dx.doi.org/10.1007/978-3-540-40022-6_11
http://dx.doi.org/10.1016/j.eswa.2012.05.019
http://dx.doi.org/10.1016/j.datak.2010.11.005
http://dx.doi.org/10.1016/j.phpro.2012.05.251
http://dx.doi.org/10.1016/j.scico.2011.05.002
http://dx.doi.org/10.1016/j.procs.2012.04.050

