
Applied Computer Systems 

 _______________________________________________________________________________________________ 2014/16 

77 

The Perspective on Data and Control Flow Analysis 

in Topological Functioning Models by Petri Nets 

Erika Asnina1, Begoña Cristina Pelayo García-Bustelo2, 
1Riga Technical University, Latvia, 2University of Oviedo, Spain 

Abstract – The perspective on integration of two mathematical 

formalisms, i.e., Colored Petri Nets (CPNs) and Topological 

Functioning Model (TFM), is discussed in the paper. The roots of 

CPNs are in modeling system functionality. The TFM joins 

principles of system theory and algebraic topology, and formally 

bridges the solution domain with the problem domain. It is a base 

for further automated construction of software design models. 

The paper discusses a perspective on check of control and data 

flows in the TFM by CPNs formalism. The research result is 

definition of mappings from TFMs to CPNs. 
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I. INTRODUCTION 

Software developers used to eliminate a process of problem 

domain modeling, since the main artifacts of their work 

usually are executable code and software requirements 

specification that is based on this code. Model Driven 

Engineering is a methodology that moves developers’ focus 

from coding as such to the creation of transformable (and 

sometimes also executable) software architecture 

specifications. It uses main viewpoints and corresponding 

models (specifications) of Model Driven Architecture (MDA) 

[1], namely, a computation independent model (CIM), a 

platform independent (PIM) model, and a platform specific 

model (PSM). The CIM, a model discussed in this paper, 

describes system requirements and a way a system works 

within its environment, while details of the structure and 

realization of the software application are hidden or yet 

undetermined. It is business “owner’s” viewpoint called a 

domain model and a domain vocabulary. The CIM usually is 

informal and its transformation mostly is manual [2]. The CIM 

is a specification of both software and the problem domain (or 

at least of its part related to software). Therefore, it should be 

able to provide a correspondence between them [2], [3]. But 

this is possible only if the CIM is formal [4]. 

Receiving valid code from a transformable model (a 

graphical specification) still is an open question. There are two 

aspects of this. The first one is transformation of models into 

code itself, and the second one is validity of models 

themselves. Here, directly the verification of one of CIMs, a 

Topological Functioning Model (TFM), is discussed, since it 

serves as a bridge that joins the problem domain and the 

solution domain in the computation independent manner [5], 

[6]. The cause of this research is manual verification of the 

TFM cause-and-effect flows at the present time. When the 

TFM is composed, each data and its control need to be 

checked on adequacy to the domain functioning. Certainly, 

this task does require participation of domain experts. The 

open question is automated (tool) assistance in this process, 

since in case of a large or complex graph the number of 

possible flows can be too big for human mind. On the other 

hand, Colored Petri Nets (CPNs) do provide formalism for 

tracing data moves and control activities. Therefore, if a TFM 

could be transformed to a CPN, then it would be possible to 

trace and check data and control flows presented in the TFM. 

The goal of this research is to find out the possibility of 

mapping data and control flows of the TFM and CPNs. 

The paper is organized as follows. Section II describes 

formalism and previous application areas of the TFM in brief. 

Section III describes the formalism of Petri Nets (PNs), CPNs 

and their application areas in brief. Section IV discusses 

mappings of data and control flows from the TFM to CPNs. 

Section V highlights related work on application of PNs to 

business process modeling and verification of semantics in 

control and resource flows. In Conclusion, benefits and 

limitations of the results are discussed. 

II. TOPOLOGICAL FUNCTIONING MODEL 

A. A Brief Introduction 

The TFM is based on principles of algebraic topology and 

system theory. Mathematically, the TFM is represented in the 

form of a topological space (X, ), where X is a finite set of 

functional features (FFs), i.e., characteristics of the system 

under consideration, and  is the topology that satisfies 

axioms of topological structures; and it is represented in the 

form of a directed graph [7]–[10]. Topological spaces are 

described in detail in [11].  

The detailed process of construction of the TFM is omitted 

in this paper, since the research objective is to analyze the 

possibility of the verification of functional characteristics of 

this model. In general, the construction includes definition of 

domain objects (a vocabulary), system’s FFs and cause-effect 

relations among them, construction of a topological space of 

the problem domain, and separation of the TFM of the system 

from this topological space. The details are described in [12]–

[16].  

The TFM has topological (from algebraic topology) and 

functioning (from system theory) properties [13]. The 

topological properties are connectedness, closure, 

neighborhood and continuous mapping.  
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Fig. 1. “Bridging” the problem and the solution domains by using the TFM. 

Mainly, they relate to formal determination of domain 

boundaries in terms of TFM FFs connected by cause-effect 

relations, and abstraction/refinement of the domain 

functionality.  

The functional properties (Section II.C) are cause-effect 

relations, cycle structure (formed by FFs connected with 

cause-effect relations), inputs and outputs [10], [13]. 

B. TFM Application 

The topological modeling of system functioning (TFM) was 

developed at Riga Technical University, Latvia. For the first 

time, its theoretic foundations were represented by Janis Osis 

in [7]. The TFM has been successfully used for the system 

analysis since the 1970s, and its application in different areas 

is being developed today as well. The recent more important 

studies concern its application for the purposes of biological 

systems modeling [17], and for introducing more formalism 

into the MDA framework and problem domain analysis, which 

grounds development of topological modeling language [3], 

[9], [12], [13]. Unfortunately, only publications after 1992 are 

available in English. 

As mentioned in Introduction, the role of the TFM in the 

process of problem domain modeling is to “bridge” the 

problem domain and the solution domain through formal 

mathematical specification of knowledge of both domains. It 

is gained by using topological properties of the TFM as 

discussed in [2], [5], [10]. 

Fig. 1 illustrates the “bridging” at the business model level 

of the CIM. The TFM of the system in the problem domain (or 

“the system-as-is”) is constructed by using analysis means for 

verbally expressed knowledge, namely, noun and verb 

analysis, assisting guidelines, and a formal specification for 

system functional characteristics. Customer requirements are 

mapped onto and verified by this TFM. During this process, a 

copy of the TFM is updated in accordance with the customer’s 

software functional requirements. Customer requirements 

themselves also are updated by adding new or missing 

functionality that was not explicitly defined before and 

removing incorrect one (or out-of-date knowledge for the 

solution domain). The result is the TFM that specifies the 

solution domain (“the system-to-be”), which is in conformity 

with the TFM of the problem domain. Additionally, the 

verified software requirements specification is obtained. The 

TFM illustrates planned functionality holistically, and further 

development requires its decomposition on parts dedicated for 

implementation. According to a development plan and 

software requirements, criteria for TFM decomposition are 

identified. By using them, the TFM is decomposed into parts, 

which are transformed to parts of the initial analysis model. 

The TFM of the software is a subsystem of the TFM of “the 

system-to-be”, and it serves as a root model for further 

decomposition and transformation into software design 

models. Exactly the important role that this holistic model 

plays in software development requires proper verification of 

model correctness. Certainly, the degree of verification of the 

correctness is limited with the possibility to check semantic 

data. However, usually this verification is performed manually 

with domain experts’ help. It is hardened in case of a large or 

complex graph of the model. 
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Fig. 2. The functional properties of the topological functioning model. 
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C. Formalism and Representation of Control and Data Flows in 

the Topological Functioning Model 

TFM functional properties, which come from system 

theory, are closely related to specification of control and data 

flows within the domain. They are cause-effect relations, cycle 

structure (formed by FFs connected with cause-effect 

relations), inputs and outputs (Fig. 2). The explanation of each 

of them is given in detail in [13], [18]. Here, only the most 

important information is explained. 

The definition of FF given in [13] is extended with 

incoming and outgoing combinations of cause-effect relations. 

It is specified as a unique 9-tuple <A, R, O, PrCond, 

PostCond, Pr, Ex, InRel, OutRel>, where: 

 A is an action linked with a domain object;  

 R is a result of that action (it is an optional element); it 

could be a domain object or a set of them, a message, a 

trigger for the effect event etc.; 

 O is a domain object that gets the result of the action or a 

set O of objects, which are used in this action (in case when 

an item of Ex gets result R); it could be a role, a time 

period or a moment, catalogues etc.;  

 PrCond is a set PrCond = {prec1, …, preci}, where preci is 

a precondition or an atomic business rule (it is an optional 

element) of the action;  

 PostCond is a set PostCond = {postc1, …, postci}, where 

postci is a post-condition or an atomic business rule (it is an 

optional element) of the action;  

 Pr is a set of responsible entities (systems or subsystems), 

which provide or suggest the action with the set of certain 

objects;  

 Ex is a set of responsible entities (systems or subsystems), 

which enact the action; 

 InRel is an expression of combinations of possible logical 

relations among incoming cause-effect relations in1, in2, …, 

ini; 

 OutRel is an expression of combinations of possible logical 

relations among outgoing cause-effect relations out1, out2, 

…, outi. 

A control flow in the TFM is represented by means of 

cause-effect relations from a cause FF to an effect FF. In the 

simplest case, a cause FF must have at least one effect, as well 

as an effect FF must have at least one cause. In complex cases, 

logical relations among cause-effect relations may form 

different logical combinations. The logical operators used 

within these combinations are negation NOR, conjunction 

AND, disjunction OR, and exclusive disjunction XOR. Cause-

effect relations connect causally dependable FFs and may 

form functioning cycles. Causes and effects are stimulus sent 

to the system by the external environment (inputs) and 

reactions sent to the external environment by the system 

(outputs).  

In other words, a cause-effect relation is a control flow from 

one FF to another one, which also transfers data/resources 

from one functional processing to another; while the FF is a 

data/resource handling node. 

 

 

Fig. 3. An abstract Petri net. 

III. PETRI NETS 

Petri Nets (PNs) is a formal mathematical and graphical 

language for modeling systems with concurrency and resource 

sharing, which can be applied for any area or system that can 

be described graphically like flow charts. The concept of the 

PNs was introduced by Carl Adam Petri in 1962 [19]. PNs can 

be used to represent flows of both control and data. One of 

powerful PNs extensions are Colored Petri Nets (CPNs) [20]–

[22]. In CPNs, colors denote types of tokens, while transitions 

conduct operations on multiple sets of tokens of those colors. 

CPNs have a module concept allowing CPN models to be 

organized into several modules, which are called by pages 

[23], thus allowing the hierarchical order. CPN models can be 

constructed by using CPN Tools [24].  

Another kind of PNs that is used within this work is the so-

called work flow (WF) nets. A Petri Net is a WF net if [25]: i) 

The Petri net has two special places – source and sink; ii) The 

sink place is only reachable from the source place with at least 

one token in it (this guarantees the proper termination of the 

process transaction); and iii) There is no dead transition in the 

PN with initial marking in the source place. On the basis of the 

WF nets, the net model can be extended to any CPN model 

and apply benefits of Petri Net theory. In this research the WF 

extension to CPNs is used [26] but without scheduling aspects. 

A. Petri Net Formalism 

A Petri net is a particular kind of a digraph (directed, 

weighted, bipartite), which contains two kinds of nodes – 

places and transitions, which are connected by directed arcs 

(Fig. 3).  

Arcs are directed from a place to a transition or from a 

transition to a place. Arcs are labeled with their weights 

(classically they are positive integers). The digraph has an 

initial state called the initial marking M0. A marking is 

denoted by M, an m-vector, where m is the total number of 

places. M(p) represents the pth component of M and is the 

number of tokens in the place p. The mark on arcs represents a 

number of tokens that each arc can transfer to or from the 

place. Usually in graphical representation places are illustrated 

as circles, and transitions are drawn as bars or boxes [19]. 

As mentioned in [19], the simple but very important rule in 

PN theory is the rule for transition enabling and firing. For 

instance, the concept of conditions and events is widely used 

in modeling. In the PNs, places represent conditions, and 

transitions represent events. An event has a certain number of 
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conditions that must be true in order to generate the event. The 

same, a transition has a certain number of input and output 

places correspondingly to the pre-conditions and post-

conditions of the event (Fig. 3). The status of the conditions, 

true or false, is indicated by the presence or absence of a token 

in the place, correspondingly. If a PN is used for modeling 

data sharing, then k tokens in the place may indicate that k 

data items are available. As mentioned in [19], interpretation 

of places and transitions may differ, e.g., i) pre-condition, 

event, post-condition, ii) input data, computation step, output 

data, iii) resources needed, task or job, resources released, etc. 

The transition (firing) rule is as follows [19]: 

 A transition t is said to be enabled if each input place p of t 

is marked with at least w(p, t) tokens, where w(p, t) is the 

weight of the arc from p to t. 

 An enabled transition may or may not fire (depending on 

whether or not the event actually takes place). 

 A firing of an enabled transition t removes w(p, t) tokens 

from each input place p of t, and adds w(t, p) tokens to each 

output place p of t, where w(t, p) is the weight of the arc 

from t to p. 

A source transition is a transition without any input place 

and it is unconditionally enabled, while a sink transition is a 

transition without any output place, whose firing consumes 

tokens, but does not produce any [19]. 

B. Control and Data Flow Representation in Petri Nets 

Control flows can be modeled in different ways. The 

common construct used for this purpose is illustrated in Fig. 3, 

when place p1 has two outgoing arcs: one to transition t2 and 

one to transition t3. This construct is called a conflict, choice, 

or decision. There are some basic examples that are useful in 

modeling [19]: 

 Decisions are represented by using state machines (the 

previously mentioned construct of p1, t2 and t3 in Fig. 3), 

but state machines do not represent the synchronization of 

parallel activities; 

 Parallel activities (i.e., logical operator AND on the 

outgoing control flows from the event) are represented by 

concurrent transitions (which are causally independent, i.e., 

one transition may fire before or after or in parallel with the 

other). Apart from that, each place in the net must have 

exactly one incoming and one outgoing arc (Fig. 4a);  

 Conflicts (i.e., logical operators OR and XOR on the 

outgoing control flows) are a more complex case. Two 

events e1 and e2 are in conflict if either e1 or e2 can occur 

but not both (XOR), and they are concurrent if both events 

can occur in any order without conflicts (OR). The situation 

when conflicts and concurrency are mixed is called 

confusion (Fig. 4b).  

Data flows can be modeled as a dataflow computation. As 

mentioned in [19], in this case tokens denote data values and 

the availability of data. Transitions represent operations on 

these data, and can be expressed as formal computational 

statements. 

 

Fig. 4. Petri nets for representation of parallel activities (a) and symmetric 
confusion (b). 

C. Properties of Petri Nets 

There are two types of properties which can be studied with 

a Petri Net model, namely, behavioral and structural [19]. 

Here only behavioral properties are discussed.  

Behavioral properties are reachability, boundedness, 

liveness, reversibility and home state, coverability, 

persistence, synchronic distance and fairness [19]. Just a part 

of them, i.e., those which are necessary for integration with 

the TFM are discussed in brief below:  

 Reachability is a property, when each sequence of firings 

will result in a sequence of markings. 

 Liveness is related to the complete absence of deadlocks in 

the system. A PN is said to be live if it is possible to 

ultimately fire any transition of the net by progressing 

through some further firing sequence. Thus, a live PN 

guarantees deadlock-free operation. 

 Reversability and Home State. A PN is said to be 

reversible, if one can always get back to the initial marking 

or state. In many applications, it is important not to get to 

the initial state, but to the home state. A marking M’ is said 

to be a home state, if for each marking M in the set of all 

possible markings reachable from the initial marking M0, 

M’ is reachable from M.  

 Persistence is a property, when, for any two enabled 

transitions, the firing of one transition will not disable the 

other. A transition in a persistent net, once it is enabled, 

will stay enabled until it fires. It could be called a conflict-

free net. 

IV. INTEGRATION OF TFM AND CPN FORMALISMS 

The TFM is used as a holistic business model of the system, 

while the CPN considers the system at a more detailed level of 

abstraction. The weakness of the TFM is a lack of mechanisms 

for its verification. The only mechanism that exists is domain 

expert reviews. The strong point of the CPNs is a mechanism 

for modeling and analysis of different functional aspects of the 

system, where the most interesting for this research is the 

transition of data within the system operation. The research 

goal is transformation of the TFM into the CPN and analysis 

of its correctness by using native mechanisms. 
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A. The TFM and the CPN Models 

The one common weakness of all models based on graphs, 

including TFMs and PNs, is the size and complexity of 

graphs. For PNs, this weakness hardens analysis of behavioral 

properties, especially reachability. Therefore, CPNs use the 

modularization principle, where a module (called a page) 

represents a part of the model and can be analyzed faster. The 

question is what construct of the TFM can be related to a 

page?  

The TFM represents the entire system under discourse 

holistically. Even in case of a middle-sized system the 

graphical representation, digraph, is very large and hardly 

reviewed. In order to handle this weakness, the TFM supports 

two modularization principles – hierarchical levels of 

abstraction and decomposition:  

 Hierarchical levels of abstraction. The TFM uses 

simplification and refinement mechanisms between 

topological spaces, namely, continuous mapping, in such 

a way supporting creation of hierarchical levels of 

abstraction [7], [2], [13]. In this case, the model remains 

holistic, and a specific FFs can be transformed to pages, 

keeping all cause-effect relations among abstracted FFs 

as relations among corresponding pages.  

 Decomposition. Another principle is decomposition of 

the TFM into a set of business processes or use cases by 

using business goals as criteria for the decomposition 

[12]–[14]. Then, each use case or business process can be 

transformed to the CPN model and analyzed. In this case, 

causal dependencies among use cases or business 

processes must be additionally analyzed. 

In general, the process of analysis of CPN models can be 

separated in two parts: first, to perform the analysis of each 

module of the system, and second, to analyze co-work of 

modules. Thus: 1) the TFM must be refined till the level, when 

init A terminated init B1 terminated

initB2terminated

Control flow transition (“Generates”) 

represented by cause-and-effect relation

Control flow transition (“Generates”)
events

Process 

start

Process end
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Fig. 5. The initiation and conduction of FF. 
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Fig. 6. Presentation of TFM elements with CPN constructs. 
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Fig. 7. The example of CP Net mapped from the TFM FFs. 
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every FF is specialized, i.e., it cannot be refined further from 

the desired viewpoint; 2) Then, modules must be defined 

within the TFM. This could be done by using decomposition 

criteria – business or system goals. For each goal, a set of FFs 

and binary cause-effect relations among them is assigned. At 

this step, shared functional parts can be determined and 

separated as particular modules. After that, these modules can 

be simplified and represented within a single model. This 

model should specify causal dependencies among modules; 3) 

Then, each part and the entire model should be transformed to 

the CPN model. This will give the possibility to analyze the 

behavioral properties of the whole system and its parts. 

B. Presentation of Functional Features and Cause-effect Relations 

by means of the Petri Net Theory 

As previously mentioned, the TFM elements are: 1) an FF 

that could be input, output and intermediate, and 2) a cause-

effect relation that denotes causal dependency of an effect 

from a cause. In its turn, CPNs elements are places, colors, 

tokens, transitions, arcs and arc weights. Mappings from the 

TFM to the CPN are defined below.  

The initialization and conduction ofthe FF in terms of 

business process execution is illustrates in Fig. 5. Conduction 

of FF begins with the initiation event “init”. Then, FF is 

conducted. After that a termination event “terminated” is 

raised, which generates a transition to the next FF. In 

dependency of the termination success, the next FF is or is not 

initiated [13]. 

As mentioned in Section II.C, the FF is a unique 9-tuple  

<A, R, O, PrCond, PostCond, Pr, Ex, InRel, OutRel>. A 

domain object or a set of them (O) and the results (R) as well 

as entities Pr and Ex are denoted as token colors. Since FF 

performs action A, it must be represented as a transition. The 

initiation of the FF in terms of PN theory is the enabling of the 

transition. The conduction of FF is the firing of the transition. 

Thus, transition t denotes such action A, which is performed 

by one object O (or one entity from Ex) of the FF. CPNs allow 

representing arc weights as conditions and corresponding 

transited token colors in the general form “IF precondition 

THEN (<NumberOfTokens, TokenColor>)” (<NumberOfTokens> 

with value 1 could be skipped in the description of the 

weight). Therefore, weights of those arcs, which come from 

place p to transition t, should be presented as an expression 

“w(p, t) = IF preci Then O”. In turn, weights of those arcs, 

which come from transition t to place p, should be presented 

as an expression “w(t, p) = (postci, R)”. R of a FF is a result of 

the conduction of action A.  Post-conditions PostCond 

represent the system states after firing transition t.  

In the general case, an intermediate FF (i.e., that is not input 

and output) represents a part of system’s inner functionality. It 

is generated by a cause or combination of causes and 

generates an effect or combination of effects. For this case, 

CPNs suggest using a combination of places and transitions as 

presented in Fig. 6(c) and explained above. 

An input FF represents a part of functionality that provides 

an unlimited set of input resources or state changes in the 

system, for example, in case of FF “arriving of a person” 

represents an unlimited number of persons, who can activate 

the system as an input signal. During constructing the CPN 

model, an input FF is represented by PN source transition and 

one place, where an arc is directed from the transition to the 

place (Fig. 6(a)).   

An output FF represents a part of functionality that triggers 

an output event and state changes. For example, it could be a 

resource that is produced by the system and transited to the 

external environment. For this case, CPNs suggest using a 

place that transfers a set of tokens to a PN sink transition, 

which does not produce any token (Fig. 6(b)). 

Within the CPN model, cause-effect relation representation 

is not possible as such, because it is a causal relation between 

two transitions. CPNs do not allow creating arcs directly 

between two transitions. However, cause-effect relations 

dictate sequence and enabling of transitions. In general, the 

termination event of one FF (the cause) and possibility of 

initiation of another FF (the effect) occurs when the system 

has one and the same state (Fig. 5); therefore, the combination 

of places and incoming and outgoing arcs between two 

transitions could be considered representation of the causal 

dependency. 

The example of the Petri Net that illustrates the provided 

mappings is shown in Fig. 7. It is a representation of three 

FFs: FF2 “Checking out a book_copy” by Librarian that is 

generated by FF1 “Receiving the request_for_a_book_copy 

from a reader” by Librarian and generates FF3 “Giving the 

book_copy to a reader” by Librarian. 

C. Analysis of PN Behavioral Properties for Verification of 

Resources in the TFM 

Verification of the reachability and liveness of PNs could 

help in verification of construction of the system functionality 

in the TFM, since it allows discovering deadlocks and those 

system states, which are not reachable ever. In terms of the 

TFM, it means that there is no such functional part, which 

could not be ever executed or which leads to the unstable 

operation of the system. Apart from that, this means that each 

output FF in the TFM can be reached under certain conditions, 

thus providing proper communication with the external 

environment of the system. By verifying these properties, it is 

possible to discover inconsistencies in resource specification 

in the TFM. The fact that a place is not reachable or a 

transition cannot be ever fired means that transition of tokens 

is not specified correctly, i.e., some FFs are not specified or 

their specification is not complete. 

Concepts of reversibility and home state in PNs could be 

attributed to the concept of functioning cycle structure in 

TFMs. The functioning cycle is a very important concept in 

the TFM. The presence of cycles distinguishes a TFM from a 

simple digraph. The functioning cycle is a chain of those FFs 

connected by cause-effect relations, which are vital for system 

(subsystem) functioning. However, the concept of home state 

is more suitable for this purpose than reversibility, since the 

TFM may have many cycles of different orders.  
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And the last concept, persistence, allows verification of 

absence of conflicts. Apart from that, all marked graphs are 

persistent [19]. 

V.  RELATED WORK 

The advantages of ordinary PNs and their extensions are 

well-known for academic researchers. There are many studies 

on transformation of process models to Petri net models in 

order to analyze them further. 

The author in [27] suggests an iterative procedure model for 

the management of business process. In the beginning, the 

informal model is constructed in Event-driven Process Chain 

(EPC) language. Then, through the suggested procedure this 

model is transformed to a formal PN model, which is used for 

analysis of the constructed EPC model, and finally serves as 

the base for coordination of the process at the run time. The 

idea is similar, i.e., support of the business process modeling 

at the very beginning of this process. 

Another interesting approach is presented in [28], where the 

authors use causal PNs. These nets are similar to the WF nets 

mentioned above. The authors suggest the VIP approach for 

modeling and validating business process specifications by 

simulation, especially their performance characteristics.  

Authors in [29] verify a web-based system on problem-

based learning by defining a new class of PNs, namely, 

Activity Flow Nets. The main idea is to transform UML 

activity diagrams to this kind of PNs and verify correctness of 

activities and control flows. However, the verification mostly 

is based on reviews of the constructed models. 

Another very interesting approach is given in [30], where 

the authors use a similar idea for verification of workflows by 

using Work Flow Colored Petri nets, an extension of WF nets 

by CPN elements. It is necessary for the analysis of resource 

flows within the processes and scheduling the processes 

themselves.  

In more recent studies, authors suggest the application of 

ordinary, timed and stochastic Petri nets for web-service 

construction, modeling and orchestration [31]–[33], etc. 

VI. CONCLUSION 

This research investigates the possibility of integration of 

two formalisms, TFM and PNs. The necessity of such 

integration is based on the fact that checking the TFM requires 

human activity by now. However, it is hard in case of large or 

complex graphs. Therefore, automated assistance would be 

valuable. This could be provided by the properties of Petri 

Nets. The common point of both formalisms is the fact that 

they specify functionality of the system. However, the TFM 

does it at the computation-independent level (a set of process 

instances level), while the PNs at a more specialized – 

execution level (a process instance level). This makes it 

possible to verify the TFM at the execution-level by PNs 

mechanisms. 

The main idea suggested here is common for all the related 

works, i.e., modeling of the problem domain by means of the 

suitable modeling language and technique, and then 

transformation of the constructed model into a model of some 

kind of PNs for structural and behavioral property analysis. 

This research focuses on the transformation from the TFM 

into WF CPNs. The main result is the set of mapping rules 

from TFM to PN elements (however, informally described). 

The analysis of the obtained PN model can give a list of errors 

on the resource transferring and specification within the 

system. Therefore, the necessity of improvement of the 

functional description in the original TFM now is based on the 

facts, not only on developer’s mental speculations. 

There are also some limitations. The first is a complex 

check of semantic validity of the constructed model by using 

only PNs; but here domain ontology can help. The second is 

the complexity of created models. As discussed in this paper, 

the use of different modularization principles can handle this 

issue. And the last one is a lack of automated transformation 

from TFM to PN. The proposed idea is planned to be verified 

practically in order to assess method applicability. The last 

one is the direction of further research. 
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