
Applied Computer Systems

2014/16 ___

26

Implementation of Software Configuration

Management Process by Models: Practical

Experiments and Learned Lessons

Arturs Bartusevics1, Leonids Novickis2, Stefan Leye3
1–2 Riga Technical University, Latvia, 3 Fraunhofer Institute for Factory Operation and Automation IFF, Germany

Abstract – Nowadays software configuration management

process is not only dilemma which system should be used for

version control or how to merge changes from one source code

branch to other. There are multiple tasks such as version control,

build management, deploy management, status accounting, bug

tracking and many others that should be solved to support full

configuration management process according to most popular

quality standards. The main scope of the mentioned process is to

include only valid and tested software items to final version of

product and prepare a new version as soon as possible. To

implement different tasks of software configuration management

process, a set of different tools, scripts and utilities should be

used. The current paper provides a new model-based approach to

implementation of configuration management. Using different

models, a new approach helps to organize existing solutions and

develop new ones by a parameterized way, thus increasing reuse

of solutions. The study provides a general description of new

model-based conception and definitions of all models needed to

implement a new approach. The second part of the paper

contains an overview of criteria, practical experiments and

lessons learned from using new models in software configuration

management. Finally, further works are defined based on results

of practical experiments and lessons learned.

Keywords – Model-Driven Approach, Software Configuration

Management.

I. INTRODUCTION

Nowadays software configuration management is not only a

challenge to choose a correct source code management

strategy for particular projects [1], [8], [10]. During the last

years, software development projects have become bigger and

complex in context of source code lines, components,

developed using different technologies, and dependencies

from other software. At the same time, new versions of a

developed product should be released as soon as possible

without failed builds, unexpected errors or invalid set of

configuration items [10], [1], [2]. To achieve this, new

solutions to software configuration management try to

combine several tasks, such as source code management,

continuous integration, build management, release

management, bug tracking etc. Usually software development

companies already have a set of tools to solve the above-

mentioned tasks. The main challenge is to increase reusability

of developed solutions and configurations of tools to reduce

efforts for manual steps and for implementation of the same

solutions in new projects.

A. Problem Formulation

The following problems are discussed and underlined in the

current paper:

 Lack of connections between general software

configuration management process and implementation

of particular parts of process by different tools. This

increases efforts for configuration and customization of

particular tools and many manual steps required to

support an overall process completely.

 Solutions to particular tasks of configuration

management are very specific for concrete project and

are not reusable. The main reasons of this problem are

mixtures of different parts of configuration management

in one solution. For example, build script contains

hardcodes for a specific project, absolute paths of server

directories, elements of source code management,

connections to a bug tracking system etc. There are many

efforts required to adopt such a script for other project.

There is a lack of methodologies on how to design

parameterized, reusable solutions to particular tasks of

configuration management that is not dependent on other

tasks.

B. Scientific Novelty

The paper provides a new model-driven approach to the

implementation of software configuration management

process. Unlike other approaches and solutions, a new

approach is not oriented to a particular tool that “should solve

any problem” but provides the steps how to increase the reuse

of existing solutions with well-known tools for source code

management, continuous integration, bug tracking and build

management. New approach contains three levels of models to

describe a configuration management process in context of

different abstraction levels. The models provide an approach

on how to design reusable and independent solutions and the

way from the general process overview to concrete technical

solutions. There are five practical experiments described in

this paper to show gains and benefits of a new approach. As a

result, a number of lessons learned are provided that could

help to improve a new approach in future and could generate

new ideas.

C. Paper Structure

Section II of this paper provides an overview of related

research in software configuration management area to detect

doi: 10.1515/acss-2014-0010

Applied Computer Systems

 ___ 2014/16

27

trends of improvements, lack of existing approaches and to

better underline the novelty of the current paper. In Section III,

description of a new approach is given with short explanations

and definitions of models. Next sections provide the

description of criteria to evaluate gains of a new approach,

results of experiments and practical lessons learned during

experiments. Finally, conclusions are given, and directions of

further work are defined.

II. RELATED WORK

As far back as 1992 there was published an article [9] that

introduced to main challenges of configuration management

area. One of the main ideas is related to the development of a

configuration management service model. Many things have

changed since then; more standards have been developed in

software development field, new tools for configuration

management designed. In a recent interview with a long-term

expert in configuration management area [10], the year

1998was mentioned, when there was an attempt to create a

“super tool” for integration of all solutions of configuration

management in one framework. Attempt failed, because

solutions were too complicated. Configuration managers and

developers were afraid of “majesty” of such a tool.

Configuration management expert [10] emphasizes a

challenge to enhance trust between configuration managers

and developers as the main future challenge. The main

requirement for this is a clear procedure, which could be

trusted by programmers. Other configuration management

experts [1], [2] note that solutions will be ineffective and will

require additional resources without planning of general

process before implementation of particular solutions and

installation of tools. Modern solutions require reusable

approaches that allow coming efficiently from the process

general requirements to technical implementation.

Analyzing different approaches of reuse oriented solutions,

more ideas from MDA [6] have been found. The important

task in configuration management is source code management,

and significant part of model-driven solutions is related to this

task [11], [12], [13]. New approaches try to improve source

code management by modeling product components,

streamlines and branches [13]. Abstract models are designed

to improve new development of source code management

systems [11], [12]. There are solutions that provide an abstract

model for general configuration management process based on

software quality standards [14], [15], [16]. Usually the

approaches do not provide how to increase reuse of existing

solutions. It can be very important because software

development companies usually have a set of concrete tools

that are trusted from their point of view. Thus, new tools or

methods with “super performance”, “mystic full-automated

level” cannot be trusted and acceptable by companies.

The following studies [7], [3], [4] consider a software

configuration management process as a whole, not just a

particular task. Solution in the article [7] has been designed as

a general concept of configuration management and meta-

model for creating different models of software configuration.

The solution is focused on projects, where development is

based on a model-driven approach, but there are no

explanations on how this approach could be used in projects

with other development approaches.

The main concept of configuration management in study [4]

was taken from the ITIL (Information Technology

Infrastructure Library) standards and later an abstract model

was designed. Later this model could be transformed to a

platform specific model. Although this solution also includes

the implementation for model-driven configuration

management, it is focused on a single technology (JAVA). No

recommendations are provided on how to integrate together

different tasks of configuration management, such as source

code management, bug tracking, build management.

Study [3] focuses on various ways of mutual integration of

configuration management different tools. To maintain a full

configuration management process, a number of tools are

required: version control systems, bug tracking systems, build

servers, continuous integration servers etc. The practical

experience indicates that all tools often work separately from

each other. The main scope of solution is to integrate different

tools to solve all tasks for configuration management. To

integrate various configuration management tools together, the

definition of general concept of each integrated tool is

required [3]. The paper offers an ontology for a configuration

management process. This ontology provides a general

configuration management model and shows how various

configuration management tools should be integrated. The

study does not have any guides how the ontology could be

used for a particular project. It is not clear what kind of

ontology editors are advised to use and how to determine the

moment when the changes have to be made.

The new model-driven approach provided in the current

paper supports the main idea of described related studies about

models. Unlike related studies, models in the provided

solution have strong defined connections between each other

and provide a full way from an abstract process overview to

concrete implementation of particular tools, scripts or

frameworks. This could reduce efforts for invalid

customization of technical solutions. Additionally, a new

approach is not oriented to any specific tool but allows using

existing, well-known and trusted tools. The approach provides

only a methodology on how to refactor the existing solutions

and design a new one in order to increase its reuse. This could

save up time for implementation of similar solutions for other

projects.

III. MODEL-DRIVEN APPROACH TO SOFTWARE

CONFIGURATION MANAGEMENT

Development of a new model-driven approach to

configuration management was started with the position that

different processes of software development required a set of

instances or environments. It means that software product

could not be developed, tested and used in one environment.

Usually different environments are used for the mentioned

actions, for example, DEV environment for development,

TEST environment for testing and PROD environment for

real-time exploitation of software product. From the

Applied Computer Systems

2014/16 ___

28

perspective of configuration management, the main scope is to

move changes in a product from one environment to another at

a particular time moment. According to development

methodology, parallel developments in particular projects,

software product lines and some other factors, different sets of

environments and different flows of changes could be used for

projects. Thus, firstly, environments and flows of changes

should be modeled to describe a general software

configuration management process. Secondly, after all

environments and all flows are known, all actions should be

defined that required to implement each flow of changes. For,

example, the following actions are required to move software

changes from DEV to TEST environment: prepare baseline of

a source code, build executable from a source code, deploy

executable to TEST environment. Finally, particular solutions

should be selected for each mentioned action. New approach

requires designing solutions structured by actions. For

example, a company may have a few different solutions

(scripts, function, framework etc.) to build executable from a

source code. Any solution should be parameterized and

independent of solutions of other actions. For example, build

script should receive a set of parameters and return executable.

Script should not contain any specific hardcodes or any

information about actions of source code management, bug

tracking, servers where executable should be deployed etc.

There are three levels of models in the provided approach:

 Environment Model (EM) – provides a model of all

instances included in software development project. A

model also contains all flows of software changes

between different environments. This model provides an

overview of general infrastructure of project in context of

instances. Based on state of environments and flows of

changes, general risks of configuration management

could be detected.

 Platform Independent Action Model (PIAM) – provides a

set of actions needed to apply all flows from the

Environment Model. The actions are abstract and do not

contain any details specific for a particular platform. For

example, action “Compile” should be used to compile

software from a source code but in this model any details

about a software technology, compilation algorithm, and

platform are not known.

 Platform Specific Action Model (PSAM) – provides an

extended variant of Platform Independent Action Model,

because the same actions are fulfilled with details about a

platform, technology, specific scripts etc. In this model,

action “Compile” already has information on a

technology, compilation algorithms, platform etc. It

means that in this model all details are known, for

example, it could be ANT build script for JAVA projects.

General picture of a new model-driven approach is provided

in Fig. 1.

Fig. 1. Model-based approach for software configuration management.

Illustration of a model-driven approach in Fig. 1 is

represented as a flow with interactions from a configuration

manager. Arrows with numbers mean particular stages of the

approach. The first stage “1” provides creation of

Environment Model from a special meta-model. Configuration

manager builds the Environment Model from a set of

components from the mentioned meta-model. During the

second stage “2”, the created Environment Model should be

compiled by a special block in the Expert System, called

“Rules of Risks, Compilation”. Expert System in context of

this research is a special warehouse for different blocks of

rules and a database with ready solutions of actions. After

stage “2” a configuration manager compiles the Environment

Model with a description of general configuration

management risks if such exist. Stage “3” explores the ready

Environment Model by a special block of the Expert System

called “E->P”. The main task is to detect actions needed to

apply each flow between environments. During stage “4”, the

Metamodel of EM

(Environment Model)

Metamodel of PIAM

(Platform Independent Action Model)

EM

(Environment Model)

PIAM

(Platform Independent Action Model)

Expert System

Solutions

database

 „E->P”

Transformation

Rules

Rules of Risks,

Compilation

Configuration Management Domain

PSAM

(Platform Specific Action Model)

Use Metamodel

1

Use Metamodel

2
3

4

7

5

6

Cofiguration

Manager

Cofiguration

Manager

Applied Computer Systems

 ___ 2014/16

29

Platform Independent Action Model performs using actions

defined at stage “3” and meta-model of PIAM. The stages “5”

and “6” require the second interaction from a configuration

manager to analyze the ready Platform Independent Action

Model and to choose solutions for each action from “Solution

Database”. Structure of “Solution Database” is provided in

Fig. 2.

Fig. 2. Structure of Solution Database.

Solution Database contains all information about all

configuration management actions described in the PIAM

model. For example, action “Compile” could have five

different solutions to compile software from a source code for

the following technologies: JAVA, Ruby, C++, Oracle, C#.

The mandatory requirement is that all solutions are

parameterized and do not have dependencies on solutions of

other actions. For example, a compilation script should not

know any details about other actions from PIAM, hardcodes

from bug tracking management, hardcoded hosts, absolute

paths etc. All necessary things should be given as parameters.

Any solution stored in the Solution Database has the following

attributes:

 ID – a unique identifier in the database;

 PlatformID – a reference to a platform;

 ActionID – a reference to an action. Table “Action”

contains all possible actions from the PIAM meta-model;

 NeededTools – a set of tools to implement this solution;

 LocationsOfSolutions – information about ready scripts,

frameworks, functions, including paths, locations of

servers, web-pages etc.;

 Description – some notes provide additional information

about implementation, specific technical details.

During the last stage “7”, work with the ready PSAM model

is required. Each solution of each action should be technically

applied in the Configuration Management Domain according

to information in the Solution Database.

IV. CRITERIA OF EVALUATION OF MODEL-DRIVEN

CONFIGURATION MANAGEMENT

To calculate criteria of the described approach, the

following parameters should be fixed in projects, where the

mentioned approach should be implemented:

 AVG_H_OLD – Average count of hours per week

needed to support a configuration management process

before implementation of a new approach;

 AVG_H_NEW – Average count of hours per week

needed to support configuration management after

implementation of a new approach;

 IMPL_TIME – Count of hours used to implement a new

model-driven approach;

 REM_TIME – Count of weeks till the end of a

particular project (contract end date);

 FAILED_BUILDS_BEFORE – Count of failed builds

of product during last two months before implementation

of a new approach;

 FAILED_BUILDS_AFTER – Count of failed builds of

product during last two months after implementation of a

new approach;

 GENERAL_BUILD_COUNT_BEFORE – General

count of builds during last two months before

implementation of a new approach;

 GENERAL_BUILD_COUNT_AFTER – General

count of builds during last two months after

implementation of a new approach;

The mentioned parameters are oriented to evaluate time

spending for configuration management processes in different

projects before and after implementation of a new approach.

Parameters related to time are exported from a time

management system in a software development company,

where experiments have been implemented. In the mentioned

time management system, each developer and configuration

management should fix time that he spent for a current project.

This procedure allows extracting the above-mentioned time

parameters (AVG_H_OLD, AVG_H_NEW, IMPL_TIME)

automatically. A parameter REM_TIME was taken from the

contract of a particular project, but other parameters were

exported from a build management system, where any build in

a particular project is fixed.

Thanks to the above-mentioned parameters, the following

criteria for a model-driven approach are defined:

Short Time Gain – percent that shows changes in time

needed for configuration management before and after

implementation of a new approach. Criteria should be

calculated by (1):

 100*)
__

__
1(__

OLDHAVG

NEWHAVG
GainTimeShort  (1)

Long Time Gain – percent that shows changes in time

needed for configuration management before and after

implementation of a new approach, but taking in account time

till the end of project. For example, if implementation of a

new methodology needs one month, but with an old solution

only half a month is needed till the end date of project, a Long

Time Gain will be negative. However, Short Time Gain could

be positive and quite optimistic. Some projects could spend 2

hours per week for configuration management before

implementation of a new approach and one hour after. It

means that Short Time Gain will be 50%. At the same, only

Applied Computer Systems

2014/16 ___

30

some months could remain till the end of project, but

implementation of a new approach could take some weeks. In

this case, implementation of a new approach is not efficient.

Long Time Gain criteria could be calculated by (2):

100*))

_*__

_*__

_(1(__

TIMEREMOLDHAVG

TIMEREMNEWHAVG

TIMEIMPLGainTimeLong





. (2)

Failed Build Difference – percent that shows the difference

of failed builds before and after implementation of a new

approach in a particular project. The criteria could be

calculated by (3):

100*)

__

__
1(

__

BEFOREBUILDSFAILED

AFTERBUILDSFAILED

DIFFBUILDFAILED





 (3)

General Build Difference – percent that shows the

difference of general count of builds before and after

implementation of a new approach in a particular project. The

criteria could be calculated by (4):

100*)

BEFOREILD_COUNT_GENERAL_BU

AFTERILD_COUNT_GENERAL_BU
1(

__



DIFFBUILDGENERAL

 (4)

V. OVERVIEW OF EXPERIMENTS

New model-driven approach to the implementation of

software configuration management has been implemented in

five different projects during the last 4 months. The owner of

all projects is one of the biggest IT companies in Latvia. The

projects are related to the implementation and support of

different software tools for different enterprises in Latvia.

During experiments, the following set of technologies and

tools have been used for software development and technical

implementation of software configuration management

processes: Oracle, JAVA, Ruby on Rails, Subversion, Git,

JIRA, Jenkins, Bamboo, and Hudson. The following steps

have been done in each of the mentioned five projects:

 General presentation of a new model-driven approach to

all developers and configuration managers in a particular

project;

 Creation of an Environment Model;

 Transformation of an Environment Model to a Platform

Independent Action Model, discussions with developers

and managers to validate results of transformation;

 Refactoring of existing solutions and saving information

about refactoring solutions in the Solution Database;

 Creation of Platform Specific Action Model by selecting

solutions for particular actions from the database

mentioned before;

 Implementation of a Platform Specific Action Model;

 Fixing and calculating parameters and criteria described

in previous section of this paper.

Table I provides an overview of parameters and calculated

criteria after the experiments described above.

TABLE I

RESULTS OF EXPERIMENTS

 Parameters Criteria

P
r
o

je
c
ts

A
V

G
_

H
_

O
L

D

A
V

G
_

H
_

N
E

W

IM
P

L
_

T
IM

E

R
E

M
_
T

IM
E

F
A

IL
E

D
_

B
U

IL
D

S
_
B

E
F

O
R

E

F
A

IL
E

D
_

B
U

IL
D

S
_

A
F

T
E

R

G
E

N
E

R
A

L
_
B

U
IL

D
_

C
O

U
N

T
_
B

E
F

O
R

E

G
E

N
E

R
A

L
_
B

U
IL

D
_

C
O

U
N

T
_

A
F

T
E

R

S
h

o
r
t

T
im

e
 G

a
in

 (
%

)

L
o

n
g

 T
im

e
 G

a
in

 (
%

)

F
a

il
e
d

 B
u

il
d

 D
if

fe
r
e
n

c
e
 (

%
)

G
en

er
a

l
B

u
il

d
 D

if
fe

re
n

c
e

(%
)

1 25 2.4 160 52 15 4 84 87 90 78 73 −4

2 40 1.5 700 36 5 1 160 92 96 48 80 43

3 2 1 200 104 3 2 65 67 50 −46 33 −3

4 15 2 50 52 10 3 73 71 87 80 70 3

5 12 2.5 320 52 7 5 88 91 79 28 29 −3

Applied Computer Systems

 ___ 2014/16

31

A. Main Conclusions of Experiments

In conclusion, all parameters and criteria have been taken

from Table I.

The analysis of experiments started with criterion “General

Build Difference”. This criterion can answer the question “Is

criterion about gain objective”. It means that an increase in

general count of builds automatically requires more time

resources to make these builds. Thus, for example, if new

count of builds is greater than that before experiments, time

gain becomes more significant. Results of experiments in

project “2” show that short time gain is 96 %, but number of

builds after experiments is greater by 43 %. It means that the

refactoring of existing solutions for configuration management

in project “2” improved a general process very well. In other

projects – “1”, “3”, “4” and “5”, the difference in general

count of builds is relatively low: 3 % or 4 %. In these projects,

a new approach saves time resources only, but does not

change all process globally.

Actually, a long time gain can better show how successful

experiments are. If difference between short and long time

gains is low, it means that results of experiments could be

more believable. According to this suggestion, projects “1”

and “4” are more successful than other projects. The gains in

the above-mentioned “1” and “4” projects are near 80%, it

means that the implementation of a new model-driven

approach can save more resources. However, long time gain in

project “3” is negative, it means that implementation of a new

methodology is not efficient. During implementation of a new

approach for project “3”, much more time (200 hours) has

been spent for refactoring of existing solutions, but short time

gain is only 50 %. After this experiment, a careful analysis has

been performed to detect reasons why refactoring requires so

much time. The main reason is a version control system. In

projects “1”, “2”, “4” and “5”, a Subversion system has been

used to control changes in a source code, but in project “3” it

has been another system – Git. This fact requires much more

time for the refactoring of solutions related to version control

because of lack of experience using Git.

VI. LESSONS LEARNED

In this section most important lessons are described that

have been learned from mentioned experiments. These lessons

could define further research to improve a model-based

approach to configuration management.

A. Lesson 1

Implementation time of a new model-driven approach to

configuration management should be decreased. It could be

achieved by creating services for integration of different

couples of tools. For example, a full-automated solution to

release management that is part of configuration management

from a technical side requires integration between Jenkins and

Subversion. In this context, integration means that Jenkins

could get any information attributes from Subversion and post

common actions (COMMIT, MERGE, LOG etc.). Firstly, all

needed tools for configuration management process should be

extracted from PSAM model and, secondly, full services

between different couples of tools should be created. For

example, it could be services “Jenkins <-> JIRA”, “Jenkins

<->Subversion”, “Jenkins<->Git” etc. If such services are

created, the implementation of particular actions from the

PSAM model could be easier because integration between

different tools already exists and ready functions could be

used. For example, one of the functions in service “Jenkins

<->Subversion” could be “SVN_MERGE” that allows

merging two different trees of a source code together. This

function could be used in any project, where continuous

integration server is Jenkins, and the Subversion system

controls changes in a source code. Only values of function

parameters should be different.

B. Lesson 2

Fails in experiments for project “3”, provided in Table I,

show strong dependencies between branching strategies and

general version control. Implementation of common

operations for version control, such as “commit”, “merge”

should be independent of general branching strategy.

Environment model has to provide information on the kind of

a source code branching strategy that should be used for a

particular project. New model-driven approach should be

extended by a new kind of models – source code branching

model. This model should be dependent on the Environment

Model.

C. Lesson 3

Environment model should be extended by options to model

detailed infrastructure of particular environments. From the

perspective of a customer, it could be better to obtain from the

Environment Model such information as servers, firewalls,

needed resources (RAM, storage etc.).

D. Lesson 4

Software configuration management plan should be

generated from models of a new model-driven approach. In

current implementation of a new approach, the generation of

configuration management plan is manual and connection

between document and models is not clear. The approach

should be implemented by an ability to generate a

configuration management plan automatically.

E. Lesson 5

Development or refactoring of any solution should be

controlled by a version control system. It means that general

framework for configuration management should also be

managed. All scripts, functions, tool installation guides should

be under a version control and all changes should be managed,

for example, by bug tracking systems. All solutions should be

parameterized and independent of other solutions. No any

hardcodes should be in scripts.

VII. CONCLUSION AND FURTHER WORK

The paper provides a new model-based approach to the

implementation of software configuration management.

Unlike other model-based solutions to configuration

management, a current approach does not require using any

Applied Computer Systems

2014/16 ___

32

special technologies or tools but allows improving the existing

solutions. New approach is also related to all sub-tasks of

configuration management, not only to some particular tasks.

The article also provides criteria to evaluate gains of a new

approach. Based on the developed criteria, experiments have

been made in five different projects. As a result, some

practical lessons have been learned and described. These

lessons could improve not only a model-driven approach

provided in this paper, but also could improve some other

solutions for configuration management. New approach is

described without technical details of implementation because

the number of pages in this paper is limited. Positive aspect of

this fact is that abstraction could generate other ideas how to

implement models of this approach.

One of the important directions of further work is related to

the improvement of current approach according to the lessons

learned. Two new models should be implemented and tested:

“Tool Service Model” and “Source Code Branching Model”.

The framework for a configuration management plan should

also be developed to generate it automatically from models.

REFERENCES

[1] R. Aiello, Configuration Management Best Practices: Practical

Methods that Work in the Real World, 1st ed. Addison-Wesley, 2010,

p. 272.
[2] S.P. Berczuk and B. Appleton, Software Configuration Management

Patterns: Effective TeamWork, Practical Integration, 1st ed. Addison-
Wesley, 2003, p. 218.

[3] R. Calhau, R. Falbo, “A Configuration Management Task Ontology for

Semantic Integration,” Proceedings of the 27th Annual ACM Symposium
on Applied Computing pp. 348–353 ACM New York, NY, USA, 2012.

http://dx.doi.org/10.1145/2245276.2245344

[4] H. Giese, A. Seibel, T. Vogel, “A Model-Driven Configuration

Management System for Advanced IT Service Management, ” Available

at: http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV-
MRT09_paper_7.pdf, 2009.

[5] O. Nikiforova, N. Pavlova, K. Gusarovs, O. Gorbiks, J. Vorotilovs,
A. Zaharovs, D. Umanovskis, J. Sejans, “Development of the Tool for

Transformation of The Two-Hemisphere Model to The UML Class

Diagram: Tehnical Solutions and Lessons Learned,” Proceedings of the
5-th International Scientific Conference „Applied Information and

Communication Tehnologies”, 2012, Jelgava, Latvia, pp. 11–19.
[6] J. Osis, E. Asnina, Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey – New

York, 2011, p. 514. http://dx.doi.org/10.4018/978-1-61692-874-2
[7] W. Pindhofer, “Model Driven Configuration Management. Master work

of Wien University,” Wien, 2009.
[8] Y. Udovichenko, Upravlenije projektami ili kessonnaja boleznj

projektov. (russian) [Online]. Available: http://experience.openquality.ru/

software-configuration-management/, 2011.
[9] S. Dart, “The Past, Present, and Future of Configuration Management,”

CMU/SEI-92-TR-8, pp. 1–25., 1992.

[10] CMCrossroads, “How Configuration Management Is Changing: An

Interview with Joe Townsend,” April 8, 2014. [Online]. Available:

http://www.cmcrossroads.com/interview/how-configuration-

management-changing-interview-joe-townsend?page=0%2C0.

[Accessed 02 September 2014].

[11] R. Yongchang, “Fuzzy Decision Analysis of the Software Configuration
Management Tools Selection,” in ISISE '10 Proc. of the 2010 3rd Int.

Symp. on Information Science and Engineering, France, 19–23 June,
2010. ACM. pp. 295–297. http://dx.doi.org/10.1109/ISISE.2010.112

[12] J. de Almeida Monte-Mor, “GALO: A Semantic Method for Software

Configuration Management,” in 11th Int. Conf. on Information
Technology: New Generations (ITNG), 2014. Las Vegas, USA, 7–9 April,

2014. ITNG: IOT360, pp. 33–39. http://dx.doi.org/10.1109/ITNG.2014.66
[13] Z. Toth, “Using Version Control History to Follow the Changes of

Source Code Elements,” in 17th European Conf. on Software

Maintenance and Reengineering (CSMR), 2013. Italy, March 5–8, 2013.
IEEE Digital Library. pp. 319–322. http://dx.doi.org/10.1109/CSMR.2013.40

[14] J. Estublier, “Software configuration management: a roadmap,” in ICSE '00
Conf. on The Future of Software Engineering. New York, USA, June 4–11,

2000. ACM. 279–289. http://dx.doi.org/10.1145/336512.336576

[15] Li. Ruan, “A new configuration management model for software based
on distributed components and layered architecture,” in Proc. of the 4th

Int. Conf. on Parallel and Distributed Computing, Applications and

Technologies, 2003. China, Aug. 27–29, 2003. IEEE Digital Library:

IEEE. pp. 665–669, 2003. http://dx.doi.org/10.1109/PDCAT.2003.1236387

[16] M. Mingzhi, “A New Component-Based Configuration Management 3C
Model and its Realization,” in Int. Symp. on Information Science and

Engineering, 2008. China, Dec. 20–22, 2008. IEEE Digital Library: IEEE.
pp. 258–262. http://dx.doi.org/10.1109/ISISE.2008.244

Arturs Bartusevics currently is a Doctoral Student at Riga Technical
University, the Faculty of Computer Science and Information Technology, the

Institute of Applied Computer Systems. He obtained BSc (2008) and MSc
(2011) degrees in Computer Science and Information Technology,

respectively, from Riga Technical University. His research areas are software

configuration management, release building and management process and its
optimization. He works at Ltd. Tieto Latvia as a Software Configuration

Manager.
E-mail: arturik16@inbox.lv

Leonids Novickis is a Head of the Division of Applied Systems Software.
He obtained Dr. sc. ing. degree in 1980 and Dr. habil. sc. ing. degree in 1990

from the Latvian Academy of Sciences. He is the author of 180 publications.

Since 1994, he has been regularly involved in different EU-funded projects:
AMCAI (INCO COPERNICUS, 1995-1997) – WP leader; DAMAC-HP

(INCO2, 1998-2000), BALTPORTS-IT (FP5, 2001-2003), eLOGMAR-M

(FP6, 2004-2006) – scientific coordinator; IST4Balt (FP6, 2004-2007),
UNITE (FP6, 2006-2008) and BONITA (INTERREG, 2008-2012) – RTU

coordinator; LOGIS, LOGIS-Mobile and SocSimNet (Leonardo da Vinci) –

partner. He was an independent expert of IST and Research for SMEs in FP6
and FP7. He is a corresponding member of the Latvian Academy of Sciences

and an elected expert of the Latvian Council of Science. His research fields
include Web-based applied software system development, business process

modeling, e-learning and e-logistics.

E-mail: leonids.novickis@rtu.lv, lnovickis@gmail.com

Stefan Leye. He obtained a Diploma in Mechanical Engineering (2011).

Primary field of study – integrated product development. He currently works
at the Fraunhofer Institute for Factory Operation and Automation IFF,

Magdeburg – Germany, as a Project Manager in the business unit Virtual
Interactive Training. Main field of research: Virtual Reality and Digital

Engineering solutions for product development and training.

Address: Sandtorstraße 22, 39106 Magdeburg, Germany;
Phone: +49 391 4090 114, fax: +49 391 4090 115;

E-mail: stefan.leye@iff.fraunhofer.de

http://dx.doi.org/10.1145/2245276.2245344
http://dx.doi.org/10.4018/978-1-61692-874-2
http://dx.doi.org/10.1109/ISISE.2010.112
http://dx.doi.org/10.1109/ITNG.2014.66
http://dx.doi.org/10.1109/CSMR.2013.40
http://dx.doi.org/10.1145/336512.336576
http://dx.doi.org/10.1109/PDCAT.2003.1236387
http://dx.doi.org/10.1109/ISISE.2008.244

