
Applied Computer Systems

 ___ 2014/16

13

Introduction to the Integrated

Domain Modeling Toolset

Armands Slihte1, Juan Manuel Cueva Lovelle2,
1Riga Technical University, Latvia, 2University of Oviedo, Spain

Abstract – This paper describes the Integrated Domain

Modeling approach and introduces the supporting toolset as a

solution to the complex domain-modeling task. This approach

integrates artificial intelligence (AI) and system analysis by

exploiting ontology, natural language processing (NLP), use cases

and model-driven architecture (MDA) for knowledge engineering

and domain modeling. The IDM toolset provides the opportunity

to automatically generate the initial AS-IS model from the

formally defined domain knowledge. In this paper, we describe in

detail the scope, architecture and implementation of the toolset.

Keywords – Eclipse modeling framework, model-to-model

transformation, natural language processing, topological

functioning model.

I. INTRODUCTION

In the context of software engineering, a domain is most

often understood as an application area, a field for which

software systems are developed [1]. An accurate domain

model can also be used as input to solution implementation

within a software development process since the model

elements comprising the problem domain can serve as key

inputs to code construction, where construction is achieved

manually or through automated code generation approaches.

Domain model is an integrated system of models that reflect

the enterprise where software is to be applied [2]. In other

words, a domain model is the AS-IS model of the business

organization and processes. Domain modeling is a human

activity that leads to the creation of different types of domain

representations. These representations may be tacit (in human

minds) and explicit/externalized (on paper or in a software

tool) [3]. Domain analysis can be seen as a process where

information used in developing software systems is identified,

captured, structured, and organized for further reuse [1]. This

paper discusses the Integrated Domain Modeling (IDM)

approach for the domain analysis and introduces the

supporting toolset for this approach developed by the author.

This toolset is based on Eclipse [4] and consists of several

tools that interoperate to provide a possibility for a particular

domain model construction.

The ultimate goal of this research is to lower the cost of

software development by introducing a methodology and a

toolset, which would allow a comprehensive analysis of the

domain at the beginning of software development and, thus,

minimizing the count of bugs and necessary corrections due to

an inconsistent understanding of the domain. The main

contribution of this paper is the introduction of the IDM

supporting toolset, discussing the architecture, used

technology, model transformation and the use of this tool to

acquire a domain model.

There are several approaches to domain modeling, which

have also a supporting toolset, but usually they require the

users to learn a new form of domain knowledge accepted by

the approach and the tools and then manually construct the

domain model. The IDM approach, on the other hand, integrates

the common standards used in business environment – use

cases and ontology, and then provides the means to generate

the initial domain model automatically. This level of

automation and reuse of enterprise standards is the main

innovation of the IDM approach. The IDM provides the

opportunity to do this by using the Topological Functioning

Model (TFM) as the domain model. Thus, the construction of

the domain model is made simpler by exploiting model

transformations, natural language processing (NLP), use cases

and ontology.

II. RELATED WORK

There are other approaches, which suggest constructing the

domain model based on domain knowledge. The authors give

a short overview of some of these approaches in this section.

Use Cases are defined with a natural language, so Natural

Language Processing (NLP) can be used for an analysis.

Approach discussed in [5], called NIBA (natural language

requirements analysis in German), addresses the same issues.

By following the “NIBA workflow”, natural language

requirements specifications are translated into conceptual

predesign schema. After validation by the user, the predesign

schema is mapped to a conceptual representation (e.g., UML).

Approach proposed in [6] suggests generating implementation

from textual use cases. This approach uses statistical parser on

use cases and by analyzing the parse trees composes the so-

called Procases for further use in implementation generation.

Another approach ReDSeeDs [7] defines software cases to

support reuse of software development artifacts and code in a

model driven development context. This approach is very

formal and it depends on writing the software cases very

precisely by adding specific meaning to every word or phrase

of software case sentences (the purpose is similar to use case

and use case steps). The Use Case Driven Development

Assistant (UCDA) tool methodology follows the IBM

Rational Unified Process (RUP) approach to automate the

class model generation [8]. First, the requirements of the

system are analyzed identifying the use cases and actors of the

system. Using these artifacts the tool can generate the UML

use case diagram, class diagram, communication diagram, and

doi: 10.1515/acss-2014-0008

Applied Computer Systems

2014/16 ___

14

other artifacts. This tool utilizes natural language processing

methods for processing the requirements in textual form.

III. THE INTEGRATED DOMAIN MODELING APPROACH

This paper is part of the Topological Functioning Model for

Software Engineering (TFM4SE) research. TFM is a domain

model, which offers a formal way to define a system by

describing both the system’s functional and topological

features. Related research suggests using TFM as a

Computation Independent Model (CIM) by constructing it

with a Topological Functioning Model for Model Driven

Architecture (TFM4MDA) approach [9]–[13], acquiring a

mathematically formal and thus transformable CIM. In related

research [18], the TopUML approach is described for software

development with emphasis on topology, where Platform

Independent Model/Platform Specific Model (PIM/PSM) is

supplemented with topology. TopUML is the UML profile and

approach to introducing cause and effect relationships into the

UML based on the topology of TFM. TopUML approach

suggests sequential phases of TFM4MDA approach to be

combined for fulfilling the Model Drive Architecture (MDA)

life cycle taking the TFM as a source for PIM/PSM.

Although the TFM, TFM4MDA and TopUML provide a

solid basis for CIM construction within MDA and further

transformations to PIM/PSM, until now the construction of the

TFM relies on a heavy manual process with no tool support

and a poor integration with the common IT practices. The AS-

IS processes of TFM4MDA are described in [14]–[17] and for

TopUML in [18]. As it will be shown in this paper, the authors

resolve these issues by introducing the IDM approach and the

supporting toolset.

This paper is considering the integrated domain modeling

approach described in detail in [19]. This approach suggests

starting the system analysis process from formally defined

declarative and procedural knowledge with a perspective of

integration with MDA. We are exploiting ontology and use

cases for defining the knowledge model for a business

domain. A knowledge engineer constructs the ontology and a

business analyst constructs use cases. While doing so the use

cases need to be validated in order to correspond to the

ontology. This is an iterative process, because the ontology or

the use cases have to be modified until they correspond to

each other. The next step is acquiring the Business Model.

When a Knowledge Model is constructed and verified, it is

possible to generate the Business Model automatically using

the TFM generation algorithm described in [19]. This

algorithm utilizes the statistical parser to analyze the syntax of

use case sentences and identify functional features for the

TFM. Nevertheless, the TFM will have to be validated as well.

If any changes are necessary, they will have to be done in the

Knowledge Model and then the TFM can be regenerated.

Additionally, within the Business and Requirements Model it

is possible to derive the Business Processes and UML Use

Case diagram from the TFM.

The IDM approach provides an elegant solution to the

complexity of TFM construction. This approach proposes the

following: 1) to step back to the knowledge level of the

business system and to reuse the artifacts existing in a

business environment as the input for CIM; 2) to acquire the

initial CIM by means of automatic model transformations; 3)

to allow the system analyst to iteratively validate, modify and

improve the models by adding more details of the business

processes to the initial CIM. For this to work in a real business

environment for a business system modeling case there have

to be tools to support the IDM approach. Moreover, these

tools need to correspond to MDA standards and be based on

available MDA frameworks. This will assure that the toolset is

extendable and can be integrated with other modeling tools,

thus becoming part of the MDA life cycle.

IV. SUPPORTING TOOLSET

In this section, the supporting toolset for the IDM approach

is introduced and the application of this toolset to acquire a

CIM for a business system is discussed. As part of this

research, the authors have implemented a prototype of the

IDM toolset, which will also be discussed later in this paper.

In earlier studies [20] and [21], some suggestions have been

made on what tool support would be necessary for the TFM

approach. Moreover, considering the IDM approach (which

substitutes the earlier TFM4MDA approach) first described in

[19] and in more detail in the previous section, the scope of

the required toolset can be discussed. The vision for an

integrated MDA life cycle with TFM starting from

construction of the CIM all the way to code generation would

require a comprehensive toolset to support the process (Fig. 1

shows the vision).

The goal of the IDM Toolset is to acquire a formal and

validated CIM in a form of a TFM based on formal knowledge

about the business domain. As shown in Fig. 1, the toolset

consists of 4 tools that can be used together to achieve this.

The users of this IDM Toolset are the knowledge engineer

and the system analyst that can be several people or one

person. The task of the user is to gather the business

knowledge and record it in the form of Ontology and Use

Cases. By Ontology one defines the declarative knowledge or,

in other words. The dictionary of one’s domain. This is where

one can sort out the concepts, terms and also their meaning.

This is done based on the existing business documentation and

in close contact with the business team to clarify and validate

the Ontology. In the IDM Toolset context, any tool that

supports OWL standard for Ontology can be used, for

example, Protégé. Later the Use Case Editor tool will use the

acquired OWL artifact. Procedural knowledge is recorded in

the form of Use Cases showing the scenarios with steps,

alternative scenarios and conditions for some business domain

objectives. Again working closely with the business team, the

user needs to record the use cases using the Use Case Editor.

When the Use Case artifact is acquired, it can be validated

against the Ontology to check for unambiguity and

consistency. For unambiguity the terms and concepts are

compared with the nouns used in the use cases. By comparing

Ontology properties and noun/verb combinations, consistency

is checked. Next step in Use Case validation is to check if it

corresponds to the tool meta-model. When the Use Cases are

Applied Computer Systems

 ___ 2014/16

15

Fig. 1. TFM toolset components and artifacts. Here the planned toolset is shown with the involved people within a business environment to support the full TFM
process within MDA life cycle. IDM toolset is a subset of this toolset (dotted rectangle), which includes OWL tool, Use Case Editor/Use Cases to TFM

Transformation and TFM Editor/Diagram Tool.

validated, it is possible to automatically generate a TFM for

the corresponding business domain. The acquired TFM

artifact is available in the TFM Editor tool. The TFM artifact

consists of the raw model and a diagram. The TFM Editor

consists of 2 tools – the model editor and the diagram tool.

Basically, these tools represent the same model in different

ways – a model and a diagram; that is why in Fig. 1 these tools

are merged.

During each stage of CIM construction cross-artifact

validation should take place. For example, while creating a

step in the Use Cases, if a user finds out that a term is missing

or is incorrect in the Ontology he should do modifications.

Another example is related to cause/effect relationships. These

relationships are more apparent in the TFM; thus, after

acquiring the TFM a user may find that some topological

relationships are incorrect, so he should return to the Use

Cases and do the corresponding modifications. This is an

iterative process until Use Cases correspond to the Ontology

and the TFM corresponds to the Use Cases. The TFM Editor

also allows a user to identify the main functioning cycle, sub-

cycles and add logical operations, which are not part of the

model transformation. These elements add more details to the

CIM and allow you to validate your models again from a

different perspective – process topology and cycles. This is the

CIM level within MDA, which represents the AS-IS state of a

business system. At different stages of the CIM development,

the business team should be consulted to validate the models

and finally the CIM should be signed-off by the business

executive. When the sign-off is done, the CIM is approved and

the transformation to PIM/PSM can begin.

There are various MDA tools available in the area of

PIM/PSM. It is possible to start with the UML diagrams (PIM

level), then add some platform specific features with OCL

(PSM level), and then based on this model it is possible to

generate the source code. In the context of TFM at the

PIM/PSM level, we use UML and more specifically TopUML,

which is the UML profile. The process of transforming TFM

to various TopUML models is described in related research

[18]. Having a supporting tool for the UML profile is common

practice, and MDA frameworks fully support this approach.

Usually for a particular UML profile there is a corresponding

tool for constructing models, which correspond to the UML

profile. In case of TopUML, there has also to be such a tool,

but on top of that, there will also be a set of model

transformations from TFM to TopUML models. Furthermore,

after TopUML is complete this tool will also have the feature

to generate the corresponding source code. In Fig. 1, these

features are the tasks of the TFM Editor tool with

corresponding artifacts TopUML and source code.

The IDM Approach and Toolset can support various

software development methods since use cases are widely

accepted and used by the software engineering community as

the starting point of software development. Moreover, it is

possible to automatically acquire a graphical representation of

the domain and the opportunity to perform further model

transformations can be very useful. On the other hand,

Ontology would be appreciated by more precise and

sophisticated methods, when mistakes at the design phase are

costly and developments should not start before the design is

validated. Nevertheless, in the IDM approach Ontology is

recommended, but not mandatory. This means that you can

also only create use cases, generate the initial TFM and

continue with CIM developments until you are satisfied with

the result. This approach would be more suited for agile

software development methods.

V. ARCHITECTURE AND IMPLEMENTATION

The authors stress the importance of using MDA standards

for development of MDA approaches and the supporting

toolsets. There are several attempts mentioned in the

introduction by other researchers in the area of CIM

construction and further model transformation with very poor

integration into MDA standards. In the authors’ opinion, this

IDM Toolset

Domain
Ontology

Use Cases

OWL Tool

TFMKnowledge Engineer/
System Analyst

Business Team

Executive

TopUML
Editor

TopUML

Source Code

Technical Team
TFM Editor/

Diagram Tool

Use Cases Editor/
Use Cases to TFM
Transformation

Applied Computer Systems

2014/16 ___

16

Fig. 2. Architecture of the IDM toolset. Dark rectangles on top represent the Eclipse framework used and also the Stanford Parser Java library. 3 lighter

rectangles underneath show the development artifacts based on the frameworks and libraries created specifically for the IDM tools. The resulting toolset consists
of 4 tools – Use Case Editor, TFM Editor, TFM Diagram Tool and Use Cases to TFM Transformation.

leads to a dead end for the approaches since they are cut off

from the rest of the MDA developments. Even if they provide

some integration possibilities, the lack of MDA standard based

architecture leads to opacity. Because of this it is a key for the

IDM approach and the toolset to be based on MDA standards

and technologies.

Today MDA developments are based on Eclipse MDA

frameworks, i.e., Eclipse Modeling Framework (EMF),

Graphical Modeling Framework (GMF), Query View

Transformation (QVT), etc. These frameworks are based on

the MDA standards managed by OMG. In addition, Eclipse

provides the Plug-in Development Environment (PDE) for

developing Eclipse plug-ins; thus, it is possible to make use of

all these frameworks and to develop your toolset in the same

fashion based on Eclipse.

Fig. 2 shows the architecture of the developed components

of the IDM toolset. This excludes the 3rd party OWL tool, for

which we currently use the Protégé tool. The following

Eclipse frameworks are used: PDE, EMF, GMF and QVT.

The conformity is also shown. Since EMF and GFM allow

generating Eclipse plug-ins, it conforms to the PDE, which

can be later used to extend the functionality of the tools. Both

GMF and QVTo (QVT Operational) conform to the EMF,

which they are based on. In addition, a 3rd party statistical

parser is used for natural language processing – Stanford

Parser.

The following tools were developed by the authors: Use

Case Editor, TFM Editor, TFM Diagram Tool and Use Cases

to TFM Transformation. In contrast to Fig. 1, here the authors

show the technical tools, which a user may not even be aware

of while using the toolset. For example, the model

transformation happens in the background after a left mouse

click of the user and transformation execution. The Use Case

Editor is initially generated by the EMF [22] from the

metamodel of Use Cases, which is published in [23]. Later

some modifications are done in the generated code, e.g., to

change the default representation of the model in the model

editor. These changes are marked with a special annotation so

that possible changes in the metamodel could still be

generated and the custom code would not be lost. The Use

Case Editor tool is meant for constructing the Use Case model.

Similarly, the TFM Editor tool is based on EMF and conforms

to the latest TFM metamodel published for related TFM

research in the doctoral thesis [24].

With this tool it is possible to edit the raw TFM model, but

there is also a possibility to initialize a diagram to see the

graphical representation of the TFM. This is done via the TFM

Diagram Tool, which is based on the Eclipse GMF. By

developing special configuration models, it is possible to

generate the graphical modeling tool from the EMF based

metamodel [25]. With both the TFM Editor and Diagram Tool

you construct/edit the TFM model. As described previously in

the IDM approach section, there is no need to construct the

TFM from scratch and the initial model can be generated

automatically from the Use Case model. This is handled by the

Use Cases to TFM Transformation tool, which is based on the

QVTo model transformation language. The transformation

depends on natural language processing, so we use the

Stanford Parser Java library [26]. This is integrated into the

transformation tool via the QVT-BlackBox extension

mechanisms suggested in the QVT standard and also Eclipse

QVTo supports this approach [27]. The model transformation

Eclipse EMF

Metamodel of

Use Cases
Metamodel of

TFM

Eclipse QVTo

conformsToconformsTo conformsTo

conformsTo conformsTo

useCases2tfm

Transformation

conformsTo

Initialization

Eclipse GMFconformsTo

TFM Diagram Tool
(based on GMF)

TFM Editor
(based on EMF)

Use Cases Editor
(based on EMF)

TFM
Model

Use
Cases
Model

Eclipse PDE conformsTo

conformsTo

Stanford Parser

uses (QVT-BlackBox)

Use Cases to TFM
Transformation

conformsTo

Applied Computer Systems

 ___ 2014/16

17

and the black box are packaged into a single Eclipse plug-in

and form the Use Cases to TFM Transformation tool. This

also includes some Eclipse PDE developments to integrate

with the Use Case Editor tool.

Fig. 3. Use Case Editor tool. This shows the use case model constructed by a

user and properties view of a use case step, where it is possible to set
preconditions.

Fig. 3 shows the Use Case Editor tool, which a user uses to

define Actors, Conditions, Use Cases, Main Scenarios,

Alternative Scenarios and their steps. More details on the

development and application of this tool are published in [23]

on the Use Case Editor particularly. The file extension of the

Use Case artifact is “.usecases”.

Fig. 4. TFM Diagram Tool. On the left-hand side there is a palette with the
available objects for the diagram. In the middle there is a canvas with the

diagram itself, and on the right-hand side there is a property pane and an
outline view.

Fig. 4 shows the TFM Diagram Tool, where we can see part

of the TFM generated from the corresponding Use Cases

(from Fig. 3). A library business system is used for this

example, but the full models are not described in this paper

because of page limitations; and this paper does not focus on a

case study, but rather on the approach and the toolset. As you

can see in the screenshot, the palette of the tool allows you to

create Actors, Functional Features, Topological Relationships,

Cycles and Logical Relationships.

Properties of each element can be edited in the property view.

When editing the diagram (file extension “.tmf_diagram”), also

the underlying TFM model (file extension “.tfm”) is changed

by the diagram tool so that both artefacts are in sync.

Fig. 5 shows a code snippet from the QVTo model

transformation for transforming Use Cases to TFM. The

particular snippet deals with one of transformation’s main

tasks – creation of Functional Features in the TFM model.

First, the transformation loops over all steps of the Use Case

model. You can also see how we resolve the description and

the entity for the Functional Feature from use case steps with

methods – parseStepForDescription and parseStepForEntity,

which in order call the Stanford Parser’s library to find the

noun and verb phrases. These methods are provided by the

QVT-BlackBox library implemented in Java for this

transformation (developed by the authors). Next, the

transformation checks if the step is referenced, and if not then

it prepares to create a Functional Feature. The model

transformation needs to know the steps, which reference the

current step so that it is possible to merge the pre-conditions

and post-conditions (in case there are any). This is done by

QVTo mapping and helper functions. This is a small part of

the model transformation code, but in a similar fashion we

deal with Actors, Functional Relationships, etc.

Fig. 5. Model transformation in QVTo. This is a small snippet from the entire

model transformation code, which deals with generating functional features.

This model transformation from Use Cases to TFM enables

the IDM toolset to fulfill its promise and automatically

transform the domain knowledge expresses in use cases into a

domain model in a form of TFM. Thus, a user acquires the

graphical representation of a working business system by

defining it with a common enterprise standard – use cases.

VI. CONCLUSION AND FURTHER WORK

This research is part of Topological Functioning Model for

Software Engineering (TFM4SE) research, which consists of

the following: 1) Integrated Domain Modeling (IDM) approach

tool, which allows defining the business processes with use

cases, validating them against the ontology and then

generating the domain model automatically in the form of a

Topological Functioning Model (TFM); 2) TopUML

(Topological UML) tool, which would enable a user to

transform the TFM to TopUML, perform TopUML modeling

and also generate the source code from the TopUML. The

TopUML tool is future work in the context of TFM4SE

research.

IDM tool, which is described in this paper, enables a system

analyst to acquire and validate a domain model based on use

cases and the ontology. This way it is possible to validate the

business processes at the beginning of software development,

check that they correspond to the ontology and also check the

Applied Computer Systems

2014/16 ___

18

functioning cycles of the processes. Based on the generated

TFM, it is possible to create a TopUML to model a software

solution, which corresponds to the domain model. By

exploiting the domain model acquired by the IDM tool, the

system analyst together with the business can validate the

business processes before the actual software development

starts.

REFERENCES

[1] R. Prieto-Díaz, “Domain analysis: an introduction,” ACM SIGSOFT

Software Engineering Notes 15.2, 1990, pp. 47–54.

[2] A. van Lamsweerde, “Requirements engineering: from craft to
discipline,” In Proceedings of the 13th international Workshop on Early

Aspects, New York: Association for Computing Machinery, Inc., 2008,
pp. 238–249.

[3] M. Kirikova, “Domain Modeling Approaches in IS Engineering,”

Model-Driven Domain Analysis and Software Development:

Architectures and Functions, IGI Global, 2011, pp. 388–406.

http://dx.doi.org/10.4018/978-1-61692-874-2.ch018
[4] Eclipse [Online]. Available: http://www.eclipse.org/

[5] G. Fliedl, C. Kop, H. C. Mayr, A. Salbrechter, J. Vohringer, G. Weber,

and C. Winkler, “Deriving static and dynamic concepts from software
requirements using sophisticated tagging,” Data & Knowledge

Engineering, vol. 61, Iss. 3, 2007, pp. 433–448.
http://dx.doi.org/10.1016/j.datak.2006.06.012

[6] J. Francu and P. Hnetynka, “Automated Generation of Implementation

from Textual System Requirements,” in Proceedings of the 3rd IFIP TC
2 CEE-SET, Brno, Czech Republic, Wroclawskiej, 2008, pp. 15–28.

[7] H. Kaindl, “Structural Requirements Language Definition, Defining the
ReDSeeDS Languages,” 2007. [Online]. Available: http://publik.tuwien.ac.at/

files/pub-et_13406.pdf [Accessed: Oct. 7, 2013].

[8] K. Subramaniam, D. Liu, B. Far, and A. Eberlein, UCDA: Use Case
Driven Development Assistant Tool for Class Model Generation,

Proceedin of the 16th SEKE. Canada: Banff, 2004. [Online]. Available:
http://enel.ucalgary.ca/People/eberlein/publications/SEKE-Kalaivani.pdf

[Accessed: Sept. 18, 2010].

[9] J. Osis, “Topological Model Of System Functioning,” (in Russian) in
Automatics and Computer Science, J. of Acad. of Sc., Zinatne, Riga,

1969, pp. 44–50.
[10] J. Osis, E. Asnina, and A. Grave, “Formal Computation Independent

Model of the Problem Domain within the MDA,” Information Systems

and Formal Models, Proceedings of the 10th International Conference
ISIM’07, Silesian University in Opava, Czech Republic, 2007, pp. 47–54.

[11] E. Asnina, “The Formal Approach to Problem Domain Modeling within
Model Driven Architecture,” in 9th International Conference on

Information Systems Implementation and Modelling, Czech Republic,

Ostrava: Prerov, 2006, pp. 97–104.
[12] J. Osis and E. Asnina, “A Business Model to Make Software

Development Less Intuitive,” in Proceedings of the 2008 International
Conference on Innovation in Software Engineering, Vienna, Austria.

IEEE Computer Society CPS, Los Alamitos, USA, 2008, pp. 1240–1246.

[13] J. Osis, E. Asnina and A. Grave, “Formal Problem Domain Modeling
within MDA,” Communications in Computer and Information Science

(CCIS), vol. 22, Software and Data Technologies, Springer-Verlag
Berlin Heidelberg, 2008, pp. 387–398.

[14] J. Osis, E. Asnina, “Derivation of Use Cases from the Topological

Computation Independent Business Model,” in Model-Driven Domain
Analysis and Software Development: Architectures and Functions. IGI

Global, Hershey – New York, 2011, pp. 65–89.
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004

[15] J. Osis, E. Asnina, “Model-Driven Domain Analysis and Software

Development: Architectures and Functions,” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions, IGI

Global, Hershey – New York, 2011, 487 p.

http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
[16] J. Osis, E. Asnina, “Is Modeling a Treatment for the Weakness of

Software Engineering?” in Model-Driven Domain Analysis and Software
Development: Architectures and Functions, IGI Global, Hershey – New

York, 2011, pp. 1–14. http://dx.doi.org/10.4018/978-1-61692-874-2.ch001

[17] J. Osis, E. Asnina, “Topological Modeling for Model-Driven Domain
Analysis and Software Development: Functions and Architectures,” in

Model-Driven Domain Analysis and Software Development:
Architectures and Functions, IGI Global, Hershey – New York, 2011,

pp. 15–39. http://dx.doi.org/10.4018/978-1-61692-874-2.ch002

[18] U. Donins, “Software Development with the Emphasis on Topology” in
Proceeding of 13th East-European Conference on Advances in

Databases and Information Systems (ADBIS 2009), vol. 5968 of LNCS,
Springer, 2010, pp. 220–228.

[19] A. Slihte, J. Osis, U. Doniņš, “Knowledge Integration for Domain

Modeling,” in Proceedings of the 3rd International Workshop on Model-
Driven Architecture and Modeling-Driven Software Development,

China, Bejing, 8–11 June, SciTePress, Portugal, 2011, pp. 46–56.

[20] A. Slihte, “Implementing a Topological Functioning Model Tool,” in

Scientific Journal of Riga Technical University, 5. series., Computer

Science, vol. 43, Riga, 2010, pp. 68–75.
[21] A. Slihte, “Transforming Textual Use Cases to a Computation Independent

Model,” in MDA & MTDD 2010, Greece, Athens, 2010, pp. 33–42.
[22] EMF Developer Guide: The Eclipse Modeling Framework (EMF)

Overview, 2005. [Online]. Available: http://help.eclipse.org/ganymede/

index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF.html
[Accessed: Oct. 7, 2013].

[23] J. Osis, A. Slihte and A. Jansone, “Using Use Cases for Domain
Modeling,” in Proceedings of the 7th International Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE

2012), Poland, Wrocław, 2012, pp. 224–231.
[24] U. Doniņš, “Topological Unified Modeling Language: Development and

Application,” Doctoral thesis, Riga Technical University, 2012, pp. 224.
[25] F. Plante, Introducing the GMF Runtime, 2006. [Online]. Available:

http://www.eclipse.org/articles/Article-Introducing-GMF/article.html

[Accessed: Oct. 7, 2013].
[26] The Stanford Parser: A statistical parser. The Stanford

Natural Language Processing Group, 2010. [Online]. Available:
http://nlp.stanford.edu/ software/lex-parser.shtml [Accessed: Oct. 7, 2013].

[27] Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, 2007. [Online]. Available: http://www.omg.org/cgi-
bin/doc?ptc/07-07-07.pdf [Accessed: Oct. 7, 2013].

Armands Slihte currently is a Doctoral Student at Riga Technical
University. In 2008, he graduated from Riga Technical University, Riga,

Latvia, with a Bachelor’s Degree in Computer Control and Computer Science.
In 2010, he graduated from Riga Technical University with a Master’s Degree

in Computer Systems.

He currently works as a Researcher at the Faculty of Computer Science
and Information Technology, Institute of Applied Computer Systems, Riga

Technical University. The research focus of the authors is Model Driven
Architecture (MDA), more specifically applying Topological Functioning

Model (TFM) as the Computation Independent Model (CIM) within MDA.

E-mail: armands.slihte@rtu.lv

Juan Manuel Cueva Lovelle became a Mining Engineer from Oviedo
Mining Engineers Technical School in 1983 (Oviedo University, Spain). He

has a Doctoral Degree from Madrid Polytechnic University, Spain (1990).

Since 1985 he has been a Professor in the Languages and Computers Systems

at Oviedo University (Spain), and is an ACM and IEEE voting member. His

research interests include object-oriented technology, language processors,
human-computer interface, Web engineering, modeling software with BPM,

DSL and MDA.
E-mail: cueva@uniovi.es

http://dx.doi.org/10.4018/978-1-61692-874-2.ch018
http://dx.doi.org/10.1016/j.datak.2006.06.012
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002

