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Abstract – Nowadays, in the insurance industry the use of 

predictive modeling by means of regression and classification 

techniques is becoming increasingly important and popular. 

The success of an insurance company largely depends on the 

ability to perform such tasks as credibility estimation, 

determination of insurance premiums, estimation of 

probability of claim, detecting insurance fraud, managing 

insurance risk. This paper discusses regression and 

classification modeling for such types of prediction problems 

using the method of Adaptive Basis Function Construction. 
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I. INTRODUCTION 

Nowadays, in the insurance industry the use of 

predictive modeling by means of regression and 

classification techniques is becoming increasingly 

important and popular. The success of an insurance 

company largely depends on the ability to perform such 

tasks as credibility estimation, determination of insurance 

premiums, estimation of probability of claim, detecting 

insurance fraud, managing insurance risk etc. 

It would be useful for an insurance company to have 

objective models that could be used to help in these and 

other tasks. The models can be developed based on 

historical data gathered over the years in the company. The 

intent of using a regression or classification model in these 

tasks is to aid the decision-making process, e.g., receive 

warnings if there is statistically significant evidence of 

potential insurance fraud. 

In general, the goal of the predictive modeling is to 

estimate unknown (input, output) dependency (or model) 

from training data (consisting of a finite number of 

samples acquired through, e.g., experiments or simulations) 

with good prediction (generalization) capabilities [1], [2]. 

This paper discusses regression and classification 

modeling for such types of prediction problems using the 

methods of Adaptive Basis Function Construction (ABFC) 

[3] – [5]. The ABFC methods, in contrast to many other 

methods, do not have so many hyperparameters that 

require tedious configuration from their users, instead they 

automatically adapt to the particular data at hand. This 

property simplifies implementation and usage of ABFC in 

environments where most of regression and classification 

tasks should be automated – like in the information 

systems of insurance companies. 

The remainder of this paper is organized as follows: 

Section 2 gives a brief overview of polynomial regression 

and classification and the subset selection approach. In 

Section 3, the ABFC approach is described. Section 4 

demonstrates the efficiency of the ABFC methods in a real-

world insurance data analysis problem. Finally, Section 5 

concludes the paper. 

II. REGRESSION AND CLASSIFICATION 

Predictive modeling deals with the prediction of a output 

variable y given the values of a vector of d-dimensional input 

variables x = (𝑥1, 𝑥2, . . . , 𝑥𝑑). Let x denote the domain of x 

and y – the domain of y. For real-valued y the problem is 

called regression. Otherwise, if y is a finite set of unordered 

values, the problem is called classification. In both cases, the 

problem is to build a model F(x) which maps each point in x 

to a point in y. The building of F(x) requires a training sample 

of n observations (𝑥𝑖 , 𝑦𝑖) , 𝑖 = 1,2, . . . , 𝑘 . Using the finite 

number of training samples, one requires to build a model F(x) 

that allows predicting the output values for yet unseen input 

values as closely as possible. 

In practical applications, most commonly a low-degree 

polynomial model is used. Generally, a linear regression 

model can be defined as a linear expansion of basis functions 

 𝐹(𝑥) = ∑ 𝑎𝑖𝑓𝑖(𝑥)
𝑘

𝑖=1
, (1) 

where a = (𝑎1, 𝑎2, . . . , 𝑎𝑘)
𝑇are parameters of the model, 𝑓𝑖(𝑥), 

𝑖 = 1,2, . . . , 𝑘 are the basis functions in the model, and k is the 

number of the basis functions. The model is linear in the 

parameters; therefore, estimation of its parameters is typically 

done using the Ordinary Least-Squares method minimizing the 

squared-error: 

 𝐚 = argmin
𝐚

∑ (𝑦𝑖 − 𝐹(𝑥𝑖))
2𝑛

𝑖=1 . (2) 

On the other hand, in the classification problem, the 

criterion for choosing F(x) is usually expected 

misclassification cost. One of the widely used tools for solving 

classification problems is logistic regression. Logistic 

regression represents log odds of y being equal to 1 as a linear 

model: 

 ln(𝑃 (1 − 𝑃)⁄ ) = 𝐹(𝑥) = ∑ 𝑎𝑖𝑓𝑖(𝑥)
𝑘

𝑖=1
, (3) 

where P is the predicted probability of y being equal to 1. P 

can be also represented as 

 𝑃 = 1 (1 + exp(−𝐹(𝑥)))⁄ . (4) 
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The parameters a of the model are estimated by 

minimizing the deviance: 

 
−2∑ (𝑦𝑗ln⁡(𝐹(𝑥𝑗)) + (1 − 𝑦𝑗)ln(1 − 𝐹(𝑥𝑗)))

𝑛

𝑗=1

→ min
. (5) 

There is no closed form solution to this minimization 

problem; therefore, iterative algorithms are used, e.g., 

Iteratively Re-weighted Least Squares [6]. 

III. ADAPTIVE BASIS FUNCTION CONSTRUCTION 

In practical applications, the model F(x) is commonly 

defined as a low-degree polynomial. Such a model has a 

small number of unknown parameters and tends to smooth 

out noise in the data. However, it has an important 

disadvantage – it may exhibit too little flexibility for 

modeling highly non-linear behaviors, i.e., underfit the 

data. Higher-degree polynomials can be used, but they may 

contain too many parameters and, therefore, either overfit 

the data or prohibit parameter estimation because the 

number of parameters exceeds the number of training data 

samples. 

The most popular approach to controlling the 

complexity of a model is subset selection [2], [7], [8]. The 

goal of subset selection is from a fixed full predetermined 

dictionary of basis functions to find a subset that 

corresponds to a model of the best predictive performance. 

Before performing the actual subset selection, one must 

first predefine the dictionary that will provide the basis 

functions for model generation. This is usually done by 

setting the maximum degree of a full polynomial and 

taking the set of its basis functions. 

In polynomial regression, increase in the degree of a full 

model leads to exponential growth of the number of basis 

functions in the dictionary [1], [2] leading to double-

exponential growth of the number of all possible subsets of 

basis functions. Efficient heuristic subset selection 

methods such as Sequential Forward Selection, SFS (also 

known as Stepwise Forward Selection or simply Forward 

Selection [2], [7]) and many others (see, e.g., [8]) 

considerably reduce the time. However, the time is still 

exponential in the degree and in the number of input 

variables [5]. 

By using the approach of subset selection one makes the 

assumption that the predefined fixed finite dictionary of 

basis functions contains a subset that is sufficient for a 

model to describe the target relation sufficiently well. The 

problem is that generally the required maximum degree is 

unknown beforehand and, since it will differ from one 

modeling task to another, it needs to be either guessed or 

found by additional meta-search over the whole subset 

selection process. In many cases (especially when the data 

dependencies are complex and not well understood) this 

means either acceptance of a possibly inadequate model or 

a non-trivial and long trial and error process. 

In [3] – [5], an alternative approach is proposed – 

Adaptive Basis Function Construction. The goal of this 

procedure is to overcome some of the limitations associated 

with the subset selection approach outlined above. ABFC is 

developed for building sparse polynomial regression models 

without restrictions on the degree of a model and enables 

building models in polynomial time instead of exponential 

time. The required basis functions are automatically 

constructed specifically for the dataset at hand without using a 

fixed predefined finite dictionary. The dictionary of basis 

functions in ABFC is infinite enabling generating polynomials 

of arbitrary complexity. 

Generally, a basis function in a polynomial regression 

model can be defined as a product of original input variables 

each with an individual exponent: 

 𝑓𝑖(𝑥) = ∏ 𝑥
𝑗

𝑟
ij

𝑑

𝑗=1
, (6) 

where r is a 𝑘 × 𝑑matrix of non-negative integer exponents 

such that rij is the exponent of the jth variable in the ith basis 

function (note that an ith basis function can be defined as the 

intercept term like this: ∀𝑗: 𝑟ij = 0 ). Such a matrix with 

specified values for each of its elements completely defines 

the structure of a polynomial model with all its basis functions. 

For example, if d = 3 and k = 4, then the matrix 

 𝑟 = [

0 0 0
2 0 0
0 1 3
1 1 1

] (7) 

corresponds to the set 

 
𝑓 = {𝑥1

0𝑥2
0𝑥3

0, 𝑥1
2𝑥2

0𝑥3
0, 𝑥1

0𝑥2
1𝑥3

3, 𝑥1
1𝑥2

1𝑥3
1}

={1, 𝑥1
2, 𝑥2𝑥3

3, 𝑥1𝑥2𝑥3}
 (8) 

that in turn corresponds to the model 

 𝐹(𝑥) = 𝑎1 + 𝑎2𝑥1
2 + 𝑎3𝑥2𝑥3

3 + 𝑎4𝑥1𝑥2𝑥3. (9) 

Now the problem of finding the best set of basis functions 

can be formally defined as finding the best matrix r with the 

best combination of non-negative integer values of its 

elements: 

 𝑟* = argmin𝐫𝐽 ({∏ 𝑥
𝑗

𝑟
ij

𝑑

𝑗=1
∣ 𝑖 = 1,2,..., 𝑘}), (10) 

where J(.) is an evaluation criterion that evaluates the 

predictive performance of the regression model corresponding 

to the set of basis functions. 

Upper bounds of values in r and value of k are not defined; 

therefore, it is possible to generate polynomials of arbitrary 

complexity, i.e., of arbitrary number of basis functions each 

with arbitrary exponent for each input variable. 

In order to efficiently build a good regression model for a 

particular dataset, an efficient search mechanism is required 

that enables searching in an infinite space in finite time. 

The search mechanism of ABFC is organized as follows 

(see [5] for details). The search is started from the simplest 
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model – the model with one basis function – the intercept 

term. New models are generated using so-called model 

refinement operators that enable adding, copying, 

modifying, and deleting the rows of r, i.e., adding, copying, 

modifying, and deleting the basis functions of the model 

(in contrast to subset selection that restricts to just adding 

and deleting). Next, an efficient search strategy and a 

model evaluation criterion are required. In the special case 

of ABFC called Floating ABFC (F-ABFC), the search 

strategy of Sequential Floating Forward Selection [9], [10] 

is adapted and the corrected Akaike’s Information 

Criterion (AICC) [11] is employed. 

According to many researchers, Floating Search 

algorithms, including Sequential Floating Forward 

Selection (SFFS), are some of the most efficient 

deterministic search algorithms for subset selection in 

terms of both required computational resources and quality 

of results [8] – [10], [12] – [14]. Other advantages of SFFS 

include absence of any adjustable hyper-parameters, 

tendency to generate simple models, and simplicity of its 

implementation. 

The model evaluation criterion AICC is defined as 

follows: 

 AICC = 𝑛ln(MSE) + 2𝑘 +
2𝑘(𝑘+1)

𝑛−𝑘−1
, (11) 

where MSE is the Mean Squared Error of the model in the 

training data. AICC evaluates  the predictive performance 

of a model as a trade-off between its accuracy in the 

training data and its complexity. The “best” model is then 

the one with the lowest AICC value. This criterion is an 

improvement over the classic Akaike’s Information 

Criterion (AIC) [15] with the additional third term in (11) 

added as a correction term intended for small-sized 

datasets. For relatively small n, AICC is suited better than 

AIC but converges to AIC as n becomes large [11]. 

The termination condition of the F-ABFC search 

process is met, when the algorithm has generated a model 

that cannot be further improved using any of the 

refinement operators. 

It should be noted that, although the state space of 

F-ABFC is infinite, the models of the best predictive 

performance are normally located in the part of the space 

that is relatively near to the initial state where all the 

models (and also their basis functions) are relatively 

simple, they do not yet overfit the data, and their number 

of basis functions is still smaller than samples in the 

training data. Therefore, really only a small finite fraction 

of the whole infinite state space is to be explored to build a 

“good enough” model. 

A more detailed description of F-ABFC, as well as 

detailed empirical comparisons to subset selection methods 

and other popular regression modelling methods was given 

in our previous studies [3] – [5]. 

Studies in [16] – [18] demonstrated practical 

applications of ABFC methods for the optimum design of 

laser welded sandwich structures and glass fiber composite 

structures. However, the methods of ABFC are really general-

purpose regression modeling tools. 

IV. EXPERIMENTS 

This section presents the results of empirical experiments 

comparing the ABFC methods used with logistic regression 

and a number of well-known state-of-the-art classification 

methods. In this experiment, a real-world insurance company 

benchmark dataset from [19] is used. The dataset has 5822 

training instances, 4000 testing instances, 85 input variables, 

and 1 binary output variable providing information whether or 

not a customer is interested in a specific insurance policy. 

The methods compared are the following: 1) F-ABFC; 2) 

logistic regression with “full” 1st degree polynomial (FP); 3) 

logistic regression with sparse 1st degree polynomial built 

using SFS with AICC as the evaluation criterion; 4) 1, 3, and 5 

Nearest Neighbors (NN); 5) Naive Bayes; 6) Multilayer 

Perceptron (MLP); 7) Radial Basis Function network; 8) 

Support Vector Machine trained using Sequential Minimal 

Optimization algorithm; 9) J48 classification tree [20]. Most 

of the compared methods are implemented in Weka tool [20] 

available free of charge under General Public License at 

http://www.cs.waikato.ac.nz/ml/weka/. All the methods were 

used with their default hyperparameters. 

TABLE 1 

PREDICTIVE PERFORMANCE OF THE METHODS IN TERMS OF THE NUMBER OF 

CORRECTLY CLASSIFIED INSTANCES (%) 

Method Correctly classified instances (%) 

FP 93.98 

SFS 94.00 

1-NN 89.88 

3-NN 93.30 

5-NN 93.85 

Naive Bayes 79.20 

MLP 93.95 

RBF 94.05 

SVM 94.05 

J48 93.98 

F-ABFC 94.05 

Table 1 presents the results of the performed experiments. 

As can be seen, the ABFC methods compare rather well to all 

the other state-of-the-art methods, in about 94% of cases 

giving a correct estimation of customer's interest in the 

insurance policy. 

V. CONCLUSIONS 

In this paper, the authors reviewed the ABFC approach, 

characterized its special case F-ABFC, and demonstrated the 

efficiency of the method for employment with logistic 

regression in a real-world classification problem from the 
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insurance industry, while comparing them to a number of 

other widely used state-of-the-art methods. 

The ABFC methods, in contrast to the methods of subset 

selection, do not require the user to predefine the maximal 

degree or the dictionary of the basis functions. Instead, 

they automatically adapt to the particular data at hand. 

Overall, the results of the performed empirical 

experiment are consistent with the authors’ previous 

experiments, and it can be concluded that the adaptive 

model building methods of ABFC are able to give results 

that are comparable to results of other state-of-the-art 

methods. 

While the performance of most of the used methods is 

similar, it should be noted that the ABFC methods, in 

contrast to many other methods, do not have so many 

hyperparameters that require tedious configuration from 

their users. Instead, they automatically adapt to the 

particular data at hand. This property simplifies 

implementation and usage of ABFC in environments 

where most of regression and classification tasks should be 

automated, e.g., in the information systems of insurance 

companies. 

The future research will focus on more thorough studies 

and experiments regarding ABFC efficiency in the 

insurance industry. 
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