
Applied Computer Systems

2014/15 __

22

Intellectual Model-Based Configuration Management

Conception

Arturs Bartusevics1, Leonids Novickis2, Eberhard Bluemel3
1-2 Riga Technical University, 3Fraunhofer IFF, Magdeburg, Germany

Abstract – Software configuration management is one of the

most important disciplines within the software development

project, which helps control the software evolution process and

allows including into the end project only tested and validated

changes. To achieve this, software management completes certain

tasks. Concrete tools are used for technical implementation of

tasks, such as version control systems, servers of continuous

integration, compilers, etc. A correct configuration management

process usually requires several tools, which mutually exchange

information by generating various kinds of transfers. When it

comes to introducing the configuration management process,

often there are situations when tool installation is started, yet at

that given moment there is no general picture of the total process.

The article offers a model-based configuration management

concept, which foresees the development of an abstract model for

the configuration management process that later is transformed

to lower abstraction level models and tools are indicated to

support the technical process. A solution of this kind allows a

more rational introduction and configuration of tools.

Keywords – Configuration management, configuration

management model, model-based approach.

I. INTRODUCTION

Software configuration management is one of the most

important disciplines within the software development project,

which helps control the software evolution process and allows

including into the end project only tested and validated

changes. To achieve this, software management completes

certain tasks. The following configuration management tools

are usually distinguished: identification of configuration units,

unit version control and provision of parallel development,

product constructions and installations, accounting and audit

of configuration units [1], [2]. Nowadays there are numerous

literature sources that describe the basic principles of solving

the above-mentioned tasks. There are also many commercial

and open source tools, which technically implement the

principles described in literature [1]. Specialists in the field of

configuration management note that successful introduction of

configuration management initially requires awareness of the

configuration management process within the particular

project, abstracting from the use of concrete tools. The initial

objective is to understand how the general tasks will be

solved, taking into account the project specifics and general

recommendations in the field of configuration management.

Only after all of the general functions of the process have been

identified, the most appropriate tools can be sought for the

implementation of concrete functions [1], [2]. Despite the

above-mentioned recommendations, in practice the activities

for identifying the general configuration management process

are skipped, and process introduction already begins with the

installation of tools. Within the software development project

tools are installed with an aim to provide technical support for

certain activities rather than the process on the whole. For

instance, several developers begin writing a software code,

which is reduced to correcting the same source code files. In

order to detect who has made the changes and what these

changes are, a version control system is installed. For a period

of time, programmers can successfully make changes, but

soon a client is given the first product version of the

acceptance test. The client detects errors and asks to correct

these errors within two weeks, however, at the same time,

work is started on a new model for the same product and the

expected time of completion is approximately one month. This

requires making changes to the same code. As a result, a

parallel branch is created in the version control system, in

which changes are made in line with the new module. In the

initial branch, errors identified by the client are corrected and

the new version is supplied to the client. After a while, new

module functionality has to be supplied, which leads to a

necessity to merge two parallel source code branches. Given

the fact that no merging strategy had initially been defined,

errors emerged in the product construction, which had already

been corrected in the previous version. Repeated corrections

had to be made. After the error was eliminated, a strategy for

parallel development was never discussed. What would

happen in case of another necessity to perform parallel

developments? Most likely the same errors would have to be

corrected. This example describes only the issues concerning

version control and parallel development, yet other

configuration management tasks can be similarly discussed as

well. The mentioned example allows concluding that without

overseeing the total process, a solution to configuration

management problems is reduced to fixing concrete tools or

working with the source code rather than improving the

process. As a result, the development project involves one or

two people, who after a certain period of time eliminate

particular errors by correcting tool configuration or code. In

the course of time, there are so many changes to be made that

only one particular person or a group of people are able to

understand and oversee the process. To make changes, it is

necessary to have an irrationally large amount of time. If

changes have to be made by a person who previously has not

been involved in the project, this becomes nearly impossible,

for there are numerous changes, tools and configurations, yet

lack of a general picture of the process or relevant

documentation [1], [2], [8].

doi:10.2478/acss-2014-0003

Applied Computer Systems

 __ 2014/15

23

Problems in configuration management also emerge if

initially the process is defined on the whole. Let us assume

that the person in charge defined the configuration

management process by abstracting him- or herself from the

introduction of concrete tools. These tools are chosen and

installed afterwards by following particular needs. The process

functions until the necessity emerges to change something or

to correct an error. Oftentimes due to a lack of time or

resources, changes are made directly to the tool configuration

of the code, yet the general picture of the process or

documentation is never updated. This leads to a situation in

which after a period of time the process description no longer

corresponds to the actual functioning and configuration of

tools. The above-mentioned issue becomes relevant again,

namely, changes to configuration or to the code become

irrational, for they do not prevent causes and, therefore,

imperfections in the process [1], [8].

In order to solve these problems, a tool or a method is

required that would relatively quickly help obtain a

configuration management process model, which in turn

would be able to react upon changes in a particular project

problem environment. One of the most important tasks is to

find an intellectual configuration management solution. In the

context of this article, the term ‘intellectual’ relates to the

ability of a configuration management model to react upon

changes in a problem environment. The reaction should be

expressed in a way for a configuration manager to see a

particular place within the process model where changes need

to be made in order to adapt to the problem environment or to

correct an error. Thanks to this, a configuration manager can

make timely changes to the process model and the tool

configuration. This can potentially prevent irrational fixing

and configuration of tools, as well as help prevent problem

causes more effectively.

II. RELATED RESEARCH

Initially model-based solutions began to emerge in cases

where only one of the general tasks of configuration

management was being solved, for instance, identification of

configuration units, version control or building [9] - [12]. In

the publication [9], the authors offer to perform modeling of

the product to be developed. In the beginning, it was

emphasized that by defining the potential candidates for

configuration units not only the source code, but also

documentation needs to be taken into account, describing

different aspects of each product. The modeling approach is

based on a gradual creation of a system branch-like structure.

Initially documents, models and sub-systems of the product to

be defined are developed. In the next iteration, documents are

divided into groups and links between documents are defined.

Sub-models are defined for models and their mutual links are

described. Components of sub-systems are defined, for

instance, databases, graphic user interfaces, etc. In the

following iterations, the structure is broadened with new

elements and their mutual links. The process continues until a

decision is made that each lower layer top cannot be

subdivided and all links between defined elements at the given

moment are determined.

When studying version control and parallel development

task solutions, model development can also be observed [10],

[4]. The general idea in the study [10] is an algorithm, which

creates a metamodel for the controllable units. This

metamodel describes the syntax of a model, which might be

subject to version control. The method is foreseen for version

control systems, which control models rather than the source

code, which is characteristic of projects where a model-based

approach is applied. Thanks to the metamodel, it is possible to

not only manage model changes, but also to perform merger of

various model versions and to observe conflicts during the

merger similar to how this can be observed when joining

together source code file changes. It lays out the main problem

that contemporary version control and parallel development

can be limited to source code file control. Projects where a

model-based approach is used have the necessity to control

versions for models; however, in separate projects, due to their

specifics, the existing version control systems are unable to

offer solutions for all the tasks. For this reason [4] source

authors offer a methodology, which foresees development of

an abstract model version for the control system. Gradual

transformation of the obtained model into a lower abstraction

level model may obtain transfer for a new version control

system development.

Although the product building process in practice usually is

associated with the choice of particular compilers or tools,

there are solutions, wherein the mode-based approach is used –

initially an abstract building model is created and only

afterwards tools are introduced that implement the model in

practice [11], [12]. The publication [11] speaks not about

particular tools, but about an abstract model, which describes

the building and installation process. As a solution, a model is

offered that describes activities to be performed in the building

and installation process. Each activity provides a summary of

tools that are used to technically implement and to automate

activities. In its turn, another publication [12] emphasizes the

problem of a qualitative product building absolutely requiring

the right choice of configuration units, which should be part of

the building. The publication [12] offers model-based

methodology, which determines the cluster of configuration

units that should be part of the building. The methodology

makes use of heuristics and analyses all possible configuration

unit clusters, which potentially might be included into the

building. A version is chosen providing the best possible

product configuration, for example, in the context of the

performance.

Speaking of configuration management model-based

solutions, which encompass several configuration management

tasks, it must be concluded that there are not many of them.

Only a few such solutions were found, in which a more or less

complex configuration management process would be

emphasized in the context of several tasks [3], [5], [6]. In

order to find a better view of the maturity and disadvantages

Applied Computer Systems

2014/15 __

24

of the solution in the course of the study, in parallel some

overarching principles of the model-based approach were

studied [7], [14]. A functioning model-based solution should

have the following traits:

 Existence of metamodels. The solution must have a

source from which a configuration management process

model can be developed.

 Models of different abstraction models. In order to focus

upon the process and not on tools, the model-based

solution must have an abstract model, which describes

the configuration management process irrespective of the

computation and tools that will be used in the process

implementation. Yet there should also be other types of

models, in which computation traits, platform specifics

and the role of tools within the process can be reflected.

 One of the mandatory components of the solution should

be a link between different types of models and

transformation rules, which allows transforming a model

with a certain level of abstraction into a model of another

level of abstraction. Transformation rules should be

formalised to be understood by a computer.

 Tool support. In order not to leave the solution solely on

the theoretical level, there should be tools that can create

models from a ready metamodel and perform the

necessary transformations.

 Link with the problem environment. A link is needed for

the solution to be sustainable. Otherwise, the developed

and implemented model is unable to react upon changes

in the problem environment and there will be no

possibility to determine the weak points of the model. In

the course of time, this may lead to changes to the

configuration of certain tools or code changes and

without overseeing the process the process model may

lose its relevance.

In the course of the study, no single solution was found that

would meet all of the above-mentioned requirements. As part

of the solution [3], a unified conception was created for

configuration management and model-based development – a

metamodel that allows creating an abstract product

configuration model, a tool based on Eclipse Modeling

Framework, which allows obtaining a specific configuration

model from an abstract model platform, as well as instructions

on how to broaden methodology and implement a tool. In the

course of research, in this publication [3] it had to be

concluded that although the solution corresponds to the

general principles of the model-based conception, it is more

oriented towards project, the development of which is based

on the model-based approach. A metamodel exists only for the

task of configuration unit identification, yet there are no

concrete indications or recommendations as to how this can be

applied to other configuration management tasks. There is also

no link with the project problem environment; therefore, it is

uncertain as to the most rational ways of making changes to

the model if such a necessity would emerge.

As opposed to the solution above [3], which puts an

emphasis on the identification of configuration units and

detection of dependents, the source [6] offers a methodology

that looks at the configuration management process on the

whole. Configuration management principles for this solution

are taken from the ITIL (Information Technology

Infrastructure Library) standard and later on abstract models

are created, from which an abstract configuration management

process can be developed, and later this model is transformed

into a platform-dependent model. This approach makes use of

the general principles of model-based development. Models

based on metamodels offer the necessary abstraction, which

improves the management of configuration process, the

monitoring of it, and in case of necessity, allows users to

implement the model for a certain technology, for instance,

when performing the model transformation. A system

prototype is created, which implements the model-based

configuration management. The author of the study [6]

projects further large-scale research in order to come to a

particular solution, which is also explained in the conclusion.

Although the given solution also includes the implementation

for the offered model-based configuration management, the

solution is orientated towards a single type of technology

(JAVA) and no particular details of implementation have been

revealed. Therefore within this solution, it is hard to assess the

possibility of its practical use and nothing is mentioned about

the link with the problem environment.

By analyzing configuration management solutions within the

more or less model-based approach, a solution was found [5],

which does not just explore the configuration management

process on the whole by listing all of the general tasks, but

emphasizes that mutual integration of various configuration

management tools plays an important role. In order to

maintain a full configuration management process, several

tools are required: version control systems, problem

management systems, building servers, continuous integration

servers and many other tools. In practice, all of these tools

work independently of each other. To ease the configuration

management process, an approach is offered to integrate all of

these tools into clusters. However, to integrate various

configuration management tool clusters, a general concept of

each tool to be integrated should be defined [5]. The

publication offers ontology of tasks for the configuration

management processes. This ontology is used as a

configuration management model, which shows in what ways

various configuration management tools will be integrated.

The ontology is largely based on change control, which is one

of the main concepts in configuration management. The

ontology offers information about mutual links within the

configuration management sub-process, which is expressed

through concepts, links, tasks, agents and entry data clusters [5].

It must be acknowledged that the publication has no concrete

indications on how the ontology can be applied to

configuration management of a particular project. Speaking of

a link between the problem environments, it is unclear how

changes can be made to ontology, what kinds of ontology

Applied Computer Systems

 __ 2014/15

25

editors are suggested to use and how to determine the moment

when changes should be made.

Assessment of the existing intellectual solutions of

configuration management did not result in finding solutions,

where one of the artificial intellect methods would be applied

to the configuration management process in general. Even if

any of the existing solutions could be considered intellectual,

it is only directed at a single task of configuration management.

An example of this phenomenon is the source [13], in which the

identification task of configuration units is being solved. The

solution foresees application of fuzzy logic theory to create a

multi-criteria decision-making system. The main goal of

decision-making is to determine an optimal cluster of

configuration units, which can then be subjected to the

configuration management process [13].

III. GENERAL OVERVIEW OF THE INTELLECTUAL

MODEL-BASED CONFIGURATION MANAGEMENT

The general aim of the intellectual model-based configuration

management is to create a configuration management process

model for a particular project and to ensure a dynamic link

between the configuration management problem environments

and to develop a model. Initially, a computing-independent

model is created from the configuration management

metamodel, which only conceptually describes the solution of

general configuration management tasks mentioned in the

introduction of the article. Later with the help of

transformations, the computing-independent model is

transformed into a platform-independent model. This model

already shows what tools might be necessary for the technical

support of the process and how these would exchange

information. However, nothing is mentioned about particular

tools, platforms, development technologies, etc. For instance,

this model mentions the version control system and the type of

information it passes on to the building server, yet nothing is

said about the version control system. Within the platform-

independent model it is the information exchange and not the

concrete system that is important. At this stage, for instance, it

is not important whether the version control system is

Subversion or Git. The platform-independent model is being

transformed to a platform-specific model, which already

indicates concrete tools, development technologies, platforms,

etc. At this level, for example, it can be seen how the

Subversion version control system should be configured and

what information cluster it passes on to the Jenkins continuous

integration server in order to implement an initially planned

configuration management process. At the moment when a

configuration management process model can be obtained

from the metamodel step by step by using transformations, an

expert system is created, which ensures a link between the

model and the configuration management problem

environment. For this very reason, the word “intellectual”

forms part of the solution title. The expert system collects

information from tools, which technically ensure configuration

management. The expert system knowledge base contains two

kinds of rules. The first group of rules, depending on the

obtained information in the problem environment, will

determine in which of the models changes should be made.

The second group of rules works with metamodel components.

If one of the components is incomplete or cannot ensure the

necessary changes in the model, recommendations for the

metamodel updates are being formulated. At this given

moment it is unclear to what extent this link and the expert

system activity will be automated. The authors hope that the

necessary answers will be given by experiments planned in the

future. Figure 1 shows a scheme for intellectual model-based

configuration management.

Model-Driven Configuration Management

Metamodel CIM model

Configuration Management Problem Environment PSM model

Expert

System

C2P

rules
PIM model

P2P

rules

Fig. 1. Conception of model-based configuration management.

IV. INTELLECTUAL MODEL-BASED CONFIGURATION

MANAGEMENT COMPONENTS

Metamodel – a source from which components are taken

for the development of the configuration management model.

A metamodel contains components that have certain syntaxes,

semantics and principles of development. Each component has

a description, which includes a clarification in what ways it is

to be linked with other components. A metamodel has a link

with the expert system, which collects information from the

configuration management problem environment and indicates

components, which need to be changed or indicates a

necessity to create new components to better develop a

process model.

CIM – a computing-independent model for the

configuration management process within a certain

development project. Model components are taken from the

metamodel. The CIM is linked to the expert system, from

which information about the necessity to conduct a certain

type of changes is received from time to time, and this is

linked to changes in the problem environment or error

elimination.

C2P rules – transformation rules, which determine how to

obtain PIM from the CIM (computation-independent model).

It is expected that rules will contain information on the kind of

tools required to technically support modelled configuration

management processes and how these tools will mutually

exchange information.

Applied Computer Systems

2014/15 __

26

PIM – configuration management model, which thanks to

the C2P transformation rules can be obtained from the CIM.

As mentioned earlier, the model contains information about

tools and their mutual information exchange, yet nothing is

said about concrete technologies or platforms. At this stage,

for instance, it is not important whether the version control

system is Subversion or Git; however, the number of parallel

development branches and the order of their integration play a

significant role.

P2P rules – transformation rules, which determine how a

PSM (platform-specific) model can be obtained from the PIM.

The rules supplement the PIM with information on particular

tools and platforms. Presumably, rules will be corrected by a

user depending on which exact technologies this user would

choose to use. For instance, seeing within the PIM the way

version control is organized as well as parallel development

branches, the configuration manager will be able to choose a

version control system, which could implement the

requirements of the model and define within P2P rules

whether this is a Subversion, Git, Mercurial, or another

version control system.

PSM – specific model of the configuration management

process platform. This model can be obtained through

transformation from the PIM. Particular technologies already

form part of this model and the tools mutually exchange

information. The model shows what kinds of tools need to be

installed, configured and what information exchange

interfaces must be ensured to implement a modelled

configuration management process.

Expert System – the part of the solution, which ensures the

link between a model and its problem environment. The

system consists of a module that collects information from the

installed tools and rule base of configuration management.

The rule base defines rules, which depending on the obtained

information, are able to determine at which model stages

changes need to be made. If, for instance, the tool logs show

that activities do not correspond with the process, the expert

system indicates the inconsistent place in the model and offers

to make changes. The rule base also contains rules that on a

certain level can control the metamodel. Namely, if the

existing components of the metamodel are unable to ensure

the necessary changes in the model, the system offers to

update the metamodel. It is expected to supplement the rule

base with rules, as well as to correct the existing ones.

V. EXPECTED GAINS FROM THE OFFERED SOLUTION

The main expected gain from the offered solution is the

possibility to have an overview of the general configuration

process. Thanks to the fact that the PSM provides information

on the type of tools that are necessary and the way of

exchanging information by these tools, there is a possibility to

automate the process. The model allows configuring tools in

accordance with aims of a particular process instead of

correcting a single error. This allows a more effective use of

resources for tool configuration and instead of eliminating a

particular mistake, allows getting through to its cause by

minimizing the chance for the error to repeat itself in the

future. Another gain would be to make the process more

transparent. If a new person joins the project, he or she can

become acquainted with the configuration management

process on the whole and understand in what ways and with

what purposes the tools function. Transparency of the process

allows, in case of necessity, making changes to tool

configuration more effectively. Such a solution would prevent

from wasting a lot of time reading different types of

documentation and studying the source code. At the same

time, the expert system would continuously maintain a link

with the problem environment and help configuration

managers timely react to changes or errors in the process. This

would lessen the probability that a process model would lose

its relevance over time. The main goal of this solution is to

improve the quality of configuration management process,

raise tool configuration effectiveness and decrease

maintaining costs at the expense of having more possibilities

to prevent error causes rather than the error itself.

VI. CONCLUSION AND FURTHER RESEARCH

The article offers the concept of intellectual model-based

configuration management. At the given moment, none of the

solution components is being implemented in practice.

Therefore, there is a long way to go to the practical application

of this solution. One of the most important further studies will

have to do with the development of a configuration

management metamodel. The authors believe that the creation

of a metamodel is one of the main factors, which will

determine whether the end result is successful, since, without a

qualitative metamodel, no full-fledged model can be created

for the configuration management process. At the given

moment it is assumed that a qualitative metamodel is the one

where the principles, syntax and semantics of component

creation are clear. If the general principles of the metamodel

are clear, in case of necessity it will allow modifying the

metamodel and increasing the probability that the model will

be considered by specialists of the field because there is a

phenomenon of difficulty to accept and to apply new and

complex things. In other words, a complex and hard to

understand solution will be perceived with care and the

obtained results are not likely to be trusted. For this reason, it

is necessary to study contemporary popular modeling notation

and to assess the most suitable configuration management

metamodel components. Components must be developed

based on the idea of being easily perceived visually, i.e., to

make it easier for users to understand the essence of

components and the potential links with other components.

The next step is based on the created metamodel to conduct

experiments, through which different Computing Independent

Models for configuration management processes will be

developed in various projects. One of the main goals of

experiments would be to assess the ability of the metamodel as

fully as possible, by developing a computing-independent

model for the configuration management process. Further

research will largely depend on experiment results and at this

Applied Computer Systems

 __ 2014/15

27

moment these results are hard to project. It can be added that

depending on the way how this model-based solution will be

developed, one of the most crucial stages will be the

development of an expert system to maintain a model link

with the problem environment. In the process of developing

the expert system, tasks like problem environment monitoring

and principles of drawing up rules will have to be solved.

Presumably, this would be an independent study in terms of

the offered solution in the context of this article.

ACKNOWLEDGEMENTS

The research has been funded by the ERDF (ERAF) project

No.2011/008/2DP/2.1.1.1.0/10/APIA/VIAA/018

“Development of Insurance Distributed Software Based on

Intelligent Agents, Modeling, and Web Technologies”.

REFERENCES

[1] R. Aiello, Configuration Management Best Practices: Practical Methods

that Work in the Real World (1st ed.). Addison-Wesley, 2010.
[2] A. Berczuk, Software Configuration Management Patterns: Effective

TeamWork, Practical Integration (1st ed.). Addison-Wesley, 2003.

[3] W. Pindhofer, Model Driven Configuration Management. Master work
of Wien University, Wien, 2009.

[4] T. Buchmann., A. Dotor, B. Westfechtel, Model-Driven Development of

Software Configuration Management Systems. ICSOFT 2009 - 4th
International Conference on Software and Data Technologies 2009.

[5] R. Calhau, R. Falbo, A Configuration Management Task Ontology for

Semantic Integration. Proceedings of the 27th Annual ACM Symposium
on Applied Computing Pages 348-353 ACM New York, NY, USA,

2012. http://dx.doi.org/10.1145/2245276.2245344

[6] H. Giese, A. Seibel, T. Vogel, A Model-Driven Configuration
Management System for Advanced IT Service Management,

http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/GSV-

MRT09_paper_7.pdf.
[7] J. Osis, E. Asnina, Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey - New

York, 2011, 514 p.

[8] Y. Udovichenko, Upravlenie projektami, http://experience.

 openquality.ru/software-configuration-management/, 2011.

[9] Object-Oriented Software Engineering Using UML, Patters and JAVA
“Software Configuration Management,

http://www.bilkent.edu.tr/~bakporay/cs_413/Bruegge_L28_Configuratio

nManagement_ch12lect1.ppt.

[10] K. Altmanninger, Models in conflict - towards a semantically enhanced
version control system for models. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) 2008;5002 LNCS:293-304.
[11] P. Sindhuja, N. Surajit, Software Deployment: Concepts and

Technologies. ICFAI Journal of Systems Management, 2008.

[12] O. Bushehrian, Automatic object deployment for software performance
enhancement. The Institution of Engineering and Technology 2011,

Vol. 5, Iss. 4, pp. 375–384, 2011.

[13] Juite Wanga, Yung-I Lin, A fuzzy multicriteria group decision making
approach to select configuration items for software development.

MathematicsWEB, Fuzzy Sets and Systems, 2002.

[14] O. Nikiforova, N. Pavlova, K. Gusarovs, O. Gorbiks, J. Vorotilovs, A.
Zaharovs, D. Umanovskis, J. Sejans, Development of the Tool for

Transformation of The Two-Hemisphere Model to The UML Class

Diagram: Technical Solutions and Lessons Learned. Proceedings of the
5-th International Scientific Conference „Applied Information and

Communication Technologies”, 2012, Jelgava, Latvia, pp. 11-19.

Arturs Bartusevics is a doctoral student at Riga Technical University, the

Faculty of Computer Science and Information Technology, the Institute of

Applied Computer Systems. He obtained BSc (2008) and MSc (2011) degrees
in Computer Science and Information Technology from Riga Technical

University. His research areas are software configuration management, release

building and management process and its optimization. He works at Ltd. Tieto
Latvia as a Software Configuration Manager.

E-mail: arturik16@inbox.lv

Leonids Novickis is a Head of Division of Applied Systems Software. He

obtained Dr.Sc.ing. degree in 1980 and Dr.Habil.Sc.ing. degree in 1990 from
the Latvian Academy of Sciences. Since 1994 he has been regularly involved

in different EU-funded projects: AMCAI (INCO COPERNICUS, 1995-1997)

– WP leader; DAMAC-HP (INCO2, 1998-2000), BALTPORTS-IT (FP5,
2001-2003), eLOGMAR-M (FP6, 2004-2006) – scientific coordinator;

IST4Balt (FP6, 2004-2007), UNITE (FP6, 2006-2008) and BONITA

(INTERREG, 2008-2012) – RTU coordinator; LOGIS, LOGIS-Mobile and
SocSimNet (Leonardo da Vinci) – partner. He was an independent expert of

IST and Research for SMEs in FP6 and FP7. He is a corresponding member

of the Latvian Academy of Sciences and an elected expert of the Latvian
Council of Science. His research fields include Web-based applied software

system development, business process modeling, e-learning and e-logistics.

Ė-mai:l lnovickis@gmail.com

Eberhard Bluemel, Dr. rer.nat. Dr. h.c., is a Head of Fraunhofer IFF EU

Office. Since 1992 he has been regularly involved in different EU funded
projects as a project coordinator. His fields of applied research projects are

associated with themes of Operation Research, e-Logistics, Software

Management, Virtual Reality and Training.
E-mail: eberhard.bluemel@iff.fraunhofer.de

http://dx.doi.org/10.1145/2245276.2245344
mailto:arturik16@inbox.lv
mailto:lnovickis@gmail.com

