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Abstract – The paper presents algorithms for insurance 

technical provisions taking into account losses, which are 

incurred but not reported. Evaluation of insurance technical 

provisions for the kinds of insurance, such as Motor Third Party 

Liability (MTPL) Insurance, Property Insurance and some 

others, have difficulties in assessing the impact of the losses from 

insurance claims incurred requiring a longer time for the 

settlement of insurance claims. These insurance requirements are 

mainly associated with health insurance in the MTPL Insurance, 

losses related to compensation for moral injuries, as well as on 

life care and life-long pension. To run these payments, you need 

to know the financial indicators for the period of settlement of 

loss (such as the effective interest rate, investment income, etc.) 

In the article the procedures for the most accurate forecast 

possible losses for the expected excess of loss amount for a treaty 

year are provided, using the loss experience of the previous years 

of the occurrence with their development. However, certain 

adjustments should be made to take account of the impact of 

losses from previous years for the current period. This article 

describes how outstanding losses have to be projected on a year 

of reporting, so that they are correspond to the current values. 

 
Keywords – Excess of loss, insurance technical provisions, 

motor vehicle liability insurance, outstanding insurance claims, 

loss burden triangle. 

 

I. INTRODUCTION 

The problem of determining factors for prediction of 

outstanding claims and creating suitable technical provisions 

to meet these requirements is an important part of the business 

of insurance and Motor Third Party Liability. In fact, the 

published profit of these companies depends not only on the 

actual insurance payments, but also on the claims forecasts, 

which will be payable. It is very important therefore to 

understand correctly access a reliable assessments provisions 

to be set aside to cover claims, in order to ensure the financial 

stability of the company in calculating its profits and losses. 

There is a number of ways that have proved useful in practice; 

one of well-known form is the method of chain ladders 

technique. Statistical algorithms for the analysis of these data, 

built in recent years, include the methods of valuation, and 

methods of generalized linear models. The aim of this paper is 

to consolidate these results in order to show how the 

technology of the chain ladder method can be improved and 

expanded without changing the fundamental basis on which it 

was built before these changes. Two problems with the 

technique of chain ladder method can be considered. First of 

all, not enough connection between the accident years, 

therefore model has many parameters and volatile forecast. 

Secondly, the scheme development requirements is the same 

for all accident year. The chain ladder method does not accept 

any changes in the speed, at which claims are settled, or for 

other factors which may change the shape of the run-off 

triangle development. Before describing the methods to 

overcome these problems, first define the chain ladder method 

linear model and show how it can be used to give upper 

prediction bounds for the total amount of the outstanding 

claims. 

II. DATA REQUIREMENTS 

A. Claims Loss Data 

As a starting point for using run-off triangle techniques to 

estimate future claims losses from existing insurance policies, 

an insurance undertaking requires information regarding its 

past claims experience. Specifically, it will need data for the 

total amounts of claims that were settled in the past. These 

claims losses include: 

 

a) The claims benefit payments (gross of reinsurance 

recoveries). 

b) Any indirect expenses that were allocated to the claims. 

c) Any direct claims handling expenses. 

d) The reinsurance recoveries (or other recoveries). 

 

Reinsurance recoveries result in a reduction in claims losses 

(or no change). In order to simplify the explanations, these 

potential negative claims losses are ignored in this paper. In 

order to represent the claims loss data in run-off triangles the 

following information is required for each individual claim 

loss settlement, see [1]: 

 

a) The claim event in respect of which the claims loss is 

settled. 

b) The date of the claim event (e.g. the date on which 

storm damage was caused to an insured property). 

c) The date on which the claim event was reported to 

the insurer. 

d) The date on which the claim loss was settled. The 

benefits and the expenses in respect of a claim may 

be paid or allocated over a number of reporting 

periods. 
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Using all of the above data allows an insurer to model delays 

between the occurrence of the claim event and the reporting of 

the claim event (reporting delay, used in provisioning for 

“incurred but not reported claims”) and the delays between the 

reporting and the settlement of the claim (settlement delays). 

For simplicity purposes, this paper considers only the settlement 

delays, i.e., only the reported claims are considered [1], [2]. 

However, the approach for determining reporting delays for 

incurred but not reported claims is similar. 

III. MATHEMATICAL MODEL  

A. Basic Terminology and Definitions 

Calendar year 

A period of 12 months running from January to December. 

Claims occurrence year, y 

The calendar year in which a claim event occurred; 

};;1901;1900{ Yy  , where Y  represents the most 

recent complete calendar year. Also called: accident year. 

Development year, k 

The complete number of years that have elapsed between 

the end of the claims occurrence year and the end of the year 

in which a claims loss amount is settled (partly or in full); 

};;1;0{ nk  where n  represents the maximum number 

of development years observed for any claims occurrence year. 

Incremental claims loss settled, );( kyZ  

The claims loss amount, for claims occurrence year y, that 

is settled in development year k . 

It should be clear that ky   represents the calendar year in 

which the incremental claims loss settlement amount is paid. 

The incremental claims loss settlement information for the 

claims occurrence years nY   to Y  can be represented as in 

Fig. 1 [2]. 
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Fig. 1. Incremental claims loss settlement data represented as a run-off triangle. 

 

In any cell in Fig. 1 );( kyZ  represents the claims loss 

amount settled in calendar year ky   in respect of claims 

events which occurred in year y. For example, the amount 

represented by the value )1;1(  nYZ  was settled during 

the calendar year 2 nY . It should be clear that in each 

green cell on the diagonal blue line ky   always equals Y . 

This diagonal, therefore, represents the amounts settled in the 

most recent completed calendar year, Y . The upper triangle 

(green cells) represents settlement payments made before the 

end of calendar year Y , i.e. in the past (observed data). The 

lower triangle (red cells) represents the settlement payments 

that will be made in the future, i.e. after the most recent 

calendar year, Y . The red cells represent the settlement 

payments which must be estimated or predicted. 

Based on the definition of n , claims occurrence year 

nY   is the only year for which claims are (expected to be) 

fully settled. For all other claims occurrence years it is 

expected that there will be further claims settlements in the 

future [7], [8]. 

Cumulative claims losses settled, );( kyS  

The claims loss amount, for claims occurrence year y , that 

is settled by development year k , i.e., in or before 

development year k .                                                                                              
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It should be clear that  

                      



k

i

iyZkyS
0

);();( .                                (1) 

From (1) follows that  
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The cumulative claims loss settlement information for an 

insurer can be represented as in Fig. 2 [2]. 

In Fig. 2 the );( kyS  values along the blue diagonal line 

represent the claims loss amounts, for claims occurrence years 

nY   to Y , that were settled up to and including the most 

recent completed calendar year, Y [2]. 

IV. DEVELOPMENT  FACTORS 

The use of run-off triangles for estimating future claims loss 

payments requires the assumption that the development of 

settled claims losses follows the same pattern for every claims 

occurrence year (see [2], [7]). Furthermore, it is assumed that 

this pattern will hold for future payments, i.e., the pattern will 

continue into the future. 
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Implicit in (2) is the assumption that, for any claims 

development year k , 
)];([

)];([

nySE
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 is identical for every 

claims occurrence year y .                                                                  
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Implicit in (3) is the assumption that, for any claims 

development year k , 
)];([

)];([

nySE

kySE
 is identical for every 

claims occurrence year y [7].                                                           

Development pattern for cumulative claims loss settlement 

factors,   

The parameter vector )),(,),1(),0(( n  where, for 

any claims occurrence year y and for any development year 

};;1;0{ nk   

(4)
[ ( ; )]

( ) .
[ ( ; 1)]

E S y k
k

E S y k
 


 

Implicit in (4) is the assumption that, for any claims 

development year 1k ,
)]1;([

)];([

kySE

kySE
 is identical for 

every claims occurrence year y .                              

V. ESTIMATION USING THE CHAIN-LADDER METHOD 

The chain-ladder method (CLM) is a simple method for 

estimating future claims loss settlement amounts. This run-off 

triangle technique uses only the )(k parameters and, 

therefore, explicitly uses (4). Other run-off triangle techniques 

such as the Bornhuetter-Ferguson method require the use of 

prior estimators of the ultimate claims losses and prior 

estimators of the )(k  parameters. These prior estimators 

may be based on information contained in the run-off triangle 

itself or on information obtained from external observations or 

experience (see [7]). The use of appropriate prior estimators 

may improve the reliability of the estimations. The choice of 

appropriate prior estimators required for other run-off triangle 

techniques is an important actuarial decision and is not 

considered in this paper. 

 

In order to estimate the );( kyZ  for those cells in the run-

off triangle where Yky  (i.e. the incremental claims loss 

amounts that will be settled in the future) the CLM is used to 

estimate firstly the claims loss settlement factors for every 

};;1;0{ nk  . These factors are then used to derive the 

estimators of the );( kyS and, ultimately, the );( kyZ . 

CLM estimator for )(k , )(kCL  

The estimator for )(k  derived by using the CLM.                                                    

CLM estimator for );( kyS , );( kySCL
 

The estimator for );( kyS  derived by using the CLM.                                                 
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for any };;1;0{ nk  .                        
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The CLM estimator for );( kyS , where Yky  , is 

 

( ; ) ( ; ) ( 1)CL CLS y k S y Y y Y y        

                                      ( 2) ( ) (6)CL CLY y k       

 

Formula (6) is equivalent to 

 

1

(7)( ; ) ( ; ) ( ).
k

CL CL

j Y y

S y k S y Y y j
  

     

                                  
It can also be derived (and is intuitively obvious) that 

 

(8)( ; ) ( ; 1) ( ).CL CL CLS y k S y k k            

     

Figure 3 demonstrates how elements of the observed 

historical data are used for determining the CLM estimators 

for the cumulative claims loss factors, )(kCL  using (5). 

Figure 4 demonstrates how the derived )(kCL  factors are 

used together with the );( yYyS   values along the diagonal 

(the most up-to-date cumulative claims settlement data) to 

calculate the estimated future cumulative claims settlement 

amounts using (6) and (7). 

 

The CLM estimator for );( kyZ  is then simply calculated as  

 

        (9)( ; ) ( ; ) ( ; 1).CL CL CLZ y k S y k S y k      

 

Formula (9) is based on the relationship between 

incremental and cumulative claims losses settled as 

demonstrated in (1). 

Once );( kyZCL
 are derived these estimated future 

incremental claims loss settlement amounts can be grouped by 

the expected year of settlement. These projected cash flows 

can then be discounted appropriately in order to determine the 

required technical provisions for these liabilities [5]. Fig. 5 

demonstrates how the estimated incremental claims loss 

settlements can be allocated to future calendar years. 
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Fig. 2. Cumulative claims loss settlement data represented as a run-off triangle. 
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Fig. 3.  Determining the CLM estimator for the cumulative claims loss settlement factor, )(kCL  using run-off triangle information. 
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Fig. 4. Determining the CLM estimators for the future cumulative claims loss settlement amounts, );( kySCL
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In its usual form the chain ladder algorithm suggests that 

total claims for the current year are constructed in a similar 

way to their claims on the previous year. The algorithm 

evaluates development factors as the ratio of total sum of 

claims this year to the amount of total claims in the same 

period of the previous year. Thus, the estimate of 

development factor for the j-th column of the table in 

Figure 3 is equal to (10).  
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Equation (10) is based on the following model: 

1 2 , 1 , 1( , , , ) , 2, , .i j i i i j j i jE S S S S S j t      (11) 

and (10) is the estimate of 
j . Advantage of the 

method is of standard calculations, but there is no clear idea 

of how to estimate its properties in details. 

The expected final total loss E(Sij) is estimated by 

multiplying the latest loss 
, 1i t iS  

 to vector  , the 

estimation is equal (12). 
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VI.  RELATED WORKS 

Instead of using traditional actuarial methods to complete 

an IBNR run-of triangle can be described by one 

generalized linear model. In Fig.1, the random variables Zij 

for i, j = 0,1,..., n denote the claim figure for year of origin i 

and year of development j, meaning that the claims were 

paid in calendar year i + j - 1. For (i, j) combinations with   

i + j - 1 < n, Zij has already been observed, otherwise it is a 

future observation. As well as claims actually paid, this 

figure may also be used to denote loss ratios quantities. We 

take a multiplicative model, with a parameter for each row 

i, each column j and each diagonal k = i + j - 1, as follows: 

)13(kjijiZ    

The deviation of the observation on the left hand side 

from its mean value on the right hand side is attributed to 

chance. As one sees, if we assume further that the random 

variables Zij are independent and restrict their distribution to 

be in the exponential dispersion family, (13) is a 

generalized linear model [3]. Year of origin i, year of 

development j and calendar year k = i + j - 1 act as 

explanatory variables for the observation Zij. The expected 

value of Zij is the exponent of the linear form  

kji  logloglog 
. 

Note that the covariates are all dummies representing 

group membership for rows, columns and diagonals in 

Fig.1. We will determine maximum likelihood estimates of  

the parameters i , j
and k , under various assumptions 

for the probability distribution of the Zij. It will turn out that 

in this simple way, we can generate quite a few widely used 

IBNR techniques. Having found estimates of the parameters, 

it is easy to extend the triangle to a square, simply by taking 

(14) 

 

A problem is that we have no data on the values of the 

k  for future calendar years k with  k > n . The problem 

can be solved, for example, by assuming that the k  have a 

geometric distribution, for some real number γ. 

 

Kramer [4] shows that if the estimation jiẐ  received 

through parameter substitutions to their average values, the 

result is very similar to that obtained by the chain ladder 

method. The resulting estimation jiẐ  is not maximum 

likelihood estimation, but it serves to illustrate the similarity 

chain method with the generalized linear model method [3]. 

Moreover, if all the geometric means are replaced by the 

arithmetic averages, the estimators of parameters of the 

both models are equivalent. Thus, two methods of 

estimation, the chain method and generalized linear model, 

will produce the same results. The structure of the models is 

identical, and the only difference is the technique of 

estimation. It can be argued that the evaluation of linear 

models is the best in a statistical sense, but it should also be 

emphasized that by using the linear model instead of the 

chain method, there are no radical changes. 

kjijiZ  ˆˆˆˆ 
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VII. CONCLUSIONS 

This paper examines the various models that are 

available in the linear model of the chain ladder method. It 

shows that the actuary of an insurance company will find all 

these models useful. The following points are important. 

The standard error of a linear generalized model is very 

important. You must set the most likely actuary «top» 

reserve for the entire company on this type of insurance, 

rather than for each triangle. This should reduce the relative 

size of the standard error of even more. There are several 

statistical methods that are valid for the evaluation of the 

claims; they all have partial advantages over the classical 

method of estimation - method of chain ladder. A 

generalized linear model is a big step forward from the 

chain ladder method and technology opens the way to more 

complex methods of estimation. 
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